["(]iij>3ndstring.Formatstring.Format with numberstring.Format for paddingstring.Format and ToStringhandles hex number conversionsthrows an exceptionToString method, format stringstring interpolation","aA2rEABDBEBtErBeaXZ~~C| 64956}#C 95}sIEXCE~C 65976}`B 7566}X~C 688646}XPcCCC 4}3C~~C 594598}55`B 64}sBj~CE/BaBCaB/B(B3","Format."," Among the distant rocks you see a sparkle of light. You discover a mysterious tablet with an ancient message upon it. But it is formatted strangely. You cannot read it.","With formatting,"," we change how data appears. The string.Format method helps. We use it to change how numbers are printed. We use format codes.","First,"," we use string.Format to combine 3 strings with formatting options. The format string itself is the first argument. It is usually specified as a string literal. ","Markers: ","The 0, 1 and 2 are where the first, second and third arguments are inserted. A format specification comes after the \":\" char.","Variables: ","The program formats 3 variables. These are a string, an int and a DateTime struct.","Result: ","The string has formatting applied. The int is displayed with a decimal place. The year is displayed with 4 digits.","Number formats."," We can specify that a value (like a double) can be formatted inside string.Format. A format string is the first argument to string.Format. ","The format string in this example uses the 0:0.0% syntax. This means that the second argument is formatted with the pattern 0.0%.","Numbers, percentages."," The 0.0% part of the format string specifies the number of digits. The format code can have many digits before the decimal place, but only one after it. ","The presence of a \"%\" character in a format string causes a number to be multiplied by 100 before it is formatted.","Custom Numeric Format Strings: MSDN ","https://msdn.microsoft.com/en-us/library/0c899ak8(v=vs.110).aspx","Padding."," This can be expressed declaratively in format strings. Padding inserts characters at the left or right of the string to reach a specified length. ","Instead of the PadLeft and PadRight methods, you can use the string.Format method with special substitutions.","PadRight, PadLeft ","padright","Sizes: ","Use the comma char followed by the padding size. A negative number will add padding to the right (left-align).","You can use a positive padding size to add padding to the left. This will right-align the string.","ToString."," Sometimes, you need to just format a single number, like an integer or long. In this case, you don't need to use string.Format. You can just use the ToString virtual method. ","ToString ","tostring","Hex"," is a number representation. We use format strings and the ToString method to convert ints to hex format. The int.Parse method can then be used to convert them back. ","Code: ","X formats as hexadecimal. You can specify X and then a number (such as X8) to pad the output on the left side with zeros.","You can use the NumberStyles.AllowHexSpecifier argument to make int.Parse handle hex numbers.","FormatException."," How can you solve this problem? System.FormatException is thrown by methods that receive format strings and substitutions. ","FormatException continued."," Format strings use substitution markers. The arguments after the format string are placed in those markers in the same order. ","The System.FormatException is thrown because the {2} substitution marker was not found in the argument list.","To fix the program, you could remove the substitution marker {2} or add two more