["$ substring..H$ ","'Y=hl0_0Substringcalls Substring, one argumentSubstring, two argumentsSubstring, ending charactersshows exceptionschar, Substringavoids Substring","HYBVXBBY8Y7YIY9Y+B{BHY$H{BHHY? inputY_XVOneTwoThreeVX;XBBHHYcGet first three characters.BHHXY? subY_input.XSubY?X(X0X, X3X);BHHY%VSubY?: {0}V, sub);BH}B}BBXBBSubY?: OneXSubY? parametersXBBSubY?(0, 3)HReturns subY? of first 3 chars.BSubY?(3, 3)HReturns subY? of second 3 chars.BSubY?(6)H Returns subY? of all chars after first 6.XBBY8Y7YIY9Y+B{BHY$H{BHHY? inputY_XVOneTwoThreeVX;XBHHYcYJes:BHHYc0:'O'BHHYc1:'n'BHHYc2:'e'BHHYc3:'T'BHHYc4:'w' ...BBHHXY? subY_input.XSubY?X(X3X);BHHY%VSubY?: {0}V, sub);BH}B}BBXBBSubY?: TwoThreeXBBY8Y7YIY9Y+B{BHY$H{BHHY? inputY_XVOneTwoThreeVXYIHHY? subY_input.XSubY?X(X3X, X3X);BHHY%VSubY?: {0}V, sub);BH}B}BBXBBSubY?: TwoXBBY8Y7YIY9Y+B{BHY$H{BHHY? inputY_XVOneTwoThreeVXYIHHY? subY_input.XSubY?X(0, input.LYO - 5);BHHY%VSubY?: {0}V, sub);BH}B}BBXBBSubY?: OneTwoXBBY8Y7YIY9Y+B{BHY$H{BHHY? inputY_XVOneTwoThreeVXYIHHtryBHH{BHHHY? subY_input.XSubY?X(-1);BHH}BHHcatch (Exception ex)BHH{BHHHY%ex);BHH}BBHHtryBHH{BHHHY? subY_input.XSubY?X(0, 100);BHH}BHHcatch (Exception ex)BHH{BHHHY%ex);BHH}BH}B}BBXBBY7.ArgumentOutOfRangeExceptionBY7.Y=.InternalSubY=WithChecksBBY7.ArgumentOutOfRangeExceptionBY7.Y=.InternalSubY=WithChecksXData testedXBBY? sY_VonetwothreeV;X YcInputBBXChar YL mYC versionXBBchar[] cY_YXchar[3];Bc[0]Y_s[3];Bc[1]Y_s[4];Bc[2]Y_s[5];BY? xY_YXY?(c);X YcVtwoVBXY[xY^null)B{B}BBXSubY? versionXBBY? xY_s.SubY?(3, 3);X YcVtwoVBXY[xY^null)B{B}BBXSubY? benchmark Y:XBBNew char[] YL: X2382 msXBSubY?:HHX2053 msX [faster]XBBY8Y7YIY9Y+B{BHY$H{BHHY? YHY_XVcatVX;XBHHY1In many programs, we can use a char instead of SubY?.BHHXY%YH[0]);BHHY%YH.XSubY?X(0, 1));BH}B}BBXBBcBcXBBY8Y7YIY9Y+B{BHY-Y? XSubY?First3X(Y? YH)BH{XBHHY1Use logic to aYRcreating a YXY?.BHHXY[YHY^XVWindowsVX)BHH{BHHHY@ XVWinVX;BHH}BHHelseBHH{BHHHY@ YH.XSubY?X(0, 3);BHH}BH}BBHY$H{BHHY%SubY?First3(XVWindowsVX));BHHY%SubY?First3(XVComputerVX));BH}B}BBXBBXWinXBComX","A/ErAsBrBAEera(X~~E| 4955}XP]~C 495}(C~ 4755}]C~E 47}b~*B/IEcCE 477}3CECPGF6F6F8XCE 49}]CC 764578}5cBBC~/BBaX","Substring."," From above the eagle views the land. It perceives great detail. But it does not see all\u2014what is visible is just a slice (a fragment) of what exists below.","In a substring,"," we extract a fragment of an existing string. A start and length (both ints) describe this view. Like an eagle's view, Substring() considers only a part.","Example, first part."," We extract the first part of a string into a new string. We can use the Substring method with 2 parameters\u2014the first is 0 and the second is the desired length. ","Argument 1: ","The starting index of the substring. Please remember strings are indexed with the first character 0.","Argument 2: ","The length of the substring part. This is not the final index, but the count of characters in the substring we want.","String Length ","string-length","Methods."," These are two Substring overloads. The first integer argument is always the start index. The second, optional argument is the desired length\u2014not the end index. ","One parameter."," This Substring overload receives just the start index int. The second parameter is considered the largest possible, meaning the substring ends at the last char. ","Program: ","The program describes logic that takes all the characters in the input string excluding the first three.","Result: ","The end result is that you extract the last several characters. The length is reduced by three.","Middle chars."," Here we take several characters in the middle of a string and place them into a new string. To take a middle substring, pass two arguments to Substring. ","We will want each argument to be a non-zero value to avoid the edge characters. Be careful to validate arguments.","Parameters: ","In this example, the two parameters say, \"I want the substring at index 3 with a length of three.\"","Avoid chars."," Here we eliminate the last few chars in a string. This example eliminates the last five characters from the input string. It returns a new string without them. ","Info: ","This method reduces the length of a string. It will cause an error if the string is too short\u2014a check would be needed.","Remove: ","The Remove method can be used to remove parts of strings too. It just internally forwards to Substring with the correct arguments.","Remove ","remove","Notation."," Other languages use different arguments for substring. For example, in Java the start index and the end index are specified\u2014the length of the substring is not needed. ","Slice: ","In Python and JavaScript, slice notation is often used. We can use relative indexes.","An extension."," We can add an extension method to \"slice\" strings. So you can specify indexes, as in Java or Python, to get substrings in your C# program. ","String Slice ","string-slice","Research."," Here is some reference material on MSDN. I recommend using all resources possible to improve your knowledge. But MSDN is often confusing. ","Retrieves a substring from this instance. The substring starts at a specified character position and has a specified length.","String.Substring Method: MSDN ","https://msdn.microsoft.com/en-us/library/system.string.substring(v=vs.100).aspx","Exceptions"," are raised when Substring() is called with incorrect arguments. Exceptions can be scary, but they are trying to help you. This example triggers the ArgumentOutOfRangeException. ","When you try to go beyond the string length, or use an argument < 0, you get an ArgumentOutOfRangeException.","ArgumentException ","argumentexception","Performance is important."," String-related allocations can be a burden. I wanted to see if taking characters and putting them into a char array is faster than calling Substring. ","Result: ","Substring is faster. But if we want to extract only certain characters, consider the char array approach shown.","Char Array ","char-array","It is best to use Substring when it has equivalent behavior. Code is shorter, simpler and easier to read.","One character."," It is possible to take a one-character substring. But if we simply use the string indexer to get a character, we will have better performance. ","Substring creates an object on the heap. The string indexer just returns a char, which is an integer-like value\u2014this is faster.","Char ","char","With logic,"," we can avoid invoking Substring. Suppose a program gets the same Substring over and over again. We can handle this case in code, and return a literal. ","I introduce simple code in SubstringFirst3 that optimizes the case of getting the first 3 letters of the string \"Windows.