arguments.","Tip 2: ","Whenever you encounter a FormatException, it is worthwhile to check substitution markers and argument lists for formatting methods.","Performance."," When creating complex strings, we are tempted to use concatenations. But we can achieve better performance by unifying the string operations. ","We look at a program that compares 2 methods of creating a formatted string.","Method 1: ","The Method1 version of the logic uses a single format string. The MB part is inside the format string.","Method 2: ","This version uses a format string and then another concatenation after that.","Result: ","Method1 is faster. With string.Format and ToString, we can combine literal concatenations in the format for better performance.","String interpolation."," For simple format strings, we can use string interpolation instead of the string.Format method. This has clearer syntax that is validated by the compiler. ","String Interpolation ","string-interpolation","Dates."," DateTime, a struct, represents any possible date and time. The string.Format method can be used with DateTime arguments. These will be inserted into the substitution markers. ","DateTime, Format ","datetime-format","File names."," Many programs need to create files dynamically. The files often need to have file names that are based on some characteristic. ","For example: ","A logging file can have a file name that is based on the exact date and time it was written.","You can use the string.Format method with substitutions to create the file names based on state variables.","Filename, DateTime ","filename-datetime","StringBuilder."," This class has a method called AppendFormat. The AppendFormat method receives a formatting string and the arguments to the formatting string. ","AppendFormat ","appendformat","Console."," Programs can use format strings directly inside the Console.Write and Console.WriteLine methods. In Visual Studio, type Console.WriteLine. Scroll through the IntelliSense window. ","Console.WriteLine ","console","Then: ","You can call Console.WriteLine with the same arguments as the string.Format method receives. It will call string.Format.","Internals."," The string.Format method is implemented with a params argument\u2014this is a variable parameter list. This results in an array allocation on each invocation of the method. ","Params ","params","Internals, substitution processing."," String.Format uses StringBuilder, which contains a mutable character buffer. It estimates a capacity based on a heuristic. ","StringBuilder Capacity ","stringbuilder-capacity","Internals, AppendFormat."," We find the AppendFormat method is called to process the substitutions themselves. The ToString method is called. It does not normally require a copy to be made. ","StringBuilder ToString ","stringbuilder-tostring","A summary."," With Format, we insert argument strings and separators together. We can specify display options for each argument. We combined strings and dates and numbers."]

OVKQjKKVDVQVbVJVAK{KOV%O{jKOOV{Declare three variables.KOOV9The Vhs they have are not important.KOOjVP Vh1VyjQV(Qj;KOOViVh2Vy10000;KOOV. Vh3VyVqV.(2015, 11, 1);jKOOV{Use VP.Format mVg with four arguments.KOOV9The first argument is the V|matting VP.KOOV9It specifies how the next arguments are V|matted.KOOjVP VMVyjVP.Formatj(jQ{0}: {1:0.0} - {2:yyyy}Qj,KOOOVh1,KOOOVh2,KOOOVh3);jKOOV{Va the VM.KOOjV'VM);KO}K}KKjKKV(: 10000.0 - 2015jKKVDVQVbVJVAK{KOV%O{jKOOV{Format a ratio as a percentage VP.KOOV9You must specify the percentage symbol.KOOV9It will multiply the Vh by 100.KOOjdouble ratioVy0.73;KOOVP VMVyjVP.Formatj(jQVPVy{0:0.0%}Qj,KOOOratio);KOOV'VM);KO}K}KKjKKVPVy73.0%jKKVDVQVbVJVAK{KOV%O{jKOOV{The constant V|matting VP.KOOV9It specifies the padding.KOOV9A negative VE meansVjleft-align.KOOV9A positive VE meansVjright-align.KOOjconst VP V|matVyjQ{0,-10} {1,10}Qj;jKOOV{Construct the VPs.KOOjVP line1VyjVP.Formatj(V|mat,KOOO100,KOOO5);KOOVP line2VyjVP.Formatj(V|mat,KOOOQCarrotQ,KOOOQGiraffeQ);jKOOV{Va the V|matted VPs.KOOjV'line1);KOOV'line2);KO}K}KKjKK100OOOO 5KCarrotOOGiraffejKKVDVQVbVJVAK{KOV%O{KOOViVhVy123;KOOVP aVyjVP.Formatj(jQ{0:0000}Qj, Vh);j V{Too complex.KOOjVP bVyVh.ToVO(Q0000Q);j V{Simpler.KOOjV'a);KOOV'b);KO}K}KKjKK0123K0123jKKVDVQ;KVDVQ.GlobalizationVbVJVAK{KOV%O{KOOViVh1Vy10995;jKKOOV{Va VEVphex V|mat.KOOjV'jQ{0:x}Qj, Vh1);KOOV'jQ{0:x8}Qj, Vh1)VbOOV'jQ{0:X}Qj, Vh1);KOOV'jQ{0:X8}Qj, Vh1);jKKOOV{CVNVjhex.KOOjVP hexVyVh1.ToVO(jQX8Qj);jKKOOV{CVN from hexVjVzeger.KOOjViVh2VyVz.Parse(hex, NumberStyles.AllowHexSpecifier);KOOV'Vh1VxVh2);KO}K}KKjKK2af3K00002af3K2AF3K00002AF3KTruejSubstitution markers:jKK{0}K{1}K{2}jKKVDVQVbVJVAK{KOV%O{KOOV'jQ{0} {2}Qj, QxQ);KO}K}KKjKKUnhandled V+: VQ.FormatV+:KOVT (zero based) must be gV_r than or equalVjzeroVVlessKOthan the size of the argument Vn.jKKVDVQ;KV!KVJVAK{KOV?VP jMVg1j()KO{jKOOV{Use a V|mat VPVjcV_ the complete VP.KOOjVK 100.jToVOj(jQ0.0 MBQj);KO}KKOV?VP jMVg2j()KO{jKOOV{Use a V|mat VPVVthen concatenate.KOOjVK 100.jToVOj(jQ0.0Qj)V}jQ MBQj;KO}KKOconst Vi_maxVy1000000;KOV%O{KOOvar s1VyV,.V`New();KOOVw(ViiVy0; i < _max; i++)KOO{KOOOMVg1();KOO}KOOs1V3;KOOvar s2VyV,.V`New();KOOVw(ViiVy0; i < _max; i++)KOO{KOOOMVg2();KOO}KOOs2V3;KOOV'(V0(s1.V# * 1000 * 1000) /KOOO_max).ToVO(Q0.00 nsQ));KOOV'(V0(s2.V# * 1000 * 1000) /KOOO_max).ToVO(Q0.00 nsQ));KOOV5.Vu();KO}K}KKjKKj228.05 nsjOFormat VPKj241.35 nsjOFormat VPVVconcatjKKVDVQVbVJVAK{KOV%O{KOOViVhVy100;jKOOV{VO Vzerpolation can be used instead of a V|mat VP.KOOjV'j$QThe size is {Vh}.Qj);KO}K}KKjKKThe size is 100.j

$/9j/2wBD?@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.v/wQARCAB1AOcDACI?RE?hEA/8QAZ)QUBAQ))))ECAwQFBgcQ?ICAQIDAwcJAwgH.)EC?MEERIFEyEiMTIGFEFCUVJhIzNicXKCkqKyQ4GRBxVjg6GxwtIWNFNzwdHTJER0k6Ozw+Hi/9oADAM?AE?g?PwD3GEIQhCEIQhCETWITCEdEJkZJjCxjSwEcFJkxaN5ij0yjbdtHfM2zJIPfIWu0k6UFh7J0AsX2xd6zljl2e2J53efWic/4RTj/ABnTPeiemUn4lSh8QmG9trg6mc/mm3eqAnVj0kFmVYPAuslTGTTtGdueL0e+I3+ecYd7j8U4G7Dywm5SSdNdJztl16uyMzhgeoka5lvrLpBsZOmjaz2D+ecY9zj8UcOK0nucTx5L7QdS5/FLleXaCO2YozWJ00jWxgPTPW14jUe5hLCZSOdAZ5fRmuNCWm5hZ5LqC3edJNXlBpGadJ3wPsiyKknlr9Ull0SsYQhCEIQhCEIQhCEIQhCEIRIhMYXAiEgd8UAmP1hrIebGF4w2CPFZk5IiFgJXLyu9pEja0Aax61Ey2XEpXX7AST2R6T3LITe5OgGglLNF99VlFK6vYjLuboi69NS30ZVsv1B27jLddIDDftA9b6pQy+M4Qfk857LidNlFTWd/1NLlWNY9VdjM6tYNSjJoU7Xphwzg+Jwxd+gtyW+cvf8Awe6sTO4rRRqA43afi+qRbyq7rSoJ8Kr3ywwR32Y6uUHrv633fVmNn2nGyVq5xB07YCqduvhgr5JTmc5Nn002bvqmSQ19tmVaCtTb+WD2y71rv6tZu9ZkmeclCaxZXfWVHbZLlPb9YhHrlpbmFeKFWn5SlnbfTW5Y+cZC7tzJv8Cya1FrrUqFYhV3fJ19/bm9bn20ga2VuT3Kq2ayCviNttiAVktr2dG0H9szTfeCox77bAegBqVH+rcjNunQYi5aJrfcWZh1rCqAv1sF7URrNOrU45/q2H6XWVxYD05a/h0/TGl8tjvKFUTbu0df7Jh59HnN3Oqretz0cN1DfHoq7Z0NhKjQDQSgXKnUrqD3xpuqIP8A2Sn7rXf9Vo7QEjdWoHvbrP8APOeeor0JrDDv7WkaEYHvB+plmlk1A2MCp0bawBVh3rIQtSWY6Km6yy+oMSrEaGxd0qV2Y+gDYjgn3LtB+ZGjnCanp0H9J/8AhpHyslE5jVutWu3mHu3+yTY+SEddSdQV00+1LjUX5D2puK1LYzOXfZXru+PrSo9OPj31hGfIUlS5CL3+xO00ddXy7mVAwrG3YrN2+v0ox1VSQOp95u7r6s9mQDYv1LHRinsr9Sx02B3THPfFhCEWJCEIQhCEIQhCEIQhIbe6VC49skyrVrBLMFGjdS2k5f8AnHHzbBXRkB1rKtYqN1fRtdPsylkWhG09Jl3HpZ119A8TTolcOAwBAPoZWB/CYFwB1IH3phZfE7KK3dU3bR0UKxP6plLVXxVFe3JsZtd3Yfqn0Nna2yE3ehRqfpdBJxR6WOg/iZ1D5SByisjMm02Dd1QHw9ytIXzKgNARqe4s2n985tRg4Buq5l7Wb03s9rDqFXaN32XlDJysR3XW17FHh5asXUHxb2s7LSNrLNdOzJVrr7zunSvmOG0/sVdf75TfjZr3qFrYoG3Dd16TmLM1wnKoc11A669zv9thKAsCPvZeYO1uUsw3a/SkZWzQncw+zJRy9dDWpE3rPKDKc9rlpWT1Cq2un2t0zhkpbki2/wCbG7p2iFAXsiZFt299RWlaj1V3EfnZp0/kxw6jPe+/KrNlVBRa0LaIznq2v2YJWGI3FiT70R7NgO0KB9FdJLhIc+/GS3mChntWshdnYStT09WdinBuFp1GHU7HoWsXmH8+6Z+dfj42XhvuSuqkXdF26KOWo02iUsnymTQjGR9e7e+0D6/Wl5xVTVigjcRjtt9J/wBYyJHZzb+UV7IKdr0D5x5vDhnD0PzCJ18KsyBfqVGjm4dTprUpU+73j+2cxicTvy7QOY7se6tOpb0zr8PcV0dHDekNuiV7bP2emv8AGV7A1fXmakfwma3Dt/qxw4GCNS4RgV2kddvxnRaD2RCyrrqQBJhRWOpkDZNjdBMZ+DYJ7dtb3P61l1thPT722ZuVfj4wbGoqrSpE3Fl2ncfYPpTbyMrF0Iaz8yzn7sM3uWotqK2IwDXdduvs09aQXDrpVs1k1XQbrd/3pzg5lxceFGLMV+JmjjcFXJANvMqprPMNidC+n7MazR4ZwxNzvdZzGqsZNoXRGKevMXi/GeO/6Q18C4Q+NXzcfmJZfUvY+Q5r+/4dj7JLZSTezMfdb4dFi5F43FVHT+2elKdAB6AOkdOU4Nj+UtOQ9vG+I4mTjmpttVCKhSzcu1zpjULt2q/ryc+V3k8uSMX+cquZv2eC3k7/APfcvk/f+blgSges6aLMPiflDwzg9uJVn3Grzw/JWbfk17Spvd93ZXtTMz/LHAwuGUcVSi/IxsjJfGr8Nbts/afZb1I6JpOvhPOcjy+fDyaPO+B5tGHmbmw7X+fyPcflbdva7HY3/tJZxvKriqcaw+G8Y4SnD6uJf6m/N32Lr4OY3MatmazsbNmPZXCGk72E87zOL8d4v5QZfBOB5FGDTw6vdk5dlXM3v/5dv7R9iJ/R8yTeTeZxvP8A9JeHZueLMvAv8zxspaq9lVm7Lr52xK0/2SP24Q0nW8O4rg8VS23Au5yU2cmxtlibX2/0irCeV/yfcKzb1zMteK5GPRVlvXZhJzDTc5q+efTIRdy7k/ZWQhDQe3SekcX5Z2LaNV+LafmnmqV4mNmgY1mSuQljLXtaqxGO5hodFVp6XxSl7WQKgf4GctbjU4eUfmvObDv2Y9LWXr+Cv9cxsxGNjHu7Xi9E2MN1Fajs67fDK1lPE8hOgC7j+0eukr8dvzn5IxPJ7LHyp4hXS3ruqWfr3LNmqp6d9rg1es1uU1Ydvuo35Jn235OZa1WJkVXKo7ajds0/d/jlcEoPC0s6bjruVR7yrKVnCBowPFq7W1ZtDTb2nKqOtva92U14HxN2HLpDodvyu9Qn59rfkmslD1XVed5GIlaurPXXb8o2nqdub7XWEgrvVD82O4aR9djHXeFEjsRegQsdfEzznF8mrVIGTn41JO3ao3OWJ9G19k0R5LY3Qvk2Eenlqqbvx75YvOJRrl31PbkoGZX5VjnUeEBtrKsp4vlC172C2tK0XaVO5tdD7dfsybmKOrL9nxfmkPLc6bW6+tu6fhlqvhXBcAFbaxcznduyFWw6D6l7MtpmcJpqNdHIrRz2krqbRj8dizEz+JYWxrXVMl18NYtZCv1TBTiKhHsXELMN20B9QnukrtkZts1OxV09XcvWTrTVoOYz7/tLNni9NF1lYqeuvf4tHYhQGU+F2mjT5MYW1TfkW2k7T2WWtGH5m/PPPg9t/PdiWsco3i+k3dO54RxpRhJVl7/OKjy08XbQL2C7fkl412NVitynZPN27SVsQr+d5HZ7MLq22VmvedFZW/E83KMDhmA68jF7fqvusfb8e23ZmmmZv6V7D9Ta7frmOmUlrbnyaq00+bVl3/vloX41YJFlevZ7W5dW/hGbrk67WrH0q9JUaoaaMGL/ANk1UsIGrvvb4dBIrLzp3TPOSh7nGg+lOKyOOi3LsS++yrDR2XZT42A6ej3o18h9NFDGJXjqTqxUfd/Ss2MnGuvvsbnUU1k9U3s7r9wLDDsooRkW82Pq28tuRFA9xfWnOHiOEbz5pUa00YBy1pLE+3fY02cK/HCHlUhnUaGx+u4n07fVja9x7xHX6KNAdfvToOHXL8rofFax8PoO2cBxu7iVflzjvwqirIzfM9K6rm0rYHEuDksbKvDXvfxztOHWEmzU99jGRfzIz+UdfHTegWvHakU7W3trRZVru8PrzUsGljfZX9Mz7m+UYfZ/TKufk8fTya4zdxSmijJ5CJTXisvzdli1XHcllv7Pt+OYuXw7hlfkBXkpRR5yasbIXJ2V89smzJrFvyu3meFnTZPSb6acui3GvXfVfW9die8jro04+jyEwEauu3iGffg1286vBe1RSr/u7P4EriCRgzn+KUjMt/k+ozE5iXV4iW1vu+b5mN/8c2/5Q6aqeFcLppqrqqTiCKldaKifNWdyJOwyeC4GZk8Py7Ufm8MKNhqjKlabLFfw7foJLuZw/C4ilaZuOmQtb761fdor92vRlixTPP8A+UIa5Xkx/wCPyPV/pMKWPKtWPlL5IEKTtzULEeqPO8ad5fh4mU1bZONRkNSWNRvqrs5RfbuKb1bb4UkpqrZldq0Zl8LlFJXTqujGLE1nlVeRl+TXlbxq6zhuZmY/FN74/m1W93sut56f9KbfkVTxHzvyjy+I4duHZnZtV6o6Nsb5TNd+W/7Ra9/jnfQhDWeaeSmNx3geTm8Mu4VZZi25dt/n2/sfNts2f7zsQnpcIQ1mJxO9qiuhmHlZaIhasdp0Xfk5CtTT639ZZ9hJt8WGgVts8/42b7TSWJKjeAu3oum3b+qU7q9zGXaLNFEgtrTieSqWZmTezHalePjqlfTxacy7dt+m6TouGYFHDd9KLbZZadz+3T1RuRdu1ZyfDslMLJN1rWqvLZda1UnUsvv7ZoZfHUD7sS29mfYWZvkQuz0FB2WlU1kdAJZDg9pm/E07M04SaM2Nj7vQ3KrJ6fdkvnC6dlhOMr4y2x3yruZa4+SShVs2fdTxN9uUMriuWmleNh2UKx7V2Src+4v7XO3av0EiFXMNUHVj/wAZ1ebmlVbbfWmgbtO+xPxCcYXyL7Xck3M3eU3ONPhKbYubcTbl2CtR3Fm1P1IiR6Y9akbWtLgdW3rWP3a7oiVN1JOpMc1q?AaD+BaPzajRyw/YaxN4Qt1VD4d8z1yuT1Dlfbo2ku2V0v27fOH09jqX/E6zPt4W+Uh82W9GJ8d7V8tR/V7mkq1MT1Ege0KNQV+zu6wOfjZN61hglznxNy60Y/a3TpsLJ4fwhH89t51l2zStKbHFQTd67qvinL0eRlz7bXufma+Km1dF93vXdOkHkzkXqq5fFb7FHUoU37Tt9DG7bJOSwPZZh9npGrlnQ6jr6va6RmT5U4DMUxsP06B3WtN38O1KmNflcQvApU1rpubXaERB4iW2yzT5NiqzsUVqq/94vta65vT80FStZZyOF5nLsWm7535zRNm4Dwp60evnCjs23a/SsaKMttetm0D1UlvLSjkFFvrrtfbt7TbP3/RmT5pQgPPya7tB83TSv8A7r/5JQHk9xG1wHY1p6dOY50+C7Z0OJ5NUog5lljtr1LNs/dt2x6HLUdrKtb7ba/qivxAMegfp/SaiZIFGulWNuJ91P8AEJrUUXhFNPZ5gXenaBX4eGdNRjJUqoiV9n3kVz+N+1LoBI0JH7l0kq2WDvKt9uut/wBSSrZl2H/ZD+rU/qSZuBTbUCXB7R1M2g4A6dJ?RHDWDOzEs3efd6Si7s7FmOpP0dJaDmWUbWVFBlqsGLFTWXEPdJpEg0kscJMe6LCEIsSEIQhCEIQhCUc1A6jUTms7GoCKWpFgU6BWZtF1Xv6bZ11igjrKF+OjowKAxjKCesdzCq9J523DMYkblf7G7o00sfH4XXpv4ZW/wBysj/1GZpvPiUg/NiMFCIdVQCNNY9sh85YejX7U5finDLMq1Tw3HGHXoocLtr3fHaGlWrycyC++8Cx/wDaXXM/5Z24AEcNIgQD4xDk2H06a+qvdOaXgRIUPYgC+EBNdv6ZcTgWIB2wXb2jcP8AE02ukXpF2iJzGPeWmanC8JNNtA6e1mP97S/XQiDRERV9iqokkUEQ0hu9MQ1Ie9E/CshOKmuup+rsyfdGF4aReZ7JD5ontf8AL/lkgxKh36n62/5QL6RhvI9MNTF1175YFVSjog/f1/viFU90fhlF7394ys1th673/E0b1jwB6D+GabGte8oPwyI31DucH6mmJbcV1LvoB7WlYZtQOg1b4hf+cQsB3lZItTN3K5nQ88a6AayZS5I1Gmsy8TiCKCBXuJ7mO3szSqtNjAmAYeiIaCO/pNStNQDLKJpFqXsiTgASUCIFA;0kkQRY8QMIQhCJCEIQhCEIQhEIkbICCJLCEJmW1d/SUXUgzdZAfRKtlAPoiSB69e6YxMbul2yjr4ZWNX0DEkOxtZAbQJGckju6x71Me5DITjufVMSPWs+mHnpHqfmkgy1Yakaf.+bN7sUYzD1TACPNZkpy0+MiOaB3V6/ejxik96mO8yB71gYqoB3iVzlk9ygQFwJ1Ko3wO7/g0nOAPdMYcE6dEJ+80SPHL17l+9IjeNdTXXp7o/+90gsv3BhXX2z0UBvSfD6stHBI/Zn8Tf5o0YhBBCEEdQQzSE1sT0LCW0sqXvrUmYz02212O6u946LSFYldPE77F7KrM9aLRoSp9s6sYzasQrhn3BjubVtfbHpgrqCaz+aNXH0JJLGTHL0UBQomFjrq6ga9AuuvtnSYlR1XWWqsOvUfJ6EdxmlVQF00EmFekgNhOustVDRAJLEA6RZMJCe+EIQhEhCEIQhCEIQhCEIQhCEIQhE6GLCEI0ovsjTWnuiSQhCRGpPdichPdk0IQkPIr92LyK/dksIQkXJT3YcpPZJYQiSLlJ7IcpPZJYQhoJHyk90ROTX7oksIRZFya/dEUVp7okkIQiaD2Q6RYQhCEIQhCEIQhCEIQhCEIQhCEIQhP/2Q==%iVBORw0KG;)NSUhEUg?AL8)+CAM?ABN2DpJ)pVBMVEX:/+xptbq8/SGc8PQyuXo8vP0+Pn5+/zl4vHv9vf9/v75+PyTgsfw9vecjszr9PXs6vXf2u3y9/jp8vPr8/TBud7Y0+r4+/vs9PWnmtHt9PXIweL5/Pz+:/8/f36/Pz3+/vx9/j2+vvu9fbq8vT1+vry+Pjz8fjv9/ft9fb3+vv2+/u5r9n4/Pz1+frz+fnx9vf4+/zu9Pbz+Pn+:7p8fP6+/xQ2OjO?ACsUlEQVR4Xu2Yx47cMBAFH0nlrMk5bQ7O4f8/zcJ650FtEPBRbUN1rwIFbs+qBQmSYG6Mc5Ux2yAB9ofdx0ltV2l6H8XwoyfRvjpBMW+R7aJyZadhhz0vQfQlFpUjpFogez4/deob9QVEV6JZOz9Vgt3kZvauhnUMoigRCEGyRTz5aq9qeA+iJjGn4GPeqZtbqmcQFQkp+tUPn1c29KgqEgsnMaZykmD/8jibUo1AF.eiv5Dtjk6kGyLvtpknzY2JEeQ4RPGkXUDHOLdLj5myLc902B/6j16CjJ4IumJOZBNyo5JtDyIG02AL7chiUGGThiKVQ5gsqpns1n9VEZHBP3hAe5Cz/AMnXgQT4fs9y/U1M5uDv1qgY6UpgUZOBFQNOi4u873tATQOtIAWHrGb+jEK80WHSXzS3Q4skBHSC4gwyYKcTew8noNzUBeXQQyaOJBzAYOcrwwl+bZc/5hE4msx7KOQJqR5/zDJvLkSo6OLL6S/e3JiY6EHyMnJ/UMn+ZE/sfPsu+/p+ZE4Ij8wwtBFCfyguIrgMxSLEEUJ9aOtABuQrIE0ZuYO7IG8G1KcQOiNEGRcxNZ39yoTeRGLP/7iIuDWP61JvK1ExvFXW9x22QgShNNX6zy76fU8sFrIapMNEVPLBo8lzXXNnsEUZmgyGs7lSv7w3NtOhNSNG8i7y0VosqE/BKD/QtFuXRrTRgn9rXTY03xAqI2sXCk6MSf6ewqWiFqTVT9kQfKqydGXm+ilW9L8e3U87akM+Hb1SYUIxDNCV5ckaNjdRVtBqI0IXe1LcSudg+iOZHQbOSXjCOI5kRLExDfGkFUJ7grVxC7cg2iOkHTSDMFUZD4f8+fBO8s0IE4eucCoiChj5GRkRFDFuhIyeXfSDj54h2SCGTgxHj+8fzj+cfzj+cfz/8LH8OOJIxbjtQ)ASUVORK5CYII=$/9j/2wBD?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJyf/wQALCACWANIBABEA/8QAXQ?AwEBAQEB)))?ECAwQFBgcQ?IBAgMEBgYGBA8))BAgMRBBIhBRMxUSIjMkGhsUJSYXGBkRQkM3LB0QaCksIVJjRDRFNidYOksrPF0uH/2gAIAQ?AD8A/fw?AB)?CE?MYD?ALi)?ALiuAhAMBgMdwAQ)CbE5ol1Ycxb2NuPgw3seZWYTkTvoc/MW+hfj4MHWp348fYwdanz8GXGSsO4wGMBX?GABcTZnOXHXuM1eS4+4iUHm7SBwfS6RnKWRrXU1pT6HHn5k4mfVS15eZhQeZKN1fjx4I1VF3l01bkPcveZs6sRVg4RVS91F+Fy8PNZ5WknpdHSh3GmUhiEK4wGFxktktmFWWvwFGXRQswsxhiJPQunLq0RiZdTL4eaMMFJ55e47cwZiMRLqJ+45sDPrH91+aPRzFItForQliEAxhcGyGyGzCrLV8rExl0EKUhGVXtIuL6Iqj6t/DzMsP2p+1I3Ui5SfgZYyX1afuOLZ0+ul91+aPSVan68fmjSNSF+0vgza65mkZLmiroQWVwyoSSHZahoGlyZWIdrEStqc9fuSJbWX3E5kDaFIceANLLYwU406kvV4HTJ04wcr62vcweMof1iMMZjaO4lCM88paGOy310vuPzR2YKlTnRUpRu7s6JQjCdPKvSSOl9qHxNlFcjN950CC4XEpCzaictRSkQ5aewzcjGXd7DN5rvhqJJ+wNR6gBlKnLNm0+PAJKvd6QelrPNaxxS2dW9aPzf5E/wAF4j1ofNnZgsG8M3OclntbTgkVho4yhDd7pS19ZfmdCjiKk6eeCjlfNM65RleMoo1Wf1SXTlc1uJsnMS5iz2HfmJvWz7iZPS5nmJb0II0AWgAF18DGWLwsO3Xpx/XivxMZ7X2TT+0x+Hh96tBfvFYXamzMdOVLBY2hiakV0oUasKkkubUGdhcUeX+lE61PYdf6PVnQqSqYenvaUnGcd5iKdOWWS4dGTIxGzHs2WDrUMdjJ/WqFOUa2InUjKM59LoyZ9G07x158C2tOLKFqS09SJXJcXbN3E5Jae3gVZyimSpZpvlYTvr4Gdncl94rGck82buKcfkZuOo9LcRx4GeI+y/Wj4yRhGjLERc99Kn0pR6Cj6LcfTjLkY1NkTqf0/EQ+6qH71FnhU97Db+Aw1We8qYXH1MPvrKOeE9n1cR0lw9ON+66ufZWNIojGYDC7SwtTBY2nvcPVtnhdxvlamuy01Z2ZzUNg7Gw9WE6dGeelOMoZ6taaU12e3OUT2HF3VvEbUrdxRN1qK6uyJ2vf5iclZxtpYFLgrO1vYQmrJWd46/Mzi+k73u+QpSWdaNJE31a7nwM6lRQdra2suHcTvJXcsjt+PzM6lZyzRjF5tGk1ZeZpGe8irL38DGdSpvHCEU7W4+0mVSt6UPBlKrOy0FipfV1L+3S/1xHgvsP8Sr/uSOqx8pKn/GiH95/8Sz65FxRrFDVPVvM7XUsulrq3sv3GyGBNhWJcScuomuk/aJx4+Jnl1zLgicrv7+ApR/8ATlxMo5qd78X+BvdeJx1Z5arl8fA0w01KM5a8bL5IzjOP02Udb6e7smtZ8PeRUfUx9/5k4uE54NbuLlK9OeXvahOM3b4I44YjEUc30fPkzOWWpha8rZnfRxyd4/p20uf+RxP/AHOfCYWrW2lha+SrnhiJ4rFVqtGdGP8AJ6mHio7yMfWjZa6I+mGjQsooBCDQnmJ2uhStYhcHzJk1dEtKzXG5wY1dj4/gX9Io27XgzjxNSF5OL7tLX5Cwzrbt5b8eXsRm5zhinOV787ew330fWLqVIbqMIvvudtJdXD7q8jbKXlHlALFItFoYCATFYViWiWhZRZTKpRhUXTWncc8sNheS/af5kPD4Tkv2n+ZrCEIR6C6PsOHF4zY1Gtu8biqFGvZdCpVjCVnweXMmTTxmwptRp4zDylf0a8W23+segsLR9XxZpWj1Mvh5lww1Oy0ZdGKjKce7Q1EA0WikMYgEKwhNCsKwWFlOSnQhOLzLvFUw9PLLTWz7wox6qPx8z5zDYKhjf0k2vTxUFVpwdKcISvlzSoUb+92idG29mYPC7Nq1MLRjSnZx6HfGSd0+Z9GohUpuVNxCLrWXV+KKpqd5Smu1YsQxotIpD?EKwhWCwrBYLHPSlHK9VxFUlDJLpLgxUY9VH4+Z41bZe1qO08Vj9nTo/WnFy3spejCFPLl3cuGS6ebvKrYDbmNpOhi54fdyv2JSTvZ2/m9bcbXR71hjAQDSKSKQxg?ILCsILCsBnuafq+ZLw9L1fFlKCiuRlerKpOMMuWDXc29UnzLotzpqUrXu+HDR2NB2EAWCxSQ0ihg?ABYQr?rBYQWMnh+nKcak45rdm1tFbvTLp01T;Xdtde/V3KCwWFYLDsOxQw)?sIBW)EABYdhj?A:9k=%iVBORw0KG;)NSUhEUg?AIk?ACDCAM?ACOYcid)GFBMVEX::19/jv7+/e5/OTvOxcoem70vAdieXyOBLu?AD40lEQVR4Xr3a227cMBADUHEu0v:cYEG6SCpZrlKKPO1KEAfy95Yo/F/bEbk+pvMmD5+llxfE+MsHrm+J+Y4z1zfgrMeubbJiUdJLFefqSXhnn0ST5HEYvFHSJCLZ/6cxD6CI01e5ZzE7SMHt4bEb5PM9WYSd0lsvZ24SxLr/fhNEl8HSTxMEu7ukTsUPLlK8tNzUzLswQcn7V82KmYqEv5S82qyWUPTcIfEN/4Vi90/3yGZm4u2VyhpBg@f3LsM2hv3g2Skd16Rdd0FoqSBN0yQV3lBvwCiXfL5PVDDhEJX7DF6bzJOQn3LNAXt2913Fic5PzRKbWmiYaEN8G+SalBTTKSNknWhJNcazLLREBCXmyDNTENib4JJ7lvwklum8hIevszE05yqUm5q0lGUJPFm3ASfZNSg5hkTGYP0kRFMiZbj958hKhJhrMmkzQRkHT4wZpEmQhI2Kvt1ZKe301.NI+PPwTUUPClyxdsKYh4V+jHVldsYyE8KPk98sEMpJK7PzRkqy6YAEJ38lBFdnbQ0XCd7cAn7nWauzlJOc7fvYRKQnfKu9JICbhO8PEXkRSmaf3xtQk5xMEAYlmqiIg0Uya7C5JQVMRAYliIummIeGBJwERkfDAZtclCkTweuUxs90@ctD93rlVcz8ywmHqBrCH2EeGIvgG0dQpUBOSHxGfhpHTJOwYJySeKzvyfADlw7kkGS2p0h+4YLyoCTVo02WCwuAKlEa75Mg2AxcEk7iKZg883ASXySiKsZIXDCPl5Ag11vJ6yRVh.uk8z1dvwqCdb7yasksQ4yHybJ6e4zdij24Cqprp4bFHvwwQmzvkoY5CT9fLmyAfMfojgjiY1/xbYzGjFJP6ah51lwgwQvVgnam/fMj/CsHu24CEISesQHr4Z50JOMIFuEzYpWkrSXTNGixAQk9LDRIE3@KN5r4GNJFQkgiZqEtAJme8nAXIS+2kTiEmGUxMjTQQk95twEm4CbqIgkTQxMckwauKkiYhk4GoTTkLfbODnFAQkoiZqkpGNCT2nICAhTZa0CSchfymBn5hQk4zJziYmaaIiGc6adCM9.l/oYA+Op.8CXLz27gbFrZk7AVSZcJxCT0I2+Ssxsqkn7XolZRc11Kkrrsdo/Esh0wqkn63S0DPMjZDSnJ+Y5fAatJCoWnSKAkqcxjEpOTHO+WXyM5nSBY.tI+BXwowpSkvMq6VdJDqZvb;SHgu+WCUPDg9mEhDRg8Nj1k+uzaQkvIrtJilRPcS/OPwUSdYpkulmXRGOLPi/XTB+0QTSUyQCEkWVMYQkPCAgQhIekBr3SfgpksofAsfDwgbLrT)?SUVORK5CYII=$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAMkAyAMAIgABEQECEQH/xABq?E?gMBAQE)))?QIDBAUGBwgQ?EDAgMCBwkLCAkFAQ)ABAgMEEQUSIRMxBhQiMkFRYRUjcYGRobHB0QcWJCVSU2JykqOyM0JUVXOC4fA0NUNFZIOUosMIJ0Rj0oT/2gAMAw?AQAC?A/AP1S)))))))ACkvMUxuamRN5mciO0K7JvaDE9iqpdvNKS/mkZ1R2W3YTzyULtem