\"","So: ","In a program that happens to do this operation many times, this logic would reduce allocations and increase speed.","Rewrite Split."," Internally the Split method finds Substrings and places them into a string array. With Substring and IndexOf we can duplicate this logic. ","Split ","split","IndexOf ","indexof","Sometimes: ","We only need a single part of a large string. If we avoid Split in this case, we can avoid creating many strings.","Bugs: ","This style of optimization can yield code that is fast but prone to bugs. Be prepared to fix problems.","First words."," A string contains important words at its start. With a loop that counts spaces, we can extract the first words from a string into a new string. ","First Words ","first-words","First Sentence ","first-sentence","A brief history"," of Substring. This method allocates a new string. We invoke it with one or two arguments\u2014the start and length. It does not receive an end index.","Finally,"," we learned about Slice, Substring exceptions, and Substring performance. As with all string methods, avoiding them when possible is often the best optimization."]

$/9j/2wBD?@.@.@.@.@.kLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwv/wQARCAB+AN8DACI?RE?hEA/8QAi?B?EFAQE)))?AECAwQFBgcIE?BAwMCAgYECgUICwE)CAQME?USERMGIhQhIzEyQTNCUmIVJENRU2FxcoKSBxZjgaJEg5GTssHC8CU0NnOFoaOxs9LT4REBAQACAgIBAwUB))?ECERIhAzFBE0JRMnGBgpGi/9oADAM?AEBAgEAPwD3GlKUClKUClKigmopSiNlKUoFKUqUFTUUqE7TSoqaJKUpQKUpQKUpQKUpQKUpQKUpQKpUxFFJfCKa/uSubk3OOMlwZZyRaQzabEGntg9tcXFJ0AxNzL1cuSs+PJafQmwVQAGwFE1TRERdE6/VKrH1pvUn+q+H5YsjiJhssI0O4T/rZjqLf9Y+TY1q3OMNkhB6zT2y8xzZyT+Lw+yVXbqsJiNMjPygcdcjkRxxNEkutIhejTMDLl9muFkX9h6FFgxWnHthBVJUrRHgbFBEGm9CXLl8WVW/qeTfv/lNxxk9PRI3FdrfUAd6RDMk60faXFPtcHMK6IHAdETbMHAJNUIVRUVPtrw5EKQmSjtiidZIiqOqd+vKtbK13WTbn29o12dedv1TRfq/9auY+TL7u1Fkew0qxGktS2G32iyBxP6Pqq/V+WWbigpSlSFKUoFTUUqEppUVKUE0pSiSlRSgmlRSgmlKUClKUClKUFKCiJo;g6l3d2qrqv8VUOstPtmy82240aczZghCv2pV2lRqetG3jXGvDSwMLjCVwoGoibBGbiRnC6sm8iXFsq5KEqHp89fREyM3MiyIrqcj7Rtr+JC7q+dRbOFJfjOJibLpNEmqd4rp5ctY2ePHLr1e4uS7jqwRp1hGiLmDFQXzRU6u5PdrHdBGjBM0MsNUMFVRUU+Zfc05hqhk0UUTENfn05v6arNEROvzy0X7e+qJe0WdO/4SlobL8YlVCbMXERe5UVNFVP8VdhXlfCsk2ro2BLqjwE2qa9eumqKn3dK9UrK8d3jr8ZLdhSlKuIKUpRJSlKgTSlKJTUUpQKUqFqLUpq068DAKZ64p3qKa1crEn/6o7+D+2FQMhpxHQBxEMRNNdDRRLT60WtVKv8AbYUkIslxxl03WmkzaNB1dXEC3Mcdsvarbh4A+4P/AGrir7Ykv024Rt3acC2R9pfV3SN3Dc93kx/z2k23UI6W43WNbFj9JGRpKdBltWmTdRXnF0baVR8JH6uVbIV1QV0UeoV0LvTXyWvGIvEz8lLHw9c2H27vb+I7S244fhNtiTh2n7UfyfKble0UhSlKVKClKUCvnriIBY4huIJqiHJJxVXyVxcl/DX0LXz1xMYu3yc8BoYm+aIqfs1x/uqx5vt/srw+VcRTdQ1TuAO/z618verONDVo0VdUFQUVXqJFVD5dPZ6qm0xxNlELld5C+bVsutUX3vd9yszawITIjSMWRq51pgg5Cakn7IshdH1KxuXauxrIMtYkyM/9E+B9Xfoi9en4a91acB5pt0F5HAExX6iSvnyXGfYVFxPqMhRU80RdMk0r0Dgy/psjbJZabWWwS6ro2nfr7o1e8fkkvfqqLi9HpVsHW3UQmzBwfdVFq5WTyijSKUpU7QUpSo2lNKpprTYqqNajWo1qDcVVFQi1VQ3sq2+yj4K2RGIr346denX5itXKmkSobDABDIzx6tT0VV+3QUrBC2iE9yekuYrjiYm0ptqyraZYN4bOWIa5DzVsamqtIcxO4StU+8Rb2ayGZsV2M72Jti085HMTb3wJkyLwC2WJByV09KUClKUCtFd+IrdZibakk44+54WWQQnNPaLIgAR+8Vb2vHr/ABSO+znHBRzJ0MRPXH0YAHVVvyZ3GTXyqxkt7dYHHdmPITbnx10Lrdjoqa/WjZuFXlk5sJElx1rBxs3HSQm/DoRkSflGt18GBh2meRObSoKa6OCBauivrZh4hKsAoDjROKBomGOhNa4q2XdqaeEi09EVY2Wdy1bfS5rTbQGnNpshRSzWMBKi6KiqhYF5FuAWPuGBuV0INMv6mB/FZOIvt4Lk27ptu5B6rg+t7dc7DuT0NDZfj7uSDouqNuBovV7hDXWsOsy2lkx2TNXV0cFDBsshXRCJFJebqqjjUXJpTtz7WjTurkZk9pxNOtG3D1jyW1T1vVL+r/3egGC7CltAqqiEZoLjeqLy+sn9I8teotuwJDgtGqx5GGCtudW5lj4V8B5F6tYs6xoYKrSbmKmaInKoEXj/ADCtVzC667ii5OcgyJRYOwnHEc8T7Aquiq38o2nrt+0I11cK+tuq22+mJl1aonUqp+Ll/FXMRoztvkNuKJiTakY5Jp/kSGupdiMTGEksNq084GWraoqHr3iulTjLP03+Fvna3wOA4moEhfXVdcVHN2KaqBuDguKgarqi/NotdJFmg+iIfI5/yWr+OW/fSJnGxpVGq01Sq1XKJVaimqVCr81FNygq+VEXyqKnSpUbu9p01TSsVhxTV5DcXVsyFF1RNETzrKVdEVVRV0TXROta0sJQlrMbdhyW1MzISfjuNIoqvViZinNUVXL3G1iuk61muqopkgqqaZincVYd7mjbbbJnm4rYxsNcfecAP8dY9mnPvi5FkRpjT0UyFTfZNts2/LbdUcHS/wAFarjwH3+GpsOLFmTJMs4gNNxYz0guylMvnubQHgODZcxUn4Vy9bdbGLNhk8lPcbA9S88ky668U4w4h4isPE7oW+dMkW+O1EnvxjAHGW2nHsDacMWuSMR4tiRF8s23uV7BaX+kW2G7syYyrHAVZlMnHfbJtNs0cacHMeYOX2w7Rvs65KM4rvGt5F+13Tocy2RoAyXYD/QnSjq8TyLIw2towcxF0uQ/6vcn8JU3W8Lc7Zw3dbPcpMRq6Xm1wnRaNv0ct7bkNO5AeL7BcvLXfCKAIiiqSCgjqS6kuiaaqq+Iq8Bd4UvVj4ttcSCzc5PD3w7a57e0D70Zn41/KcOyadjdp2rnyNfQFIUpSlSgrir7ARbgEjRV.2OunehNpj+XHGu1rX3GOj7C9XM2uafZ5p+WqPJjyx/btVjdVyQMIihmiEoGDokIdS6Bj148uWK+KrJwGUV0ERSFxCJxEDRQRF1RB+7rW8ZaREwRExLJEXzT50qpGeYVXlcb6lJevNsk00/ENY/BXa447cAIStijia6KjiaLp369RerpVUVZEJUVldBPFSBfCafX7P3q6h1gCFerl8H1gvktYixdF007u/z6qnitVeFAltZiSoumioniAvm662ECS7mkZ8jcHuAy8Se6XtVz8q5WqxbTtznNQhkZC2JA8667ovWrbMdp10hEvW28K2aT7Y8cYBnx96Y5tsNaqL5uYCe2rJBvtOCBi4QuNhydp6OqpjZ3EarfyYzUlogMUXqLFfMF8lStXBM4alHeTlJfPuAtP7JVk9PahMOPTnQZjRwzcfc6kbHUR5vdyXxVbZuVou8aQ/CmMS2o6auPMqpC3ohH3oPMWKeEaq18xFxt7i5Njk6eYN+FOZerQ0+z2hrARo+8UX91Z9ruluujTiW6cxMSMoA6rJ5ICllghL7XIVWZ90tFsdbYnz40N14NxsHTxVwdcdR9rmSp4qbhtlxnXBRAc5h8l80rPrUN3S1HJCEE6OkxxMgjme28aKmqYtngRZDzctbRNdariNWdVVU6Vo2+JbE9LdhNXBtyQzlu4NvbLenflJ2uijzft62kWbEmo8sSQ1IRh0mXVaPJAdHxtqqesOtScayKnSsJ+4wYr4xn5Lbcg2ieRtdVcVkVJDd0EV7MdOYqxG+IrG62661c4zjTCCTzgGpNtIvcrpiKiH4qKpi3NTVJGANk6RaNiBOKui+FEyVdPF4a0jfFHDzqPE1dYjgxgzfVtVJGR10ydURXAfeKoVyN9U1jRJkSewEmFJYlxnPC6y4Dra6d/OJeIfWGrNwulvtTQPXGW3DZNcUcd128vmU8cRL2cqmJbClY8SXGnR25cR0JEZ7Im3Q8LnWQ6j7uSVq14lsPTfg34Vh9P3+j9G3O13tfR4VKG8pWsn3i2WpWRuMxiGUhcWkdVU3F9keXmL3a2IGhgBjriaCSaoqLoqap1FoQ0FVK0Fz4p4fsz4xbldI8WThltc7jmP7RGgPDL1dzCs2JeLVPe6PCuESY90cJKgw6DqowSigOLgS45aj4qDZUpSg1xxkE1x8K9f2VCsp9vl+6tiqJUYp81UXBVyapWFXrTTXTQk08aVHRw1UtNfKtrinzUxT5qjgh5bxPw1enL7a+J7I3GmPW1plooMg0b3Ntx4smXHOwHIH/pANk+3b7T0dyNf7Lc71bIt9tEuz8SQTLoAzVcx3JHJixIYNsHxP5LpLGzn6CujPhh79YJl/YvEiK7KiMsBHbZbJoNtGfTbu5vtnsDyi2yf0b9alOCJMviGJxBfLz8IuwFZKMwzESI0CsGTrKa9IdLbB1dzH1z+U26nQ6iS0px5SIOWUaQOOnfq2aaae9XMfo0Uf1Qtumnpbhl97pj3i/hrv8U+auBjcHXS0dMj8P8RLbrfMdN0YzsBuWURxzHPozpOt+qgiOQ/9TtKSCrgIEGNxKeKIDnGF6JvHT0fxcfy5ZVifpDUx/VhxpnpDzd/j7bXV2pfRfjrsLFZI1gtjFsiEbgNKZm456R11xcnHS+8X8Fa7iHh6TfH7a61dAghbJASm21hJIzktnqDqmshrlEeXaxqflDnuJebiHhaTdmegW+JJI2pTbgPZzFOO63HkcvYNZseLnz7T0deiutI6061qo7rZt6+aZIQ/31y9y4al3p2Et2urbkWE+LyR4cJYyOup3E647Mll4ch5R9dyujnxlmwZkNHFZWXEksbumStq82be4iZBlhnl4gqUPNbPHv8AwO3MYetXwvaTf6QsqAadIb5MNSjn2pjg2PL4Ge07euv4Yk2CXEkybCG01Jlm/KaLcRxuS6g55NmZiGQoOIsdj9HVlqwXWHbG7dA4gdDFomzekRW3yTLLVY67rZsd/KLhSsKvcM8NMcNRXmGpBynZLguPOkCN64piAttoR4iOvtHSjfJGZ6UszD4wUcWMtV9EJk5j+c64PgyKxLgcURH20NiTfbmw6Ph1acbAMdR0IeUyxx8FegOi6TTgsuA06QFtuG3uiDmnIRNobeYj7O4Fc5w7YJViKYh3NuczNfdkuD0LYc6S7hm5udJcHbxD0W3/ADn0iDphRBERTuFBRNfqryPhm4u2w+OHAssu4xmbzOdNYyxvbe7DaddbIhAOYtsXuQ/R164SKoliWJaEiKqa6L5Lp1ZVytg4akWZ26E/dAns3Z1195roSR/jDvpHM+kO8vq7WNSmMb9H8ONF4ebejSmJXwlLkT3Oj67EZ5/ATiMgXOAxtsRxc589yqP0k/7F3n/h37v9IxKyeFOGJHDDcqJ8KdMtzj5vMMFG2nWnC5T3HhdPd5PVxwz7Ts6z+J7I9xFanbSE0ILUk2VfcKMsgjFlwHwFv4wxh2rY5Fz0G1t6fEIXV/I43/jCvG+L+F5vEfFt0W3PNsSbdZLfJbQtUV55XDEG0cHwFgDmLvtg236Nzcb9jt0aTEgxYsuUEx9hsWykAz0dHMfRrs7ruBYYiXac59p2fo29JGsVwY4jl334XbcZmNAw5C6Ag/F2s+jtjJ6TluAZ5E7t8/0fo9uEvNG+MWL9D4WtU/cbv0TiywhJacaPtdmTtm:APdr6avclVdF6v8A9rz+4/o/hzeJYfEkeZ0NxmZDmSI3R90ZL0Z4HMtzeb2N3Dm7M+ftK9BqUPGv0Wxo9z+HL/PFuXdnrht5uhuEyJN7hk1l4N/dJv7jNdLBXhC2cXXDoT0xm/TWNp+AEKZscvxg32viPr7fpRf2T+T9JVQcFP268ybtw9ejtIzjzlQ3IgS47nWRcvbNYDmZEI+pn2bm32dZUDhA4XErnEjt4kznnohMONyGW8stAHJtxgmmga7PlYGN/OVCXaUpSpQUpSgUpSgUpSgUpSgVFTSgilTUUQUpSgUpSgVNKUSUpSgUpSgUpSgUpSg:9k=%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEX/6Nn:/+VlZX29va5ksB5)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AMg?ABfCAM?ACa5XhX)MFBMVEX:/+foaDS1dVpa2oxMi/i4uLl9/1kyvSZ2fjL7fsatvEAru8yu/Hq+P7y+v0KsfAiJDr2?AE60lEQVR4XtSay67jIBBEveoHL:/305sZSqZuu30RVaQpjZZ0If4CDDYycZx01b2upem5luUeWQ941rqe4oCuIEsZ1zrz1D9NLKeGVrj6EDNPLKe8VKvUmA+jaxnbK/X2Q11c8h6xurnoHwKWc94zYIhnEGWM76n1TvKZ5DFzGg1TxuQmEDWMlp/E4XFBLKUcRZUM03mYqYAZCWj0XY5rBo1ajwgFqxPRq57EjeaPRHDHAsqrIPLcmdLp34yESDMaHSDjZlcBIxerbUBEe5HMxFG4o6oLWRyETCFzTAcLFK2ZwqLuD1AfDojzDTrR3U362weM+D8bDBjkcJyHZffBCKkGUxGO0YLn04IGOrJ0Q6AGY5xORiaoNuZUQ79y1lkuQgjYFgEV5YwmYjRPJTtjOgB+SMazFHNRBhhhkUGAGZyETAtvml1424wSAfCgUiMgGGR1oElTCLSaEGVsSHdCgGF1mAswggYFhneQeUMizCz0wX17ZVOo7JvZ/ZchBFmnL8kZ1iEGS4tNq73qg39JCKMMOP0IJswuUiNtNVfLu2LIyJqOOLeH5Hyr8Ij9v6Cwr64RrxWB3Z7jbSfl6MvZPPv3rXs+SVmt+9awUYxTFUHjwjvI7kIEGZYRMrmd/cRvlKOhTs7R3HWojbapfmspc9mgQgx+VkLjH8UkZqdtWCItgi5+BprzDGTn37BFK50h4e0mpx+ExE+ybIISE2YRKREDwpWrdPWTv1oLgKEGBapNs5Vefd5BHaMqCkMgyfENEByRlVLwqRxeKfBgMwhC5nY+398i9ITbzpOziErGZFS8xQReEwgC5kh8qsXrCI4Ss4g65guIpZWmwiGZApZx8gRS4shMoksY4acSX4WOkow6HPIKuZZLR9/qBMSmUFWMV3+RmscRUU/PSaRVUwXxFtQ21xIZBJZxch7gr8XCIJlOIesYoTy/ocPlJLIFPIl5k+3ZrTTOhBDwR4f75V4yP7/514BFaclTuo41W7EvEE0ZcfZkBAhQSF5FJJXRjlLskGbt6AMcP5OSE9G6KZQUAY4fyfkdvgiLChrx0D6JyTsHc6UEIM/A3uD0w+e8oLy7Bh9De28c3C6JUXOBz2GH2ed5dAtoaTIMd/GzjqHpltR5MD3wEmnH9juFUUOfB+cdJb8LikocuCvwEknvUtOKeavsXNOz++SutKZCGE/5/R0R12BZ8BJpyc76op5DttzSDJ2xJK7aMuKFsC73h7XAB395Qi0Lw0ORcrRhFOzrSot+LGIQrw9OYI/B6wpxOWIJTPbooJofoxC8OSIvrNV8WrEkkVNcUE0jRxfXzRQoXLyv5ijhfXvKS89rqgpFi1Km8uCo/HMm1n8iYPAxnQZhCBymuLYFSJnENwIaUEIA4ePlz/WIZwdckMuBI8niRNDtm9gXIV44EBtMRND8C20XIjaaHdwkRDdxQ6GSLpICI+H8JIhjmSIVg/Xs4pxRgijEG9hCCOn63t3DYEzK4TpEN0lAbtNDMH6WQtwRxSCxDOjQuQMwYLpaXMlnrWcPQqRM4qNEAYhcuKSbgqRMwrEIY5VCOR49BeikQqRM4rmWdqOQ3LDGQc9B0vOQMxzWMkZwJD3WgMY86ZxAKPe/V5sc6HmXK4ENedyJSg5czD6FrSSM4sOj0EvO1c6KbSSM5kWPA3WnPk8/V/JO5z/cLdscvTcpWU)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ANI?ABFCAM)IJEiL)GFBMVEUAru+g2Pf:/8xt/BpxvPS6/vp9f0TtPCISbH1?ADCklEQVR4Xu2bwY7CMAxEPWM7/P8fr9baaNSG0lIQK6q8U2vhxk9ODD1gJBE3uwS3AEkjwy5EkCajqzgZ7GLAwi5G2M2uxceEJpPJZDKZTCYTzzCBsH8kAMCeA0OOJykNkLDP4iZAMu05UjkyYnMZveyEX3QJf9iVJN6npIC6FNTtWfSI/aeRfLsSpCAnup0nyF4nPqwkAwwV5ctKrS9G4qNKPtT/+nEK9t44/0EJ2mUiFTyr1EoEdSGlQGYi+t0vpRSFS6k+CZgwh5K1FJCJRkrJ7zYk7kQdiCeUUIskCSlFY8EWmiJCpy89WaRLiEruoLEjJfRNLxTesxRjdpB0r4ueB4p4rJTrQj0poHXuKG0UGsOcapXnh5WcJEDSajnNQWQJ+LaSUBG5Dsooc6EUW3W2laqziMNKlqVElFJ/ZLoavjkeCrhBn0OPRbm11VdeSknjZXfnPa0EsjUyuhLU5bp8rFQRnfqm5HIKXayVsmeLjfZBzT2mFCyslLSUtvUjJSwqVV810BRbKSkslBirOuHHvyb+Th/qLvtSUewqtVWl6rB6V7EYlRReo4TnycWaySqRgntKeU/JTNGm2FElzYfzSlFr9p7FaSVdKMozSvmykpPE+5TaQqmbfXbjWWoy6XCKUxtPUXxUqWmBrqTSTyvFYuItYu3cxItM2DE4KLk2zxmloLwxDnFQOUpaUwnjC8dZpdh+gMrZVjL2ZL2gVreaV4aUtCHF+GD1lvQTStCrE5kIiwio41nh3yjivpKqBiA5/IWS42+8ODLDWeC8Uq0lIGPFNpU82VFMAbnrYO3+HlJ393GSGJUMg1KRO0qDU7oVUJ5yNDfExhnzPKwUoxJWr3HMUAL2lAq0ITNaTxveanPndUmxtBeJACL8bvRQri9DgNIetcm1HYdp+w3kOMmgkHBW8BsInbhHX0Ge39EkGeRDI0DD4YucfLgTLOD2VU7QTRkNSgj7JkAogMHIIsK+DSwEZPR+JpPJZDKZTG7XEwq7GG6wi4Er/n+J7VJO0Wgk4Vf5L6CD5A+G4BPe8Jfzjg)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANY?ADsCAM)/3KjX)kFBMVEX::1+Pz8/f72+Pzz9vv4+v1QgMXy9vvp7/jn7vfm7fd4ndLA0erw9PqqwePk6/Z7n9N9oNS2yuewxuWtw+TY4/KGp9euxOTL2e6SsNvv8/qowOKrwuPj6/ZslM60yOazyOZdicmeud/+/v/X4vLs8fmxxuV+odTa5PN0mtH7/P7g6fXq8Pjb5fP5+/3h6fUSnjEB?AKSUlEQVR4XuzX.rDMAxE0d5l5CX7/W/XEiCEiNLFtWqL+SfIgyBLNweNMQ3nUhw9sOJwLXpgJcVKHliDjiyyyCKLLLLIIosssjxv8Ly3eB0zxhgnIXRdv1t4UX9bBt6vl8MEH9c+C19mzSILhbXIwk8yYNmZtAxhkb0l4E8sVGiWo9mcpU3rJrKtKC7LUbZn4dokjyYUJ6fMWc8+pz0WWQD8/YRQqZFhzSrf4FEtzbK7t1AvPeDtrmOo1E9o8hyXp001RwZClr0cAJiw7uzd25ajKBQG4AVqTnU+9Lm6e2b0okNn7Pd/u1GIgvxbCnoXmlkz/w1F6upbkA2YaMASLvCSSppxRRWyEIS2SN8aKJyEHQBNdGq5vgxZdMmQKSFd7sHEZGEVRiYnXAmtK1eB55jCCaxbA5WxHDNV0kxCvqxxYll5Nk8RAzWUDAYMWbGuI4aLOpe+RmcCUGponb/mXJJi2SzPkgRLzUfStNVZiLKT0IhAhTTKtiwrrv7ZkqEiEs2ySWfxUfTkS5dhgbdJZPFVdrSU4sJgOV6KhSZb4Pks6R5M1mc1Oio9CSeXVBZfpQhWS4WkMVxcVlilvEnYBhJm2R285LD4Ku2wJQNNmHnYrhmzqyFcFqLCKps2NrRrUuAxeVioIkwsWOOEYPF38FEozbKTsG2rrv1ZtW3xs2uLc1N1L1QVg2XDPm/NqejBMiWjbadtdW6cBGAqgsU9HSe+rxqdtj23lWmHpoqEIQtdvCS8sZBVASsIW58laVb7azr5Km8SQmZgq7PUJKZUFO1YI0TfiqGhQrJUsMDzWSlj1Y6ppik6X6Gj/4qBwXIMyctSqPJEBRUPhq7TuIOXNItVCUlUispET8ISZCHXa9tezrpVk4lUOQRTM;/ka6aDGOXwVPZNDrFm7oYe8KwSqIKUMAKyqzrZA8m4OKy6lQWrRLCTEJxDrpcFlTCgYXJwsItO2nqU+qSoU1o81iwbmVnhetFhSoRSBGCNU5knxVYLb?RWaO1SKLO1qISlcha9tPwi2w0EWzZmEZWAljVZqSUZqgDMdrNdYrb6xRJHpJo1PaIGziyjhaYZWMVOlYlk3YhSyZjyWdkAsWjSrtJHQTcrkFPi+LHqwoVXnTl4ybcs6FrP1kOTZZgKWQhapJtjoAm3PthoPJSVkWJtNotbMsNBnXVDbLauM2vOk7+DQVlguXZCahxTk2WJetK4lFn7fSWGqeNZiEO1CmZGydwHgha0iIlX46TlizkOXNvkYnwBL+NNwNB5NTmJWcGhMzB0EFLIDBcEEl5LDS62CMCiYhuHC4YN2KcPFZimahasznvmR83s65kNU4UQuxZFglrMrm5hyAkcO1CitusJCEMuLdhSwZZIUrIY9FD5ZVmUk4tOdJeXNez7alOY+VRTle004fLXrd4o8WsqzLlAy/HUpJKUxbmAZYKsBK3GVw5iBOwUbHb4fCPxxcCtNQrFlY2p6wZrNcVTrLLfDhfUZ+lgCWQb06CUuYhO5yrOTyrMpnlcCyJQNKx3AOg5JROQeTNVgtzYLaDiGWLnq7uxRL0vWdzxIXzyJVd8PEutOusXvoXYdz7++dhtkd/KWzvjZjvvZI270ry4Pt7dcsGemsd9bxbtr9UZZuRb+?l/FsxonXrcs3R4sx/+zFp6El8+SS7Pkf5hF7+AzL8fI2k5Ygs2iz1uZN09Y4LeTAi8CBT7MCp+O8251cTnebifLsWAvx3TyHUxs7s4D9O5Obwl112yehBD7YSu1L9J28MFkO0bydromDFbOQz+tSmdJhirDJZpIlc9SQxiDleOC2sGeRBAVZjmuS7v8eTc9iXz+cn90c:lxvhvH45uHl4Kjaqevdc/KENRT14hf1JLXqz2TiJfjn6eNesWV1HNeobX/zCsJ/jH9yU/WmicdBPuHlj3mvUArAfNIl43LGKTtNgHQcg6YjTriNGsI8awjphlPra7TBb/Q9Z4lhAzLJWDxf9I/BJZ/C8wXCqL/3WTH06Bn2EJMcdSmVj8LwdNjh4kS6zA4n+V6+Bety3XYOX94l2ZzFK5WfyvSYZZRU5Wxi+1hlkFxVIZWfyvIO9ffW8VBclq1ZqssKs4NGMOdGkoZliKyQqH6XKvinUsYkeuWcTrmvUWO/gcN2M0TjoWnqueNOsZz1ua9SHDeYt96wyyytt77xQsNEu8eKfg50qz2g+zp2PvH9GnY/6NTsgS0Tc6mUgbxlPw3va2NJ9VzKVKYvFN/JsIaRb/JkI+i+NCFl/FZ/Fv0HULPJAYN+h+7/Po5HrR26n3lnWgKt6LiFLVfjZ+3i9787vzKQi9PlkUqvgs/qMKUIYhdg2IQle9NAtpbch1xFStE0AFC8a3zabRgMfN5jqZ5T8zVY7dUw86jT2tGru7qpftxm5Bs2iUQhSyNgOr2Ww+JbO8Z6a63d30cUzTm6D305uw9jTLQXFYm/QS7z2Qw+1K6fa8m6C9W+aCLJWu6lmPZhL+Fst7fIrbldLteTdBdyyvO8cCUxTrfae56tasq6799u9ihR4Od72xebw4FqJQhekBf9n6Lt6UVYdYSkWwjCVdpdN80hPwE5R3JssfO1AmsmSsipG1WTWDxSvw054M1nv6ShLjIZmwg09LYDme9mRodd4FWRLz6lDBnjAttffMVNuVdS3H3knqvdTYVX12Y7dNZNUZWJkeF0zs4BNQfBYfhjT6ul+SiS4Xt91mgwbwXaTKl+F1vzZ5qDC/utH6mIOFMN6D0xNL+5/6YJKLBTDGY+6TWNddhc/5sxiSnToNJZpO1Ij8P/eRD4UqcbsxuRXZXXUuE7KuNkOuVv15FqyECkyRKu+8db2mi1i3flulT8dXfWH/eAXLMYsVdhE2YpfB+Omjcbn6CNcyOLD0UTtiGD9UBVeesrowQVZc/mnvjlUthaEwCv82q4lY7CJoI0Ri7fu/3RQWG+ZOBgJGYXO/6pBUi4NJzkGI3Jhvy7P6PZA15Nlyb2bJNVfCAFnP71vuvSy5YacMp5ey1ORnwmeNz9I3xmapabI5YlaCRVOVpqNQjkkPG5mlphnggN0KAGnS00ZlqU0bfzENMCJL/5Ph3Llly5C+eciarwH2FLlC1g7XdAcl+Gb5aL4G2NPkIAu4P0gZvlnvm68B/mjqyypQVQvl462sTR0S+52VueUQWRscsPspvugFg5rcXbNJWrjpJSOaXAKYJekyWzPoTQ8HuTOz+xa85Nx7B3L/+M8JX/A8aLj23SbWPd6cGMCczV13IHePNycGwJG7rsjsHm9NxMz6zeq3QFK8rAtY42WpwBYwazazUFkuUNaaYbsk6ZriZK0AlEkV5jhZGwCYKixxs;cS+FQDbUd72RpIatCiZOVSZLdWcQ5wRtIK0UGxPm9deGSmv7xL173eHNigAVnCiN71aY4oNjtUiC1n;ivtOczYqi4si/Wb9ZnzKYFU+FLWYWCuc8gJhLRoqZFXQ7PgMenjKY4lkhK54KRfGsQLxn6yhQYq6EW8iscsbL2rNNavoDiFriVCaWdbU)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AII?ACCCAM?AC93eDP)GFBMVEXGnG3Vt5jw5tzo2Mj69/TLpXv::hzbgsbLBb?ABn0lEQVR4Xu3c62qDQBQE4HM/7:GLbRFtrMEjLpb6Hz/omEcVk9uEKWqXFO2SPWqkoqUjTRKSmUrLXHZzEVlM5XtUv4DIiIiIiIiIiKiPrQKSnWrT+b6/fhHzhPOszo0Fug4doeKiMOzIeGsroPCzqiBZwZUgIQbK6TVb9Z1fwWtA/x6/lLPEi5WCGhwtkLIW44AO9WgepbwlpgGJDQAPU24NpUNW1/qScKNFbpWVmicKDwN4d0GFTDhvgpdI094nbizgsJQwyK4fHOsgAnXK+AiGHS7uYLgkawGKtNyPUl4U/wOSFyE2a6eJVybSseFxUkz2I4J5xkO2SBfVICEa1OpcJjZm9chJwl3CZiH5WrQWyuwAitsngh8XdhfoVLWa/i0MMqWp2kNImXk1UtHAmfCV4yJ1Ujxi6auPRMVRwcN2PSMqOlHaFGDWk/pAmZuAVfpg6wAsFw5l3OrTwVqeZjXa9EiezuEygK9/FJEasuXAHUsvwqQ2tgirGU9bfvqYdYqREREREREREREJCkqm6m4bOb7:b/J25+sP8WEB/sCiRwLVAgBw)BJRU5Er@ggg==!E$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAIwA9gMAIgABEQECEQH/xABZ?ACAwEBAQE)))?wECBAUGBwgQ?EDAwEFAwkHAgYDAQ)E?gMEERIhBRMiMUEGUXEUIzIzUmFygZEVQqGxssHRJJMWNENTYuGCkvDx/9oADAM?AE?g?PwD9UqFKqUKCgqFCqoKWXK2SqXgEagErM57p2jdPLGXsXAanwUiOPemTBu8PN1tUpyjNNjqYZA4xzRux54uBsnLMcHtLbNcOoOqqYi1rPJ3CLH7oF2nxCVmmZLYpWeGdsj3s1zYfR/I+CcrterK6FClNuhCFV7wzv7gLXuo48gbhreoI1V0K6FQRt4tXO77lG6jxxwbje/LqhCuhUMbeHnpy1IRZ+R4uH2SP3QoV1Cq1+XQt1tZShQVCoVKohKc5SpSkivq/JKfPdmR7nBjGX+8TYXPQe9CoHLcrLC2KRmU7MfKnNGXEcTboO7r9VrjfmzkW6Alp5jxSnON1oZqExQhQq5q6FGShVWSSdzeSsmtdkEKsXVC0xPL2BygpirZWULSqFVSJg7hw79T7k9yQSN6dfu2soSnWS5CI4r4k20DQlOiGTZJC7IW4cuEFOeHb1uvBY38dLfuqTej80l6S46JYiiyc5sbGucDdzRY6+9DZPJWjeve9mVs/ZHvP7qExrljc5Sx6dLG7A7t+D/atf6+5WjlbxNe5u8YBn7v+ves7ZDBm+aTzN9D1aSeXgtODHPD8RlYgeCa1alFNUsqM8A7hP3ha46Ee5Nc/ja2xN/wCzSSNiqo+Eedbjl7xyH4lPjBawZO8SmteFKtG3AHU66knqrKqqXjTXwHenXVCU1.173NOgZ3X1KsWuxHnHadbDVXQHJqEol+Q1bj171LJA4nnccwUKbqz2te3iH/AEqZOzLXDhTFh23WeQbKqKryWer3TctzAW52uLkZOaNBrz8NdFF1B1WtU0XFd2r2PT1FDSbRrWbPrayNkkMFb5l78vu66ZX0xve/RdpzkXS3Cypil1NNFVQPhqGB8TwmaIQk6BZaaaSCrZSbuXd4Ddz3yysNQ7TQ/mtUkQ3m/iB32JFr2D+4H+UqSNk7JIpR5t4LXa20KzRVTdnSUtFVyzSb27YqiS3Frown2rd/PxWKd+L1qgPCuhTTieESYvZz4XDW45hNWKrhfvoqmKV7N1fJlst43q23f3FMo6qKtpIamnd5qVoc3wP7pDpU6yeqKVVY5ZLqwTYfRPihEHoHxQurS+pb4KhTHclFgpdyULRJooCqQO4JL2s3jeAXd7k5UeOE62PQ9yxSvPepsFnmjj4ZMW8AN+G+n/1lnr2x+RyuaxnoHWw7lsa77rrZ21sVg2kHR0sm7a3dYO5aY6HXwXNc92QF+qs5oxOisrtSgRYa8+RVTMGuH4rc9pJXJYbJ8mWDt5FvItOFp1J9/LT3LQKmLFmbxHnyz4T+KiEjAJhAc05AeBQ1y3s5JE7nu9UOKNzfnrqPotSxtp2vLnyB2br34iARy1HI6J7G4Rtbc8gL9SiORWKtI/Fp0PgFUD77gM7WPuVHX3o19Ea69VK1ses73WTMuSus2XEmp4Ko16ZkodxNOp8QlvdyRkgmysH6prH/AHb8enSyzba2fDtfY9ds2q/y9ZA+nk+F7S0/gUx7hk11uuPyP/ael5pzTdcXs7UQ1vZ+i3VT9obn+mlnfEWbySJxjeS06gh7OXSyU3s3syDadTtGjgdSVtQHb2SnkczPLm5zL4Od1uQSsuza3Z+ztq9o9l7htBHTNG05ZnzHGRs+ZfLr6AD45L9Oul1o7O9oNl9qNmvqdlz7+HIxSNfG6NzTa/E1wBF2kOFxqHAqrnqr1g7IM29DWbT+2KmWfZ0cm6o3VUcflD8bhz3GMBuJNsdLkC5svTbxeTimg7FUtLR1tRWTbKmqDFBUy2c2iabYRSPvljlo1xGmgJ5FemU7xZXkhMZ6xNkIx96zNfxjvTBdcqtf50eC2UnoHxWbYbqzyBsO0nB9VE50e8uPONBOLzbkS2xI7yVTZczmbQ2lReTNggge2SFzGENeHjJ3uJzzvb3LFsCODyvbVbTVTKiKrrPuD1bo42QubfqQ6N2vy6J1Aav/ABJtN8szfItxBHDHnfGQGQvJHQkOj8bBZ3yLUuyoUKFjdIrLRT+gfFCKf0Pmheio/UM8Ep3NNf6PzCopl9D5j81RMqX42UBSqoULnSPVrJcjA5wdbibyWOtc59BNm3F2Dvy6LcudtZokgdqcmtNnD8QszWl7whxs0rNM7yYBsLDu8uKxvjfuHcptqqb0uk3e7dnfi7rd9+qZBEImtY2/je5K7ZaBoFyQ1aaaQx/Ctm9F+EF2l9LLEAojkMc7vZxH7rPUtLWFzeYWyI62K0wPO5ZwudoO7X8U7e/8Hfh/KRAW7iPC+OI+iYuI2uezkFs3d0sP85Jix/MX5dw96C5/+278P5RGRlJp97X36BMTPtKQHkEt1O13NJBfkPNu+o/lXMvG1uDuI6Xt3X7/AHK6zTn+pp/jP6StNNtKSSVsdhYpL6ZrGl10+Tooa5WSWrsPKw3sU57nbs4ektDVik9WdfmU9jlkdItcZWas2e+p2pR1XlcsUEDZN5TMDcaguFm5m1yGgus3kS4E8guft3Z+0J4Kao2BWNpaqCXebuUeaqW8nMksLjTk4aggcxcHvZBUiPmxpijPJNsubs3aNDtZ1ZHSTNl8kmdT1Ebmlro3jo5pF9RYg8iCCLg3XJe+s7OR7TqNpVM+0dmbwS027gfLUw5OObCGAl7G3BBAuBcG+hXR21syo/qa7YHkNNtuRsbd/PDk2VjHEiN5GuJu4XGovex5LEO0tHS1tFQbacKDa1Wxnm3h263jtN0yYtDXuB6DU6G2qu1JcxU/xVsCDZ9PtKq21s+npKjLdTVE7Ys8TZw4iNQdCOYKdPtWpqdp01Hs2glno5YxJNtDPdxMjcDbdnUvedNALAcyNAd5kpJXbx76d+6J4rg4Hrr0WHaXabZlBNSQ76SoqKv1ENJE6dzxexdwA2aOrjYDvXNrPWcuidTq0j9mdkOzB/0Nm0EPvc6w/Fz3E+Jce8q3Z/ZrKKCrn89v9oVDq2XetDXtLgA1pA9ljWN/8Umloto1W06ubbb6N9A148joo4w/HF12zPe4X3lwCALBve46rsjznwfmsTnrQAmROLgfp4q6gWtyQsqutNN6HzQim9WfFC9VRf5dnh/KS7mrT+r+Y/NLTKn1Xz/cJKVtB1nNQ1ShCq9yxtYXnRWJsqSv6LHVN8w/4StdkqdvmneBWxkQbZJcbpeKpitWKWWrU9Z8EhUt513wj908hLxO+OmpA/dZJfRKY0aqKOQ4M4dLDh7ltS6aMsibn6ywTVwahzXOu1bGAgaqjC7J+Xf+FgrKrAcpNR6Xfy0CskKyFjrR5+n+M/pctiyVfr6f4z+ly1UXr2eKTU+qd4IsmKFK9M4XXDYESgbp2RKe1JlPmnafJNascrVujKYoizwGd8lZqiBvm26/NIwK1hWxS5IVoQntjUFt15ebsZ2ZqZ5pqjs5saSeU+dfJQxOc/W+pLdddfFdmko4KOmjp6SGKCnjGLIomBjW+4AaBbXx5fEqBhf6Q8feruja70hdRqlNj3h/4fmn7tvchj483xsezNlsmgjhvyuOiYk+Ts9@moVd21W3TFZWTWU0fsj6KdVDGhvohCshbWtx5KqXVHzPzb+aRvG3WtzWvaWuAdfoRdUFPD/ALUf/qEuopt84G9rKQ6yTmEOAT9zH/ts/wDUKd2z2G/RVZS4dUF11msFWQDA+C1GNvsj6KhY32R9E/dqiVikyWstT+SxzXuriPI6pbjZY5XOzv1Wmkc1z3e3iL/ilOYs5JbLwmxACVVw76MsGipG4sdddKIeaYL9Br3q6zUU7JYGd4aFpXk5Y3RuLXc10GuDhdKjtlJqfS/YK6owjOTS3Fr79ArpKlCxVp89T/Gf0uW1Yq4eep/jP6XLTR+vZ4pFT6p3gr3QHOu7RmXMC/RVuh7v9TElzR39F6nmuE33pp3u7Ho5ddeX4J7Epjg5o96exLcy61xlMUMa5mLWBuHjqrNTNLFVES2tKVlJvA3Fup7+n0TlEYdd2Rvc6W5AK9kxsaYoWbaUNRPs+pioajyWqfG5sU+73m7cRo7G4vY62WtCtghfnzsxs7a3ZbtLtvtV2uk+wo4JY31VXJhJ9qXixkijAPomRkb2jHIZYjqvtPZLatTtzs/R7Rrtl1OyaidmT6Sotmz6dD7wD3gI7V9nKLtLs5lPWXZNDIJ6WpZbeU0zfRkZcEXB6HQ8jovEbcm7Q/4hp6aavqOz/Zbs4yOqqtr1UjXv2lwloZf0cbellrfkBoVOKF9QUrh9k+1exu1tC+s2BWeVQMdi47t8btQCOF4BsRqDbVd1TihCEITLKEIQhWQhCEKEIUOspVH3QAgpMiQ9PcUl5V0orNJ1WST0z4Ba5FlLHSzYMHQJchDWklL5mwWeHf5sbC1ufjYAfRdi8nDwt5a8VtfoiCFsLOH696YvLVtQJnaDQLbFHgNVRuXFy56eClSoWBNQslV/mKf4z+ly1rLUD+pp/jP6XLRSeub4pU/qyrowTMVbFepbquPu0qIOa92R+H+FqYqOiDrc+E3BCZ.9gcmgJzG2TGodZ7t3Y8rn+FKtEHYDM8XVTitTVdSospU2TEIQhTZCF5/t72Yg7Ydla3YtTKYfKMXNkxD8HtcHNJadHC7dQeYuvQIRZC+Ndrq3amxu0lDSbB2eyTtxtCngZW7WbTP8kipY5Wglkbicrl9ixhv1uLBfUezNfW7T2JTVW1NnSbNrXAtlpnuDsXAkEg9WnmCbG1rgJu1tjbN2x5J9qUUFV5JO2pg3rA7dyN5Ob3Fb0IQhCEIQhCFKEIQhCEIQhQhZp2lnwrM9y6RCwVFM/Mbv0T+Cu1w5FLe09FlxdK/Bn/4tDI2QOc3/iNe/mtUMLYWe/r71Wanjldxg8rekR+S59ZeZpY3kmRtx1KRvGqN4zvVzQwey/8AuO/lR5BB7L/7jv5XF8gcnZKm8b3o3je9W8gg9l/9x38o8gg9l/8Acd/Kr9nuRmq7xvekPIfVU/xn9JWnyCD2X/3HfyrR0UMcjX4uyb3vJ/Mp8Gz3MeHk8lR77ghWU4puKnFdtgWXBUxQ0ObINBhb6FMQ9gewtTgrBqoA2R/XgPyJTlDW6KysrgIQhCFZCEIQhCEIQhCEIQhCEIQhCEIQhCEIQhCEIQhCEIVSEKFCsoS3NupVUKyEvdhTdVUK6FGCFVCshMxCqoRZShMCiyFKEK6LIQhCFKEIQhCEIQhCEIQhCEIQhCEIQhC:9k=%iVBORw0KG;)NSUhEUg?AJg?ABZCAM?AD1qB0C)GFBMVEX:/+vr6/Nzc1kZGSNjY3k5OQxMTE?ABgpITo?ADeUlEQVR4Xu1Z23YcIQxbX/n/P273lMYJRSilM4d5qB5DwAIJe7y8NqEi+noeIttPpD6S1xvyMGLZOvKGACqyu19pHTccmfwyyR41L2JGJuwunbEz224jVlv2bWJ4/j4USHGlx454JO66la3g/3Ytr82w0ZAU0hGUWc2+x2ItpolTuZpu5pT/vndzfpSvM3BkMakbcQSGlPTDpTmBksRi9wMoedxiAZQ8bjFFSnqd4xFIKTm3mBwnFnPvxek0ZnOJ83U6jcmOxRTUUj5JKbFBMu34Tdi18JVBSJ8LG7cQz7cW8ir0SfVnhEFJbQv4JABMwlEUmkU1Fx20Ex2UlIZR4SsAcqJWCa5th8Gt4jQWpSxEjLNg42azcUEiYGJ1J62jdaQV/EuOMTMcoI2wfp1cVFWMtwkyH4/1PJEYhLdBBxsJhH2OolkDa2KAL0uvNicWU0ktZh2MLVd21AKzukG8IlDtsqmuiAk4Cf8uMVlZGIfAMfogTCKXERM8tCDmaBIpHNSLupB6qaXOhwRuBnqR98K4SkNiiebYdxsGZ8TIdw2Y6JsW4140EhsO+lTJwALggsZPFLsf6JxcAKJUsk5Htog5UB9YjKY7fqKcWAlGBCAWo5d2h1hyAbjF+IlyYuOY86zJLcZPFBNLsLL+lQC8YeEFhKcLGcNzAXhPzG83/zLxCr+RXoNITgqIL+LYoOReBc+9gmWLOLUqEGDfYryAkGzhWIB7LRYL74eZ6WUW4+mVe5/Hu99izvZ1v8UE0y4lOfwKi/GCpZA2FeAmi/FRLsC+xfjt5mF4+8AtRkLvbAtflssspmA2HlQNLEBuZxV+u2vQkRSmSADjku9X8E;Z?llBLjkvM8ZVjIJA81VEojJxYV?opQIiZZgLX47888BcXbjBrBbIeI2b0fVYJL/QbqaKjlLcIoeK+INYvUKgL8ErLoO+znJi2AezMCzJYrJA1pInfLLCUtVMcsgQZEYsNprxHVSZXFS7rLGA63lvBZGox08lOU8ltLwNAZulokcjP3AO3gFLUypMYVrwGhH8cuC/X6BHNg1Rw+Vgxnb/ViZUrR0R/a2OI+i/2kahvvI6j+oHD4N/n53H+pX+/BTxvsfbfYhst4KPQznufpddnwU97n/bgT81i9lQl83nZ9XnpItSH78x4ACnLNoPJcQ0B9HiWALhAzR98s0wlubKPew)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AL4?AB/CAM?ABmHoi+)wFBMVEX:/+Dblr8/f05OTlMSEX/zJn+/v7+1az4/Pz6+vrWrYTmuYxrYlpdWFTy9Pr/zZuioqP9/v7En3r1xZS1k3Jzc3Pw8PD83LycgGbt+Pbt8Pj/6NH/8uX/z6Coimz19fX/4sb2+Pv/7Nr/+PHu8fj+2rW3t7fR0dH+0aSJiYnz8/P/zpz:Pnu+Pfz+vn049L059P338bw6ebz69vw7+j+/v:/fvi4uL8/P7617Lu7/X+:7u9fD69/Ty5t3:/6T4wwc?ADtElEQVR4Xu3a15LaPACAUTX33qm9l+39r+:VkHJOsy.wQGW5rou+DOM2c0QrZlgWqSvY7Hnc6o3R4Msqm26Hqe1v5fFK7W9ZTDMm65C09haFQzuTPKuWvljLRa9e2uUq51nfqBUroa9R1FaP5UbH5XbL4i+ZIv+ZJ/3SRf8iX/fei6k9Y2IfnDFk1UvtsSmW+0hOa7QvNfJkLz1T+Hb8UQ4m0Q9kzh+BbEu2LR+BbBAvMjgkXmx1hoviM038JfM8Xim7nbDk1aJBY/zPmWkLetOOcrdfElX/zJ48QxhA6OxVt5xF/35V1XPvOUf+JsCPe8b+NdMBSLTwsbkGACYRxG8lW9Wr7kS77kS/6GntL6cexpqi3Wa23ENX+TnyrLvp/ZUw7LOOVv2vmZveONuOSPFwpbGo/8DateWfPIHyjM8cjXLsw30rf5fDbz/WWS2A7B2PGvyfdK8tWf3CXlEnxYckX+udfN6fA6DsEM+bzx+wk+IYczPkrwSV2S3y3Pn+H6+NPyfLtGfqc8n9THH4DyfHwu3ys78dugTr52jtnrLrRpNhi0R51X8Fu+RXeoYSO8Bv+OlfvxkT083N399/iY/rW9DhQVBEjfN0KSAxpX4LcyFu5eBXy9+dm+Ee+yrsBv3WkeA/c4P7htMvDjy/HL9lV/0/w134GNOCY88/XmroJ/bgM6XI/+zRF+eN7kIbDX64Vx3XwLH+OrKkLIMIxDIFRoZt38mALsCBatnEZ/tVqlNL75xC78wJ3SuObnU/9svg1hnfyIlOFHEf3pXZzvMvHz43wEhlYPxuGp/Dx4af7wCJ81dn50Yb77UilfsS/Jnwypvgp+9PlFs1GaP3Fddzg0dKRScEV88/NW1zuZP5n8ilspv8fIz7nvB1wO+e6OG+xjuOJbhStnaXHFK4/QfAtzyPeY+ZBH/oKRH0HMI:hGN82TdNSFMsMGwRXyF8zD/7zIb+4Kvkaq/4p5ZF/z7Rrpw3+TbnkN7MCL90Gm9JtsPtRZzzegG0Gp/zmveat8127+6en5+d/mrt0SueaX1x5vuRLvuTbYvNnQvNtgzO+fYo+6QPO+D4LmxDHTpb+HID6+KiQnyZFXspNlkvfn83m8zcjB9TIvwXF/NR39rmP6ddQ/fyboJBfXGX8W3Y9j3x01Lzt9nsUwCMfoJsirq7rCKEgCP7OzZzyQaAf5fLEL5/ksyf5kr9Sheb3AV98oQcfoNPGXgWc1WcY8n5/aBgIqYC/0KqQS70qECGjzwX3G1JcKg3+uVGc)AElFTkSuQmCC$/9j/2wBD?cHBwcHBwcH.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.n/wQARCACkAPADACI?RE?hEA/8QAY?B?MBAQEBAQ)))ECAwQFBgcIE?CAgADAwYGDgkFAQ)?AQIDBBESBRMhIjEyQVFSBhQjM0KyNENTYWJxcnOCkZOiwtIVFmOBkqGz4vBEVHSDo7H/2gAMAw?AQAC?A/AP6R))))?B?JzIBABw4zGLDJRitVkl9Ue9Iwh4/ZCNsbqpal0dPJ/i0Exy/SN+pe1x0593kaymfiFvX4vY/spfkMs83x6J2xiowhCMfK7veeU9s/ZnXhcS7XOucdFtfSj+KJ2nlSae0KHHi3XLVl3eXoPSzLxZhbBJw5OjXXvC4K5k5ljLIknMgAgkEEg))))AgAkEEZgEgq2Q2AWIbIzKtglItmRmUzOe+7dVynlqy08M9PpFW8i8YuTyRXE4feOF@aLYdGX4ZHNN46yEq5VVcpcZauT65m9o/s/vf2EfpD4H3v7DNyh3jtjVelDOvXo/wA90OvCYZYfOUnqnl9Ue7E7szxXtL9n9/8AsPTUi0WuYyuruz1z9M6MyUzDUWTLZmLibJlkzPMsmSUaLkoqiSShI)))?IDBVsANkNhso2AWzKtlGyuYBdshsycirkQXSLuRx4x50T+j60DbNnNict1P6PrFJcx00rlwPHbIzNWl2DJdiOfI9dSOeR9HGXA8GSXYeuvjLw4HPieVoOpSNEzkTZrFmiZxSgdaZomc0WbJl0YSNkyxRMuSZMlAgkkq))ACCSGAQyrZLKNgFWyjZMmYyYAbKaijkUb7AC7lm+AzM88irZVmkTRs57s5Qkl8Es5GbkyjOqvnzON1Wdn84kbuf+OJ0MoZtHdGTZju59n8zuTOYupPrIQknI64s1icsWmdES6OaayOiLOiJhFG0WaI5pmyLozTNEWOdkkkEklQ?ADOdkYc7MfG6+1EZosoTfNE6gcvjdfah43X2oakTurO6dTIMI4mEuCyNs8+IzzKuLjzlWYW2wqi5Saiib7oUwlOT4L+Z81ddO+bnJ/EvRRWU9JvRh3dxfRO23aEm2oLSu2XSOR33SebnL9z0kUVwsnpk3HsS6z0txVFcIp/HyiqzlxNrHTQ9CiearbF6cn8b1G8LppcpZm7qg30Uvi5JjKrs+plsmjBzrl6JqpprNMOWRyNuPFcGaRlmv/AKTmNORpmVzBBRm8GQyhfIqUaOuMihZc5GRpFZ8eorkXckXhmdcObM50jpjwRdI5rJZm8XxN0csXmjpizRHLM1RojNGiLGDLEkIkkq?AfKeEsmqKl1b6PqzPjHZxPsPCbzNfz0fVmfEvnIRefPD5s23g3hiCSh04axvG4TL/cVf1IH6rV0Efk2F9mYT/kVf1IH6vV5pEdZf2v8A7DxNpXOy3dZ8mv1iuEwiuhOc88nwjl3u8cNknOyc36UpM+lprVdMILuxMYrVObZ6F7eHoqrj0j56dc6ZuD4NczXX8I76bt5HS+kuf3zqxWHjdHskuMWeKtdc+uMost0GYtrE18elA9XLgzPItXYrILqfWiWjU42mnkzjtjm9S6jGDykuxnZJZ5++cL6yjN6+KyOvI8rb22KNgbIxu2L4OdWEjXKUIyjCU9dkKtMZT5GvleSr9ttPWjzJ+8ebtfY2D25hYYTFO6MK76sTB0XSqkrcPLXVKUehdCuflN3iK7Kt7CFu68mCU2cNHhLs2ezrNp4tWbMorvjh5zx270bycYThKN+GuxGFups3vkr68RZVvfJb3ent0W4fF014nD21X02R1V3UzjbVZHvRthyJwPlNreC2Px2ztkbNp2nZOGCx3jt1uLjHxjEyqlbbhY73DQw9FMMPdLebuvD7q3c0eb8pvPlNq7I8INn+DXgzsunAX23YOeL2jtOzAYvE+Xvw+Gxtu739N2H2jvtp4y3/AE9fkrfsiMkWVjR+t7stpPza7b+1tmbO8DNmV4mHjO0sJibsXtba+Gs8lXgMJ4xbvcLvsPOeJs837I81De+U3m9Omnw9jXsDwb2vjMBZvtrxxL8Wpuw1W7jhY2224mPjl2Hh4tZTVv6t5iPNXUec3hGktvj9BRsn9RwYLF07QweFx9Dk6cVRViKdcZQlu7YwnDVGfLhPRI7oAOWZtDnyOmJzRWTOmJdGMmbI0RnE0RJiyyJIRJJ?AB8j4TeZr+ej6sz4l859t4TvKitvm30fVmfDuccyEXs54fNlgU1x7Rrj2klDowvs3Cf8ir+pA/V6vNI/JsI08bhEv8AcVf1IH61V5tEdZf2v/sPkWsm/jyPq4NShGS5mos+extTqxNnDhN619M9XZ9yspUG+VXw+j6BjXwc0ehjFvaarl/m8OySPNxeG3i1xXLX8z1GZyRs1medGTi80eBXOVbX80ejFxnHUuYpisPwdsV8pfiOSm11y48U+dFE9LyZ0yiroa49I7GuB5cnnKTXbI9K6yManNNPUsonnQi5zjD3yZPqIojwnNnbBZRj8US3E2USMuonIx1GYzJyM5MZFtRzY3BYDaNPi2NwuGxlWcZbrE0V4irVDoS03QsgeDtzwS2Tt6MVerapV4K/Z9Donoqw9GIjonuqJ+QhPkx8pu97yIVearPom+JOYGaIw9cqaKKZWStlXCuDtsUddkoR0apaORrs/ZnVHg80ZI0TSWbaS98ZDUdMWdMUcUbIZrlx+uJ0xurXPOP8UQVafdOlF0c6xFPfh/FE2rshYs4yjJLhnF6iSrTXPE1RJBlZiaKfOW11/LnH8ZJU2BlXdVd5ucJ/IlH8BqAefjtn4fHQULoaoqWpLVKPK+h8o8r9Wdne5P7Sz859KCMi6m0fNfqzs73J/aWfnH6s7O9yf2ln5z6UDIbx92v7M+ep8Hdn1WQsjU1KuUZxe8s4ShLXD0z34rhkWAyI1NnnY/C7+vVFcuHGPv8AwT5+qydNinHPOPBp+rI+wPMxmz43ZzhybOvuzM5w6zsw2IUVubOiXw+LqvS46Z9cPS/vOnJHy1lNlMtM4yj2P0X8mReOKxEFkrJZe/yvXIVuXBl54FS41y5J9I0mjxcXTGqeqLWUvRz5SOd4vEyeTslk+zk+oRGM7JZRUpN/SEpqXMTVhp0vOUjOTeaTby6l2HpYTDuMd5JZOXMuyJrRgdLU7Mm1zR9FHoZFoR62Y4i5NbuBztGbR0NGMjQ5DnkYtHS0ZtEDMwGRpkMgMyEil65C+V+E6EjHEp7uPyvwzIfMXr85A4ovjn2FsyEskQYs9OKKznwyPY2Q26Jt+7S9WB4c3znt7H9j2fPS9WBNfTIxayw32ZjtbaFtUo4PD57+xcXFapQj3Y/DPL2ZgcLj95K6y2V+fKhnp5Pe78zswCVu2cfOfF17xRz6uVCHqFtp4OzC2raWF6Wflo+vLT3PdTc8ki/YcqVvsHbZGyHoyfqyO/ZO0JYuE67OTfV0+GnOPe0nVgsZXjaI2x+nD0oSPFglV4Qy0c1kZOX069frxAPq))AC.AZyhGSaaTXY0c0sBhpPN1R/dqj6h2ghpPnLRnOPRloOBbPwy9rX73KR1RrhBclKK7EtJoMgk@TnLpS1lCuRpkVaJKmMkZNHTkZtAHK0U0nVkUcQDm0jSb6SV?yUTDFLKuPyvwzO5RMMTTO6CjBxTUs+URLmL1tKyDZ47M5Ph77O17OxL5pVZ/HL8hm9lYtvp1Z/Kl+QwcZ909OF1K57DhfMz3djex7PnperA4P0Ri36dX8UvyHsbOwtmEpnCbi25ylyXKUdOmH5S0ItPiUxV1M6coy5R42NU9mbSjj4xe5t6f44/d3h9DTiKMTWp1zjOLXHLq+DKJrbVC6Eq5xjKHdyPBt8HqtWum6yr92vL79czY8w48VCWx8ZHE0uO5tfKpz+7p/pWHRsiq3E4q/adi069Ua/wC35uEd2bUbAw8Ja7rJ3fcz+V6f/oe9GMYRjGK0rLmS0xQBY))))AEENFiACjRDRcjIAzaKtGrQyAMchka5DIAzSLZFsicgCuRZInIlADIkEg))))))?AEAkAFSC4AKAuAChKL?gEg))?:Z%iVBORw0KG;)NSUhEUg?AM8?ABwCAM?ACOw9TN?ABgFBMVEX:/8?AC0tLT/vhr/3IXU1NS5ubkTExP/vx5FRUXe3t41NTUmJiZsbGy1tbX/3orZ2dnFxcX/wyz/wCO9vb3MzMzt7e22trb/4JSoqKj/349WVlb5+fnW1tb/1Wn/4pt4eHj/y0j09PTp6eni4uLR0dFiYmL/5KKDg4P/zlT/9vz/6reMjIzl5eX/xzn/yuubm5v/2HTBwcGSkpL/0V3/2n3+/P/x8fH/6K:7cOwsLD/5qj:fn8/Pz/4/T:v:bhv/+fv/qBz/5Nb:vv/1sr/lHz/x6D/pKf/z/T/jDD/fkL/zZf:Pb/r8L+/v7:v7/oNb/TbD/VrX/hMv/j8:HJf/G5n/2O3/yOf/csL/wOT/icz/LaD/Qan/xOX/6vf/y+j/uuH/ab7/N6X/s97/rNv/z+v/5PT/fcb/0+z/5/X/JJz/lNH/7fj/4fL/pdf/7/f/p9f/9fr/H5r/8vn/9uL/3PD/yen/+Pz/89f/+/7/8Mv/zOr/mtT/x+o1H6di?AL9klEQVR4XtTYZZLkMAyGYV/RGGRopsFFuPrK7a+2s+P8noreGzylREpFrLpULLTbiaU6n1h3iRFxslpi6sRnVu5ZAslkAZQmobV7CBR7FkAdF08MkglADD0ARR6A2HkAijwAsfMAFHkAYueJQP?xM4TgeABiKUHoNgDEDzuHhcPQPDEoM65V9+6PQOlP4KyfNCqAugKwEEprbVaucdQw8cJZYZShHGUPQbAtfQNnDyq/8/j7k+YCSB48hMfz2lv+pkH70tZEoilR5Gin3le4Slty9KjDUAFLQmjAufkFecWHptXfDyDAUgmzkFzIo8HHcW2CvHx7I1vb4R0DprgsdaW11TT1MZx5OMxJuiMBCd47L3z9kyx9CTVg1NVQYPquubncW7GqSw0v30cPU6fwal8Fpg/xJFKKXb7QL/JGWfEaNKjpLTW3Pa1fBEPD+0z0lAHkeoQs3sqv/l7mue5DpzRa+QXIa5kLUsz8PEocMTXkgqeuiaN54h2s9lMk8w5fY8GjsjgGb1HBo5oJ9/znoMHqcCBJ3AUOOIy9dTGMPLoF/HPY8njOQoccen7oigmy8ej34Ds8nzQdeBocMQTaZqmP7P4HwIOumFXe08j0M76QyQlDw848OD0BA46EuZ2e94w8IAz92A8hXh4JGFoY/PwECfygIPaZ8LQjuPgAWfuGckDDjwbwvRFw8FDnNhTYxToMnlNljHwgPPwVN4z4+D+NFn3a7tuDzixB5xHT32RddvDYd0ecGIPODNP0RAnTdftASfyTCLyNNn2sH4PcWIPceK6+3h2nwX4vgR4f19U/PQJnyVOVEGcuJfdsW0vPz7L85cYO2hRHAnDOF5oSqQAY2InBomRqEFCUI;tnQPwy6zx/0404CdD7/vU1WZF53anlv5vwleflR4YjkMHJ5d7GLWQ6S/P5AOj3q5ODyXNL1c1rk3jwu0GzpAt6FJe1wgNXKAvqXkIZA3D4EcHgeou/M4QGo0Oq4fPfnGgDx6GMQegL72MIg9ALk8qVcPg9jDILcHSYfnJVo/eghE+fQwiD0McnuQdHgeQfkeIM8eBrGHQW4Pkg6PBbFnv6E8exjEHga5PQxiD0DHO1C+3WuRZw+D2MMgtwdJh+cOlKstRHvvHoDYwyC3xwVSc3hwQAmD1kqpLeXZwyD2MMjtYRB77AExaD1VOl+ewnQP6gJdcQe60ddm1pMkSfQbaJNE0Qt5AJI5P2+UP09gGjKIPee7E/og4cl6pJTJoE9ZT7pcLiN7QGprQfmG2k+n/j0oYA+KGQQPdfjdE8m99UjjAUj1oBzztl0uPXvGtuDOU/IoWE87e/TMKwkQezRIAWQ8lJLSu4dB7Kl5FOBB9aPnKKm98Uh4NEivAED5llJV5d9ja7Sn5EFA8Qc8uvjBE8ketEkS9hiQ3QOVJL48oWnWFwcNPOOeaUHtR+8pHjyJ1E2FUJP5fD5C8EA0XYtLFEVJ8jxPGYaN6IpZG6DD2IqK8AMe9OCpJKoGEh6AdFOTXK+rqoqoZ3lqwjXwhCF56rEFFUHYuT3QQDeRasKgqU2lSimfnsB44r4WuqyGi0TFWAcP+sozmIwmDCIKd6R8edqFLu4L6EMYlvEpROeZBf3ZQyBkQcvllHuhfHnOiwz1nBK4t2sZl6HuMDMi8jR/8ERTA0LksaKNb0+mO9hOZHt778qypmOiyhlA8HTYg8P/70GUqwmDlrZ0TZ6RR0+QrVDvabPs9V10WbZAYXiaUfB0Ah48d+69rnKhBgbEnmov0pHJm2elK23hijjwWFE7M6BOGE98DpzvU/VNv0+TyIqkhCcV4hIhf55wp+s9q4Y44rbKkBkKgF6F9QzrR8+x54iUXPAgiYgj1nBV/jwL46lNBTjwUEZUAtSIX55Z6/g9Co71DNgDjvEk87kvT/amO5lWPwS67X6BTuRpBHuGJXtMETjsMSDDgQcyj57Vq67Qhe8G2dR1WRhRG8eNYI/rPleBwx4tAucpnl2ja1H2r0VeT3VdmyMKwPnSE+WC79sja9Qc9kwmvjxnbvUuek9xIhHNAy04OLpu7Po/hDm019xW2NKJye/9B+3A6T09iDjsGbPHwWEPc8gz8OtZ9L0xR3RtQSKArsLpcXHgYQ57TN72wIahZs+5bTUIHKeHOZxizvM89O6hud6Bw3WBATHH7WEOe8B5oudVd/1xh7yFGtSJB8+YPcxhD3Oe52lQZzjsWQDEHLeHOewB56meK3WzHPZkBLqJrz3MYQ84z/R8foLz13fx/dNkPatsccf5Sf1Dnr+pn/Awh1PMcXj+o91eVtuIwSgAa1VCV3mArlJKYTbeTXdx3ZBLL/RCKEyhgLKJhhFINkLViGHaV+9/ItmS5cmQ0OYAwgaZXx+6btyHCMcjoN+lyb+PjazLDjYAat6IcRRO1RGgddtKyZX1y+Ax5uzsbGMG5o0xlhI9l5fnrdbOsZiRcvXu6OgtpScAONwJVNd2W/z39fU3jG7Og3RzHqSrJz1G3IyIEI2PnlNwuFIbkzzWGA8PEj2/Ls9le0qeIfOMH+48H+Ehju5jZPKAU3jYs7DXMk/P5zyInvLUYrH1dE299QSOtUFYVRvjKayiABQ95zx4bO65+vT64uLiMzzPX9j+wHO77ic8b54jJ8HTjEk86WkEWjHl4X3wCPJ0KngwPXZDHBtG7mMGj1Rbj+dcSqm1U9Ej4LkRoQRDdOEpR1cm/tT3SPIcdKjv7eAW5NGEgKdNHrYkjyk9AVQFj1FcKksevedZ8ORpdhRfFp/zsMKDyId5Rnhqxmp43JwnJXoseawhj/uy5xFFsboYLiJnPQbtWHrK9dbtg6MXHijgaZLHWnh88qxKz1KRx3h4zJ5nUXjY4zzl/ik9SfgYj1LwDMkzhDZ5Bnj8Eh71/zwpPANSeOnp2JRHlOst91TswJP2j4dnYPC0mcfBM7Pe0ujmPToDznQoPa7PzoPT5OHw+ENPOt+swvnWwuMyjwfn8DwoRzedB74PWIc+k2AODwKPSvcPswQywVNR/PJuZr6m+2ejeLx/XOPT/cN0/8/nNTLnCTV86Zm5TyV5CLRkiEGy1oIzgLP1qMzjM499Io9Ey0vP4Xsnvd9YpQi0yjyYGc927zeviCPJBI/MPExnJfTTeCxaV3rueY86TBBbcQLFnYKwFa26VfxMaTpx8+P9y5Phz+3ten18fLzz+LwE:6T/qXVOPsKyTx/a63j1jphKArg10IdeeaOCc+OEAdBqwikIPO/B/v+X2s5XhujSNhaeoAre8W98yO3ofTvKSTKlckHEk7/rdl0QvgWorWuKnUTU3u7m9k8Nf0fkpSS+tf7J/O8+Mm5hmarVFVpTRLe/u9DmWF7kqR0Ct/uh3O7nAexOQ9iO/EgiedlnvyyzLMx9038iGkEtKwcNjSpg0cXkj718MHj3wHmfz1FmfMgPvEAtHraxblJRHMp9c2eZyk1gTM6ssLZPLf4zYcydeIZio94WEfxtYcVprryPI8M0OQDaXklZEbq75gPQoQz2gGc3VNi11QY88GjEo:kId6eUTPGUydPKKHYsw4Mv8mqkGqCVkQahcfQkjQgGPNdjzb6wtqGVn1tG25ezhS+nO7jCdVJAd87SmOHrYB1BK1OCV5Z0KolQfCwlHCiR6Lo1nLdwePTtvEn57aZT03TH32nPfN7h5snHiUtXaU0s45QhzymDEFOELDK0eBI54OEjNgDse2mW3JeLK/P6nnvMICeveoIJLSzEwI72kIsSHKgFMt4IhHJKL6tCd/v6FKeX2hnz2sQrBv1o6jJ2SMWcS8rtq9CtE/d4+RqxqTE4/DyO1bbJf3eMqfcDFHoIDEM1fBY4geNsRI/Zi7eBQyrFdBo+OrXMToxNNjHO+Dk+fzfx+QDUMlHoqpqxC1pdnrkw/DbR5s2hs4+mW/HnWx55a09cWn72sk6/GYfQQmnm4ESEzcJh6D+UJIhZDcbNGDO+iqLfWJZ/gij8EsL994HbUWEb9RUv+OWW+eQCEOHLd7SjgUs8XTp2V8Usp/jWfAdNdvdL8npbWa6o5Szw/MhRCN0BNu8dVTxKY3kuNQqadPS5Ws0cUNZ89fcGEBkgbGb70)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AM0)8CAM?ADyrM7n)MFBMVEX:/9QPlH6xf777/yrqqudVKLHZ811V3fV1dX4nv7dcOT3e:td/X94f8mJibq6urucMqG?ADhElEQVR4Xu3Z2Y7jKhAGYGph9/L+b3vS2Tj5BwfswRc98n8ZyUV9IKvLtPmLhAUTzG/NpTk/l2bOGH9pLs2luTSX5tJcmgZn5t+tQc8v1VwaCSF004J6Wu7xqgc3ZFX1XuvV7wlyULPqsznq6E11gajutoRHEV+hUKkb/j/3a59m/WhP101HcWNIu79D7vKbparB6ipG92mwAm0fjxQ3xodOzbIWDGhWv2C80B6NePK39HBEafHWpXyPc9bDpvdpVNg6Z:UBCJrrbPWU+HQskfzai7ZUsJvdGVdhjgLnLaGHkUcagy7qdT1P5D8jO3T0Ed7jr71JZxrSRY+y6tLFoDNuarB6pYWu09jp0/gRNuHUyyYRC8NyVdNpoIBjcRK2bRH83EwwAlfLRgLZ4qaIqBc1Uh1l/IeTapVgLbg0RaHvmsmSqgBDKRfM315EDUmNjgezhQ0sN2gkXxM006qvzjceox2nClq4mma/GwLNO3tO67hfJ7GVjUmdp5pv8arPubcitTFQRpX0ZQNjDzPRoI6NwGHdmpiqQyxtHjD+zXJuV6NuVOkTL+UoIeaxszz3NJExDwa5y4NPsfIeY2GkBj5czCkjfcA09AIYNxrqOjRoDiYWNUE1MhzMFzeSUc1yfI8y8aMQa+9jEUTw0/Wb5r07JqbmhL11rkpOWdvKndM42ghfCGxK2By+9vTPjVzt2aOH00d01gwx1pX0O4ODS5HqNkYDFPq1iBaQVP9IpZdGo8arNcc1Y5oqKGh8sLP78hoDechmrSgBsrUx8TBmjmP0bguDf6BEB2ryYM0dul4b7BO8BRGavhMDXIRHGhZKAzUIMClYRqGMnijFfyjsAzS4IrTT0vE52hyGTZIVb1963o0qpo3fg+ggQelqgm3NDVeVdftOa2E0vTWaUPzTEUDj8fq1UHc6qKhgWEjb3P8lDNwhmlwNTdGw8hJ/mlxcMEVxmhgLnwmjdFIZch21rrpyz2SMDNeut7i7xr83YMm1jpy0EG5zYZVcVEqmj1jhtYPBjur/Yoa/NQlm3IloKmv6kEjPXcVFMwATXv3jmv6y3sVM0wjp2ranLQaM05j4omaNoeNGaqZT9O0OXE2bU1h92wG92m6VoXuwF3pZYSmzWEepNneMBYzTIMcNMtIjRGG1zNCHwM1+J/CKEA8pkEQxzspRmZzWnDzeDb/QqTcoQzJf4xPEguKwkrY)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANw?ADmCAM?ACJZRt4?ABgFBMVEX::/+vX/+/j/9/L/+fT/8ej/8Ob/+PP/9O3/9vD/8+v:Pr/+/n/697/7eH/+fX/+vf:Pn/7N:/v3/9e7:fz/6tz/7uP/8un/7+T/9e:8upxhcZ+kcx6jcqgrtn/+PJ0h8eptdzY3u:6NiYptXK0OeKm9CDlc52isj34NLBxuD78evl6PP56N6yveD/5taRodP95NX35Nf/6dr:/754tT/5NTU2ez/7N7Q1urDyuT89fD749T84dG6wt/68uz/69/68On88Of45tr78+788+787eT88uz859r/6tr+8+zc2eLt4dr89fH67+f359725dr66+L79PD86t786+D23c367eX76d7k4ef46uHh3eTt7/fy9Pr+/v/s3tb3+Pvg4/H5+v37+/3/+/rP0+ba3ev8/f7s6+zr2c3b1+Dy6uT/7uH24tXs6OT+8Oj239Db4PDx5t/99vK2u9j9/f7v6+fp5+3s5+L+/v7:Pf+:9sgcT:v9mfML:v4+LwyR?AP1ElEQVR4XuzPwQ0AIAjAQAYHXd0BjG8iuU7Qi77WirHBwcHBwcHBwcHBwcHBwcHBwcGNnYTrL3MKbtdVZj36CXe4uQv3tpE8jsMnlplRpjgOM5a7ZV5mZjjc3WPQyf/6fX8zmozI1+0mjuN+mseP46buvjujjqWMM07Odce/IsLh9uLYKrWkOp3a5CqcUokGHnDJzWTYarVMqaSq2UgLC9lScplMrTZO1JHb82pJnTcPMm5TC3osZW1N8Svw5G+pmQxJ4klcMg+d59EFW0nRB4OBFq3X02SpQJqlKyUMd3KTcZVxsPOxZYq6NUjF63YZJZGnlBgkG4k96nlJZNYUceMJOMUaaO12266GW13FTduvavOeptP4Ok1XIVMTy3peKRp0M8L1epaWaguS9KysCCaXpVlNpwmepmQzgCixoPO8uNjXVc4Xh1Wg22W4WHt7ARqHUUazmQauhJFTEkrCoZnhVnXgUhiyVKilJbptC5/QGQbhCsk4lIzLct2541ZX9EEqoX5fME90DtcBp88JbgU4jQxauOFQLgJC5+PsGeN+/gV9yVrZ+8dJPwTa2dkZsvr9/tKHH3748ccfP3v27Hfo2e+efTc5z0t+fHFR/J1bW1uffPLJp59++sVXX339/fd/+9dnn/1nOritvb04jHplh8d4wEkdjGeE++Krr79muM+mNC33lhTd4umoINrYeIXiOqwVcl6m7Xk55ipLPg6uUNeoDZ+Hw47pnHnD9ZWCzmlKsOXlZZ8HnCaGbq5wFcIpgDFaMRBw3Ec6jYbuDHHoXHE+TRVdRUy3gYkpcWiOcP2+qohhUwNdJt230NHQaRrh7LnFhWnAIa7bYLj2XOKGwCknuKxoketo6BgudRqcGsWhc8DV+sOiQhU5TeIWiYehI9wgEZfYTHDjiThuK3KaxCEauiRcqpDJqC+EK0Vx6FxwRTktQ7gsnWwXi7QMRnE6jZueFHAJ4vgZHTVlXI3hCqzIv5aLiyoFW8GyfJvDzucc4FRFx6PxLCsRBx7hZMJ3NDUcTngqmf6wYFF6ZBlfXIQWMp8GmWGYrVajYRrNqq5AltRg4HmDaJauQ6cGcZWTxmdkqyWk9oc06T?zCdbXKRbHYhU27YdwBr5fDmXu1JumDb+xKQ8L5WQRrxMXEedfoJOsGWVPr1wpEsM4PF0ZFmLi7gLGWhp0BqA1Q8PR6PRYT1v0FBinlbD2ZTn2QkxHr9SFOedGsdtmVD4XNH7w5SNwNOQJdIWFzVOs586xt2H7777zuPHu/vo0m7OACTtpMM5Dh5qNj3PiNV00lXoaL3JsvWmhDJcynRnYMtEbSVVsfrDatp5+vTB9et/QZoIOPr8+vUHTx9t3n348N0PPrh3cOP4JrpUN8nSjGY0DdM0Pa/ViNYyDccmnUwuEaceOuC4TQ0EmloAznacR08fcJ2McK9df/vBA9juPnzrne3H9w6Oj9fX129eGrUwFJBEa7Xg8rx8OVq+0YrpiAdjiY3eKXEVwpWiq09RH/SHjrG5+ejWg7ffvv7aa0Hca7C9/eDRozuvv:WW9vbsK2v/4Ru7jYw05omKLHyec/L1WNB16SZaYV5iOvOAqdEcYqu9YfGj3c3N2/dvw8deCLgYANuk3Afbd+7d/BH2N57D7i8aWDcEmT5cs7z6oeRmM5wCCfSWUx4Rjh1Iu7OHaYDL4CD7X4AdxDEmYbZiI0c2YADZxSI6bB+NO0UdDJfp35zfjgxeNc57v79GO49wrUMoxGvXK7XgRtFgi7XMB3gBlYo0hW/yZwD7hZwxOMBx2y3bk3AmYm4HHCjWPV6Lh/HUcBlp4oz7959XQydTOJef3+aOGX6uNfZ0AV5i5cho+4Qbptw6+uwzRHO0vp9H8d0sssct7l5gvvj3OK4LuC7epVkZKNDbt5wiHBLffPhw/ffhw48+ERXr5Js884d/5CbP1yBcC3YmA482fIyYKCRDbOSr+FzhksRztfBJ1u+BhiCm89Kibt0QXF/kv2d9fulpT/zfh9uedm/g9969dVXP:8t7LPX6VHkvO838bCw/gj/0TiL6f74vMfXrAXwO0tvQlZ3HftGlxI2k6NgyXSmeKiYVru7eXffWd7+42PIu3s0O1b+LXNjzg2K19kWgZeOefKDSONaWmd4zEHXHtlr/zOB9tvoLBvOPzoIzy0jd6ADUfcC+EOg+UYrnreOA2baW5/sH3vTUQ+2XDI72DYpO2X4qSrTgmcZun6tHDZGE7Xqqsrucc4ySadDNh+n92hDrjtl+KCMGHLm0a6rQ2AC+TjzuhkVU3AdVfrj2lkDpAkHhwsLb1JD0IGmrTxda71f3Bu/YmUAZa7ciWfp9M54OjiYZCnnA1uDFyCTqv2uvXHNDTR9vZwc8A6ZtdOBO6nmyOcp5omzk1juFyu7roCdft2mZVHJm3N0ax.Ymmll4Y5z0vl+p0FtZ6vW53Fa1MaBV1u73e2kKn41LPe17xxHjmXhfPnVwX4UnXFhY67oSn/fU4qWM8AJ/3XyFtz3/ahef+TyOgeOIJuFNdcabtoHpqYSG3f+MYk062vo6Pbvd4/fjGjRv7vBvoJuvSqNxo0FW8fFJl18X8HP6V9wq1sbGRxjpg6SpK2jBdO5Pr6ZloJSXV6eRG+zdurkfr9Y5B2t/dDwTqpUu7dTrWCFfOBSsz3B8IZwrZhh8tcbrCKUlbaE+/m6EWL1PUXDdfhy7W2tr+/u7uCB+0bI1YuI9PcoRr?dRVNdoua5pGpJ2jZXSNL3gfwcyspudD9zpdZVKDPdv3XXN8mj30n4osDoduPhiRYA6Dw/kQGCVc3EdcB2jmeY2oi2zNKugMFslEtMCN4XGWBxc12jkDke7UZ3rHo4gwz/oHFD3A0HiojqOSzOcT/uW0mHLxm2ID9xUqhGuaZbrT0bRgCPKlfIVJAE44DD7EnHkbpmdjmOnmY3TrqLLBaWokm1MnRfuv5ms5zmtfP1JPdITLMa5erl8u3ybJwjA4VfytGS4Bce2+biBBhj6DrYs2WRSV5karubjDmOxVxphGDMKGuE4WuJuM1yacL6NZKjID7hxsHPAlTwvbSbgRh7hBEoGHBI4WRjHJyVsRMMe0mJW4OI62KaLyyXgPMIJWVl0BWtAi5e/Ih7kPuAaLXNhTeAwJ2Fju2PZ/ig4ws0aJ2HJOFkQV32FDxy3oWzpAuKiNBTAlcPl8iEcHXHctrWVzbBZebFwQVqe58vki0s5qBLHDjkaOGYDDjYwos0WF3QJnNkyeYQTcVw5iOOzEjaUuYC4XJDW4JkntRosycuXcRK71pM42C4ozgVO0EK7LkyDB5yI82hYf4ziti4wTtBaIqNpNHmmeEjwJK7N9iMVCgrf6JjxcUdHRxcDRy+/cmQTMpMHlcMSG1GYkfEawBnJuBrHUTPHIdfFCi5sTGawaBMUr2kgJuQ6juvFcaVkHJolruzbfFmTSttpm+e/WxBxHr52Ii5z8XBXhI1gDh8xu+oHHXIc8rHRA84M45Q4Ds0e9wQ4rFx8ShKNwVA15Qee8DEeGzfgunYYx20TcePp4+qJuPwfGjQfSUasahv5NNpjSjwG5DrEcfDDxnYWs3GbFW6c8TzbbNB5dDCchDMczTMnTS4GikTIdrsqePAZRrrXbbeBs6yYrXKUgBtPG4flGLhwOeBuA4dxS7OD6GSzaeDbGL6w7b/Nh77W7nbxhbSt2Z+ThKslDhyCbcq4qkObfMs5GV0VcjsN2EzQxDZay68gvrcHHwMKnuOkGQ60QvBoC9gAOAo0PRsaEy6VNsx8LODMFk1K6NptgdMLZCvyNxwUISwUQBwA6O96TnW7xC8UBS5sCzdVG3A14OyEzZMtt2OaP5qwiZFjNMTfYJHF4QQiV0IIIEvvdguqopaQD6sgbosBGG3aOLtptEJh3XI7hukYmGp81RpgPBBgLMYSNoXbaG1Tit0uU0mWWM2SIdPGafRiwwjFcQYdR1iS+bgJmhrD0RsrYENaATgJg0l0ND6awQ+y8bwBViosZcEco+l2+Mrtr8g6aGLQQKNpSTJ/Tlq;bZmqd3uiSgCmAnOqgIXDiyGA9sWq5bCZcyWLQHHbcAxG1vkNU3pdscXBlcBrj0BB5kdxqmsbBa4LHPKSdlmr8wIV6vN.5JHGxCh1RfJ3E0gQsCR11sXDWAg0PISpTE6Se49pzjsgIXmJfJODQHOC2Ay0pcNhnXI5zoJcP1CCebXxyaiJO9vDjZS4DTX27c2kuDK843Lnmdm4xbezlwqsDpIdzCvODsGA5xnHxtOZc4J4xThI6d8YhZKV840w8hTF04nA6ck4BL28ClqhKH1KIKFNFOhk6c0IF20XA14FLsulwiDrLwSiAOusBZj6LoNDHZmfhAWejUKrO3SRxdRIlFuCpw7Aoru5yHwBI/g5QB5Q8VYTp8aRa4GQ5cfFpaWgxn28BVaSy0E9rJDx2Aim4R8eQlItiKGYbbmqlN6jxPsQapqh3Npc3d2KG8t9QfDnd8WyYWgORT+J56NfPNQgezcsl1l2ZKkzjF0gapYFi1UgzXXSVcf7hDjpof7gTjQpUifKcDzGXXXQVg1jGcog+saBJHQxfiVPBRqUWJvBpwAHjeNR/wZd9dG345M5xKuqhNdzsdhuNDF7JFkmQ07rgASNzWgueted4yu9/3ln5evkz3zhUXzw0OXT9gGbML5Bie+HfbcAPc/9q7g9TGYTgK40LbFJhQuqtr7CKrpZgSYMBUgC9iwFfQPn25emV5bCaMPNSFxJF43w1+PGHIJv8zXAmYPkPRC9EVcBVw?WoawABKf+L8zpx3m/hC/3Z/3HGGTsyamH8dC2gG40B1wBZPW6ZW2MviNuHcf5d+umcbuURhwpoBTDiugFn/jg7YMJPW0JdFCdDuGk6v91KnIJvfJbNjHMuY4ydcS1Q2mwz3KRbiRPWGpMPi9SA6rJBODo1gBmngF5UxSVxuzDuTLcKd1aFIe0oHVBULdD+jfOAbXCjzvF+jhNdq1Tbz07PqkZiCdRC9FvgZp3jrcWF64yxqjB+Mli/pW6qrL46DpPO81bgIL6Rtaabt8yvj5t0nnepuzydUXklNsDJu+GXWQRHh4gjjrhtI07ePI44GcTt750tctyDlHe/QrjdKX7caScDAfuHFHBBHeBsKeBOgYNrgLclgPs8/ZPHiehx4VMGgKPFj4vgiCxxxBFHHHHEEUccccQRRxxxxBFHHHHEEUcccVtGHHHEEUccccQRRxxxxBFH3PGYOi6MvumIe3xMGFcUCeNeXxcXjb+np8VF4+/lZXHR+NN6cdH4OxzCgCxLAKfU4nONP5WHAToFXL6E0wngyjIMOKSAe38PA9QhAVzbLn5o4u/tLQzIU8AZI9KtqoiLs4+PlHFNwrgmadxzwrhn4iLNWn5QbqgvQ10ws931fMo)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?APo?AChCAM?ADZe1I7)MFBMVEX:/9v8Zdw7/GK8vSs9vdFnGBdzH/K+foBAQFfX1+MjIy3t7f09PTV1dUnXDjq6uqKpVsy?ADc0lEQVR4XuzYMU5EAQwDUZdjJ1nuf1uKFUtJi+Q/N3hyquif9zT2lMoBOu0GQHWtb+CGXJ0cDrJAmX0ABQaisibkYCZan7oCwJKu8uaJtKbP/sKrNRhOda3BO7gPbsAXUFkD+ACiSZ399BWyMm127+8BRI0N4GmVd8LdKtevXBNVtcaalaRQaMcrHZBts5O3/BV1tc5n83PZ7prwM32ZXX7LFdJmX/OSJN3RZ8+bDn32jzyDV2XNAVkTqfNZmaiuQCRp1VewWsvpj56enp6+2bXD1QihGIjCUAWBcMj7v21LgWBjvWsDE6V75+8Ghs91FTfahZwsP1+lVlaqqqjK9G1bh9m2Ir1S1Uxf12WQda3SC1XN9JCf2ov0SlUzfVk+BlmWKr1QVaBP+qSzj5bOz6jp+FfALGiZ7hEX0z0FKT1QBG1A9yZ6REPPrEt0mumo6PgFutFFjypATfc/072FvisV0QmwMaB/k2O2iW7ab32v4QXd+D/0fE6NL3PEdO8Jb1I6Y3p80EiPIKJ70HOO9HSkmuiYlm5jOonuHfTIrXTPab2v+6Po6On7o3Dfbx0/pIduSjqJwjkdAO6gu5ROIH+h7ydivoOOkB4UJ1wHOvt6+ughR0Nn8PiSBtJww0OriH5e9Ti6iejZjj2MjqnoCYQ9ig7avyUJEu+4ggCYK4hJn+vGuWSerxa8yQsln+zKIQE?ACAoP+vLc6AzBU)))?ABqx45WKwSCGIBygYR5yv9/bkEJ3WKhGWnZtXfzJhjwMDjivoLcrN1s/V42fdM3fdM3fdM1JKRDQwC26FBViS8e5an0GsKMrvoaMabTXeBoLkNHl+4gpGPorEXXXXpldNRSdI4QRnTyLAhwmQmdtRj9VJwChBv+824XEzoMJjWd7ucRPIUuHfnUOS4GzaZ7bGCZ8Hd0jHuBq6w5enWhSWeZ8AP98m7MpnsUHkkppDtuJfQyfchk+ji+ukMXO3SuQvcgrGGL7uCBdF4ROV0AXHseHeU4zQ1P1/I1twhdFzp7dO9HxnSZi4l0z0xn7LlFR/5dhy81k+4/x8GgJl0Z3S33qKrSRLosGDYeO3TCrYCOclRnMItejowxqfHTGq6574v6B3REdF7kz6cjPaBS0HoOXULjWBIuC3y/w2gCAPc5/HvQN33TN33TPwB4AwzIIsAv2w)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AL4?AB2CAM?ABBEdl2)MFBMVEX::/9/f46Ojz8vLr6ur9/f35+Pjo5eUEBARpaWnFxcXToqLry8vjs7PKcnLV@AjnvbX?AKRklEQVR4XtSaYY/zNgyDDZCS0va2/f9/u9VWCKG+tElueK/1l9ZI4dBnitYDXPvfxrV98rgst88Vf70sy6f++eN2Wf4bfWIggQ/zzXK5LJf7xBn3Qf8c9bjcIq1vDHpzRHT9DhLWPmAM6yPYmj4xTuIDrMRluat0DNdYhDVEwAwR/v7JM6yvcdfMgE7is1LfI1prOokPkF9T3xioWykP3jKTsCzFIc6gaYZgeRD+5tY3hHIfwFAs9bkVEv4+iXqTfAMjYDmJiMCqHiRSvmekwt+rcsF65ZoXHyHoa00wAPYdvMmlFXLHg7kZkPrGcF0LrTmAPgUA+03rL11hEW8y/JCKoCmEoGAqfRL6RuxX2uXLEAqb4zLCmw0PIag7uQYr3NF9hSyI37A+azV6hOmL6QLOD4KE6Y7QKTlV038cVRz5csKr59mQpmLkxxi1p9BDz6LGr6AKySHMgxiXgA+9RJ6IgWjqqhnpFdBrNWD8EPanUAWRqAL4mJKROvJgAv5wHXuw+YNXDEFovb3HQJ5HlbVyrQS9g0EJs/SW1Zr1hiArn4l5RkkbuFN/LMuPUKVcSRukxQDQTBtIXxGO2iV19SoKD9prcsNtyYsfctxRVMmo2SIti5AszaOrKz1qqXNok8/JDddef0mr+t1hVFHiT6SlfRX5iOgG0sM+RGeo8rE6yb+/NZdMP7E2zqCK5E2@T1SbAwIBgQ1nm+WaxBh96fQJqdxu1wxrI/Vaco4wg6git4/k5aRKO4w1jZCXxgsyQQgAtPlsNnzGqAyK9G1H1WQ75eoGVWMI1LppX+AnGVaKHM41chReyyQJ4t+keMQqtiDkWZUIRmEtSmvVMEZm/nuXfKvDylRzGo7UUU1X0lrG1XkNcNqdE59NjTTl630ewBUt8lwCM7HJvHiLJHWS1SBnJTqpo5PnlIsvUg/k08f5SuSJlQRJE6k9QpVGEGs6mzut7POvVsz7JkFVH4SWRdtUCGDgM+oMpPWblTRM8nXbvU7Bp9Yf8ZVH9GlQ9Hp5XLwgSr60URau1HFYM1sZkyqm4UjsJV+oYRQ+SWCuNTDdbswHewyOgGbT343qoi09ILVrAZUG2/TqqV4DXek/BGgUMEhjZvPyNAWat3ZXlSppKWS5vhhhBLgWfo5JX7Kbk8YxWwBQ0rP46gnvxdVZtIyyAgsbcY2raZLc7jV2geJXGiqPwaROeNkq6TlR1FlJi21Gc7gs74FCapSrSoaC6jwjAESmDvc7N9FWgdQZZu0NKU9QxUHFCjlZKNXLHQrajW16i6rmHBdpLUTVbZJS7CCV6iiLbAbRLGPLKo0jRPWlbLWkw+jyi1+AFXOkpZQpZCWOTBWtTXR68E89MYMGOTT0v3ker4HVc6SllBlJi1kYwuhN+RHAUgniamt7nWs9fw1qpwlLaHKTFqKrop7Dm9e88Nj3JxVf04QhPkgILMnqHKatJT6u0gLgTxSyU+p6oyKDIuQE7TeBqqcJC2l/kvS0oM5UjVJ9ZRTpE7rAdhAlZ+Q1nUHaWn/NZPm1Y3BNsn3CCY9aRRUOUlaQpV9pOVaXpk0gZBivAKgHMSyXkGVk6QlVDlEWsokvaNaILzkD7CWqX3X7stJPyCt22HSMkGBrpbJArYaGOr2t/LjLGnJ+udIq5jFp/rjiE3qGt3qec+TllDlHGlZPpGTSv2hno5Ub8fHGdISqpwmLTmpvlE69cUjXGGzOQ6Slqx/irT++vubIXX1GFYr7fmvgAO@VRJh33Fw/j6+tJnmYwquH2j/p+wWT5KP6Va2hzHSevaH/PfYs1gSY4cBKIlaWwdgMf:+3GTIdxd1kUJffObl7xgaCL50w0xn3pcUBvr1Lk2Q/9iG0IN5vMMFedtIIrjt8V82jQTjLsa5+DSL/cWfjp4Ms91UnrKaZAuymYHxM/FwT9fTD5Ge4s1i5uEBuKpFWp4+2eFPmYhp0Lzoyk9RlV4vw3nszZd0mR2+3bzynouQCRtCKqhEuKS8Y3SbF2T4Yew9E/NzeS1lNUeXnzPb5NMc5SzjwGLH6UhzNaRpWPSD+7Ssh3ktPbPUE7Fptr6MPDZ1Hl+CsNFprHWbfB02G5Kc6MpFVElTd3Etpx0twBzzEW4IG44xVR5c2d7PAGeAwbU1;0JJHlX3JkhFn2W3wCDan86ckTGgeVfblzAX53gGPfpwy+0fYmyqq1Kp3UhbtswGelz/2jRQalN+LKvtmwP8ET9sAjz8fAxdJK4sqai6vTFQ1iS0SEVOdowYPxx3wqLOUHIcuN/c4kspnVFEH7Ah1c9Zy0dkeMwXQdlK0Na8sg16YfVsUfBxHUplzCvjTzqkALqYa3amqmrkDgLfjmIBHPdSdh46QoQtrs0Ezw36klaGA/f5ou4Bbxoqp5lDZsI5fgkfQDRwYmlcEpP9eegW3ypMvZprTHxaAHHs4SCoKoE/zUpDa1FYwN/Qyq8CeD8kqTZD+NC8FvWFqKxsm6FU/imz5EM9TQ3+e16y6j2EMvOVy+jV4bNuHRCWfV3PsjissbRgk/dTgcXqCqahk81L8liuswDPxzBfFLu77ELieVwNtpaTeXMVO/eSZoM4GTo9KPq/ElyfQc2YBnryf/g54clA7ettWQcmmPKs4ZzHSbDDxMjUYuoSJ2kOqOoMaZf5zxuWRpDtnvQceZ67mJLzI3c3QCjw9BU/9nzQpeLgEz1gQroPpl0w@tYfM9XWsh8L2csqhuXZwJllaoAVVyeu4/Ukq2qPmYK31AfbXlYx9Ao84xI8XcWRxFoBiKieQK2qC3Q6+tDcO5I4M98UiMpCKgDYmqsmQQnRcc+c7J83oaXZQJGonKXi0djFr6NmDmBj/0iC3mRxnlXy1ACi7d7PrAJoZU5C++DZzyrY2PhKu8DcPJLsbe5Iskpe2VoywytzEop+Sgla3Ezzyh7iHK0YsX/edHqJgxoUvvWZGpbV9sFT46AGheL9DiRy8Nhfbe7E65tpXgk5df9QmJPihrsLHkHvgqI5WK/aLxhRg8f8JLTAwU1QNAHE9Eb7s2w/+qnN/tzLKvmxZQoA7mbar9pXrMB+eiTxeVZLwTPxonJSU4v5SE/IkxwuMf1UBp4wAYneAc/LhzSmqjjJgSlDigCA7J83KxzUoPhljOe48upBF8jSSuqL8gXfyCqpZXiWfAkko8vAKwcQ/dQbV2SVvBJS7GGM3SH99ju0wiA5l1mlrzduP6tA6su7fqnnniFvH5J+iutsnlXySuLea8cWjV1O17D33lUUyyvbr38KlRVT5L96V0m2Ztcu51iHxBwvtJ9Vdo2t4a3KNoam/eyDB1pe2Y6kzNOLzzZ45hZ4OuSVzc1V0Pp4Bu1731WishdJDewFcvKvvqvsZ5WdSKrOKzIGaAqe739XkVP7LqYZ+bs5+IkYujKk/QXHrJQ/6LLQvKqE1AHAJU75X1JVEwdcF5sGYvog+/z1D9Hrfsg3l4WKSmioCYnclqwexlkuOo7/TW2qqsQpH0RMLxpqqiIAuNj5Cv0PJGHeo8tm4Og)ASUVORK5CYII=!A%iVBORw0KG;)NSUhEUg?ANM)8CAM?ADLy3+8)MFBMVEX:/9/frjX1+inp81WUaW6udfGx97q6fIbDJDr+PfE7Onc9PLN7+zT8e/0+vu56eUR9Hoq?AEp0lEQVR4XryXzQ7DIAyDfc0fe/+3XTeph4YGI5D4jiSo2HMQA+TzRNDhzw7FD30uOjr6JsMf+czj4PATI1GozqsNYDsVpzS1fGQiOuplslOOaUIkN4nmVrhN3XKc04ScraFkq0JrzKx2UpMla0Zma10hXhlOaoIOJipSjZRqq3BWkwy8SSUyL7VTdlgTvHTcipngRUnJXNMkWCU7TmaiqMbAJ1nTZFgnjwabCV5uyaUlTYoNWuG4FmbTmYGNYlnBHiccPhpSu8YadCVCvpU84njwn2ncIao5lBwjydu8z1u/Fnyb48b1B/GbvsJ28V5A8E/AX3uaX6gq8Zv8M9lG+jts5hPy2iRxcYuS1SfaPpEl2FS4463LLv6i5g8n28PE45yyIFPbvqyX65brIAiFQckFCfb93/aUkIacrprRzuwfNWp15RPc0cLWMiGtK2EuO1QdzLzyVFdwx4PP3J@ekEqCpBoPfSw7JOBLCmuzlHjfl6014P+Y6rLiUSWfL2ZV1ybS+GvxN+duySYNmU0minNGbNuW2HoUd0OIlUxVfgzbS0muNWVSSxCFaAyi3YvuOh2EjHzONJ4oLjLhYNpAYMypgpgDQBR+uO04Eq5Qs30LNX4ffC0ZLr0vPCWbAmAE8QUqSLtM+49r4fcMuZBXy0XJtpzz5lUoMWUyep0GAqKqAXp7IgecFkt6jGFVabrsqWGMY9ezPjCNPkrYWIRhQbTKTrKSUy8fuhxBlwJ0erzyUTnjOTtyRrv/Dyk3RuxlE0EVxeK8A0TJdyLeTYu5JOJJmuJHmeYk/1E3bnRa9navciNNBo/S/LJpMIzORQJ3DAtsBypkqw0JuZrS3pf+JSz1YMJz83m7WjTdtmEDDimMQnX2WOV75jeepiFnenzGHMM13VZXE6TwKPVE6guY63XQJmVGxWNMJlqk6k6UTDF08slskV16rPzrf9sE0zgrzfE1IhT7JgELSZzCbL/1M7PLncHyo4CSbjWM8XDYNOvmMjft8mU3QfxLkzjx345woQrTinlsCwMD/vAVJ9yJpEGU7jK3GRa1l3z7W4av3EeTJH4tJy57rplkqeaTL4wuDaZYO+j++PouE3IzvQIpAQu8mr+yPTKODG1PSL5HNRi8hDmlnsNfnVDvp/m7GsaDnQc3KYPTM6yl6rK0GSChGYSYQPvTHVtOIQ+GuKB5FMx9YxgET319aUpcg+H7k+llynuQB1WqbqFylbhay2GRPUng9DhQL3cfFcHk4FcxPC1cpx278Kkb3urh8mhXAo/SQInBgwrrBX/NWsGKRCEMBAElmWJ0fj/3y7McZQapCeQ/KCwCZjqR69r99vYgRcGppzb1+/6si2znvPidJ8fCb4A4Xo+n2886xpfLEN/l6mBj0u6r2zSYQKTrjB0r+EbzCYzcXlGH85CbDinC0ypCoOzwJ2i@jyk4cGPUjz6kzn2lb3NB19vM50QxoG85amMeoU6UxjJpc+YMFBK0xh8pnCxPk2WLo6U8wUJt6sjYIyZKaWw8RhMBb8KtNMY8J40UP1uky0BhjZKjNBV5eYW1Um7i1xNr0yE3TfUR5GdaatP+OH6rWZ/usREj10r/sZ)AElFTkSuQmCC!