4lEBOVAC5IAII)))?Iu?Bc?Eg?AC6daA03orUTTr1VLkKpCm5cGKDp06EMoRSTFZ2d3JuWjRddC4JKIyy3?Bc))g)))EOXQrmcWcmhWy9SAF03EGvXSLHCmVek5stU/5x32jXlqGxrZTBJO2NbKdnUqiIeamrpfnpPtKazq2o/SJftqab8UZuyr5jUdiTE6PQewjtqWPF8aqv0mf7anqcJlfNh0L5eU+y3XrsqoZ6WubUOVlrGWmrGzuyoljbABvG6))Q)AC)AQCASCCmdQDICrXEkg5uNybOlb9dPQp5fEa/ZQPfpyUO7wxk2WGR/tk/C48PNUnmMXrNlPl7EPN4rVbKfL2IejdhFbk2ndCj2dudsl3eHMY6igraOPay7OeG3KfDfkp1q1ejwKprNk/wC18D/8FH6jo8CJXcSrIv7GGoyR/Ruxrlt2XXzm8sEDnpHlsqpe/wDPhNvYwucjMtlVLmsxyOamWy31RUPV4J/VkP734lPEU8je/MbzI55Y2/VbI5E8yHtcBX4pg/e/EpTDP6Q5nUi+krh35dzepF9JvgA7x2w)?AC?AQAQAQSACLkXBIIBFwLmNUMhVBcBhYq0C5B5zh+vxND+3T8Lj5xXPl4pLsc20y/m7/F2n1PhRh8uJYa2KnttGSI/fboVPWeP97GKfov3jPaeOxqlnkrNpGxXJZOi6aHksYpZ31W0YxVSydF9xlbj3BnuG3CdrX8U2SRf0GozZU3a7MmLhDR0eH8T4PU1R09+qGOY1t97uXZzl8XjQ1/eziv6L94z2l28HcU/RvvG+0zcer3JpBZeuyl+N13RDZeuympA/ZRNZdd3jVete0+gcGHfEdN+9+JTxvcHEv0f7xvtPaYHA+iwuCnltnYi+dVX1mzgsM7J3OlaqJbp8KGxhEMzZnOkaqadPhOmCuZLE5u09Nc9ESCMydYFwS)?QoIUgC4AKqpIBAuVu.RcEXBJFkBBFwCCblSFUhTicLZpOIQQRPlj4zMkTnxSKxzeS52ipqnNt4zy1RRzcWbB3QxTJmzZuPTZvG5HXVOy56/H1dsqXK1OVNZ2l7Jldr6DkyRHIr9pn5LlTxnIr8+dMqqnjPOVNHUTRxM7pYt3pMvIxCZqr9ZUddV7VLSQVEtQybuhifJtza2VrVt1tR1l9Z5HhZw9qKfFe5nB2hZVVGfZ7R6K7M/dZrUtfw38RoYV7oWI0uK8R4T4ayDlI17o2uY6O/SrVVbp4LeMwMo6v5S+C5rNpKq2bMvl1PoTY5+NcY49iGe/N43Jk+zmt5j1XBaSq7i0/HpttPd7dpe6uRHuRt+2yJftOFkTKjmqmW10VOk7XBaJsODxNY9H98l3dsjlt4r2N7DXvzrmuuhtUDnZlzLfQ7+bkl22sphbzTK3cdVd51FJcACpBkABlLgg?EBSFKqALkXK3KqRcsQqkKpW+pUZi5NylyxUsigAhSACjrllKPMblKqc/F9rs6fJf8ry/Bld67HMqk7xLkvmyL5bHTxhrnMpsrk5MvK13plcc97jQqV5SHNql5aHxP3N4IvfzSbZE5smT62VfVc2/depGS8LoMiJ/RGZvDnf6j0eNcCpe6S1uC1DYX58+Ryq3I7raqCi4G1lZiHG8dq2yapnyuVzn26L6WQ20njzbXN0bjNto1dtL9B6Lg1G73t4ZtL5uLs/ClvMel4OMjbhUeyVcueTVevaOv57mkrWtajWomW1kTqOjweydy49k1WtzydPTndfz3MFGt5Hfz0mvS/lHfz0nUS+UnMjV5zvKLckhUXNmtfSx1LnSQsnMVWuXVN6qCrW96W6gsikmyACxYgAgEKtgUuQ6TsMD5/o+cixidK1u9TNcg81WcKGw1UkLKVX5HK3NtOlPEIuE2f8A8T7z+Bm4nNvynFXhFh+dWbTVNNy+w9IR0nIixpPmP9/8DZZiGv5P/d/Awugem9DdjxKmkTku8ynQLGtDUbRyNy+c2DC5FTRTfjka9LtUkAFTKQpR5cpJbM3wKUduKqc/E4XTxR5EXNE/Pl05XJVLb+05UjarZq7ikme/Mzsv6bHae92Vzr9Niki8pmn82NSWJHbzUmia/VTgubWbNruJSZr8zOy/h51jLs63KzJQyv0+Wzk9i8o7FjZg5vjKR0rFU120zFU4E0Fe13e6CWTT5bE9LjtYPTyQYfEyaNscmrnNZ0KqqvrN5pc3oaZkZtRU7Y9UIy6Ftn9JSxKG2iGyiFHRJ8p1uoFwWJBAIUAKVJUoqixRxjkNSU23mrKTY0Zk0PB4gz4fU/tHeky4bSy1cjmwq3kp+ctjJiLPhc/13eknA1VuLQ6rrmv28lTuK5dldOhPUfLGQN46jHporreVVOnFhlV/6/tL7C7XSQSZJky+s2aqGXj8E23SOJicrXnanOxiuilqI2QvR2RFv1ami3NIqJv9R6WZsVGxzku1UVES6oubwdJ3aCTvrf56DpnmcJqPhMevX6Dv8vr85oVDMrrHpcKqklhunWbAuarJF2iaqZ8xr2Oo2VHIWMcq8pvJXp16i1yr+gjLfQtmuYFa3MvId9lbFLudI3kOtrdcqp0GxlXTUhqd8KLCnWQrUUxIxepTYhYuXd0mTKZWlmM1KtjsGliv5wsZ0Qy3LEoVaWLEooABJJBVyhzjBNJuLI25ZGl8xXMYdqUc8vkCsMj3aGB7zHJKakk6GRsZTYZjh4inwmb66+krgyRNrtrNK2PZovOVEvfT1la13fpPrKc6ZTqtZmYfLsQ+CVO1y3yqq28anU4TugmSKWGoje/m5WuTdqtziRPMbytzNHFkZlvc8zW1q1NQs+XKq9X8Tv4FN8Yw69foU9ftUbE3VM3gPD8F02mN07dfzr/ZU90tM3rccbEWokqeA99wUfJLRucnylTzIYYnd9NnMYVibHd913dJh4z9Hzmha56Rr9klnm3mDug0uM/R85sxu5KeAlEspkjmRy6Gdr003hn5VA1qdRlYxt9xOhuMchcv0EWLEIhkQqouWJshYWKs6SwBJNr?Ak1ZXHn+EeP4dg3F+6VTsNtmychzs1rdSL1nbnPknu4c7BP8/8A4zq4ZTNqahsTty39B2sHo2VdUyF+5b7vAqnrYeGvB/8AWX3En/ybbeFOByJ/WX3D/YfGsD4P4xilLxnD6J00OZW89vR4VN9uF4nTYrFhs1K9lbIiZIsycpNdy3t0eY7UmE0qOVrZNU7UPQzYDQo5Wtk1Tel00t4j6q/G8Kk5ld90/wBhjbV01Sr+LVG0ytzcxU08Z412C4tRQOmq6R0cbE5Ts7fUp0ODj/hM/wCxd6UNB9LGxqujdfyHLloIGMV8Tr27UX0Hduxy8prfIbMMMHzMX2ENCNVudClNZ+44VRRwv5zEXxJ7DYp6OldVW4rB4FjTq8BuLh9DsXO4pTcq39k3TzGGOOTaK5l/KbcUU1ty+U1HuX5XnNF1BTfNt+y3/wCS2GUsEO0dDDFG6yJyWIhhrsapqSqfTyMmzstzUTpS/X2nQpI3MzZkPH8I0+O6j938KFYY2zSKj9dDh4/VPw2na+lREu625Lbl6NDqyY9Sva7vc+75Ke0wwYnDdeRJu6k9prYbg0lZTJMyVjdV8KGyuDvhic/axuRqal3xwN5N9Tk082KTo2ZzUta97Ju8pMlfG63If5E9p14OY3wHn9loejibohrSta2x2KB0kmbP2GdhmaY2GYxHWYhZCSELAzh?.A.?AaMx8h93f+4v8/8A4z7K9h8e/wCoD+4f/wBH/GdzAl+Gxp4fQp6Tg06+IxJ4fwqZPcIqp5u6lK+RdhCkb2M+SrlddfMe44ZYPJimGxV+ESfGdHeWmkZbl6at8fpPJe4LhUkOG12J7RmyqXNiydPIve/2jqcFcTl4P8LKvgvitSyTjDnVVG/5OdVcsevlTtv1mxiCKtdLJAurLLbrS3K/j2G1iiK7Ep5qZUzR2W3WlrP8nT1oq9Rl90iqmpsJo+Wvfn5ZPpaX1PP8EF2tVP8AsHelDr+7M7ZYZh37dfwqcH3NJNvitSz/?rvxNKwM+L1k8PpQrTx/FSy26/Sh6uOLXcdGmj3GRlP2G3FCcx0lzgvkuZIGm7GY42aGww1Xrc1nKWaeL4Qp8d1H7v4UPbHDxJPh8vi9CGWkfkeq9h5zhFT8Yp2tvblJ6FK8E2/B5/rJ6Cjka6BeIRysh12mZdNydptUtXJFHkszyGxxp72q3K3yB986utvMNOyNKaOHNq1F6NdddFvp29Zxcuh6BrDWOkYpdbHQw+LJm16ijWl0JJMJ0kaEJAJL))AFT5T7uuE4hiXcTubQVVXs9vn4vC6TL+T6k0v6j6uDboqt1HO2dqXVPZY3sOrnUFQ2oal1bfRe1LdB+Ufetwh/UWK/6OT2Fvevwh/UWK/6OT2H6tB3/AH1TfNJ5T0/v2n+Zb5XH5Zh4N8IP1Fiv+kk9h9B9yTCsTpceq+6GHVlLFxR3LngczlZ2dKpv3n2UpIalXj8lVE6LZpr2qaVbwnlrIXQuiRMyWvdTQbCZmRFy5xLnmrkNYZGkFiikKDVmoIppnSZn+VPYbZIRyt1QwyxMlSz0uhpNw6L5T/KnsMnEo/lPNkE53dZRKWFNzUNfijPpeU2ACFVekyNjazmpYWABBc))):2Q==%iVBORw0KG;)NSUhEUg?ANw?ABLCAM)s5xlI)GFBMVEVtz/aY2/i45vre8/3J7Pv2/P7r+P7:/+EPjvu?ACEklEQVR4Xu3a0WoDMQxEUY0k2:/x4Vuw7TrVjQGiyh4nvq4B2+ScrGMMRyyf/CRPhkNkjO0fBwka0jHueTNs3FIxCEbl7qDO7iDO7iDO7jdO7iDc7uGF8eB+z/OxrUXx+EHuDveEMfZW+FWdNByuCeOAyVwInqR+JfvwaX2qBkn/vO9VDcznQBYw2X2qDuOznYRbHytqXDaxxjNdQEHyRr+xtlUdLo81gf3JC61R91wfHSnkzraVnFIxOGGU/UrnTY8clUz61RQvIaT7BHH6WU2v5CNpyntQdKauM7nBVQhxs8h+FNh5XBmjnsk7p04pUhr4e7mPv9PZhShNM7GjPO3wPHjBR/Ta6nVX0vlVwdxINRq4B5nA/yO68RJ43mWwIHdYcYN18vGl/E2q4iTRgBx0lNx68kqxvGQWiOOuo04cLKcrGKc4HJ06Hec6KfV0Tbh5mK1p8dBVSHT?i3C8fZBly0vbglHbQa7pnTQAFcUKxK45aLla?bqVYMVmVxMXFilmnFC4uVrTVwC0UK5IL4J4pVmGyyr7YtqFYBckq+UrihmIVJKvky6QbilWQrJKvAW8oVkGySr7AvaFYBclq5G5DsQqSVTJuQ7EKklUybkOxCpJVDVxcrKTXxsXFSnptXFysmKwK4J4vVgLgXIFc2sEd3MEd3MEd3MEhkYZsXGqPysal9qhsXGaPSsel9qgPfW6sD52HxCk)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AP)BDCAM?ACV1Xh7)GFBMVEX::r+vixvbyJk5Lc3NzF9vGv19NhYWHPSHDN?ADzklEQVR4XuXa25KjMAwEUFoX8/9/vElmoEsIORTl3SWkHxnF9ilzsWGmq8QM0/cEMj+i9jVgnX/yLWKZf6NXBcAweIKvPMUmOnhk8xpxXEwrGqZiPPhq4nn+q+Dm7tcFY/hNa/ZHcE0wBg4Nygm+IphDG7zwaH53MIPWmvv9wQx8yXRrMOP/fIJh8ooZhoJfzdrROcahYRreUOzpsHcLCkZVAkCXsIBhbSh+GW1tVzJFtxHsDo2dYB2nSqmlJQzTwk0yJ01snQ2YR6GprNuq7gGEf7NQDApqC0MwZ2Ew2Iq6s+CtBWVxDWbNeLAVfZ4EZ4wW3j7YCoW7AwfB/ggSWHMl3oDZTgZrNgiLe5Z4n1UCVB5RXcHuZ8F1p3gH9gyus6lWSlprugs2DtvXNNEIliVskZHWA4s0oWipi63qETB7DohQSdsrC/nJX9atQu9O0tKATYaUYIU/Ey6U1KjLYbCAkEck1GsaHNv9DXgW+HAwvS5hw3seLCAkX/SBFxpuHTBeGQFm1/F3OAHmhNY/sG0VAB4iOJSBPmADBo?RgjB2QtlLxGMZ/rg7PVGsDs24OakEOe/g9TQHAZsHghuvDIIJok5BlZOk/XBPBq6zVdIm0aChSd7BOMcmN53YPJyt9jc820EOJ9afIKdBiu9EewEB106VDzXxcaCiy3vWTCmAsyOqdM8XO5oGBWMA0/DwPQmcK5EvhowUZwio8AYDJ5qMC9PbQ7C8hNI5hzFeDCWDAdniKoS4wTXu2YdDM4ZD5602ieloXiTbbF8HthKb27YPZkdnwOu70Zave+Gv8zxTPgssFRcVmWyazgVPgmMta6JPiPUFgMBtptNFBi5IFiqjX1/HJCA+iCwstuON0d6KF00FwSzbhNgYkQ2JKym1gPLRcE8M4EfbBaoWPZyAVrvxrF86zkFhq1ZTe0RewYnT+n4ijE0FKtU+f6QogzGzKwfm86Bbe5Ezt60clQQwUXUCe7UXwiMujUcALd9sF0V3G/R3oG1VesT2QUDGAsGcBy8BB1xHyyd55ftVw8Gs8VTa+mcRSJZrOJrii/OlwTTK/qT4jqGiSwlwvUnvSloItt6nPmXDXgn2CvsHOMXKqb4rOVFDg30KmBJ3vqzVtVhHVwODMJChGD+GiW3Di4Gti0YP6pWrf7xzFJKbSdLPVj/35LP6OIxfp9InOH0aJbbgnX/0dzuBgYfQLLATHjQbwTOa8a87vD7gUFdZyt0pxh99bvpWwWyzxWn92bBm63QDeNt/WdCvoq/7QT3F6sEfAUZBHwBGZjuHYBoBO0fPVuHt+o3PUI)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AMg?ABBCAM?ACjORu8)MFBMVEX:/+wpaT+19RzZWT/5eP/8e+Kf37U0dD/+vrk5OT/xsD19fXBvb3/9PPYqqUwMDDrlubL?ADxklEQVR4Xu3aa2+lIBAGYObCVXX:7/daDmrDg66sVJN+n48JcITkDgU4:U481XXL2ZMz+cx0F+IZ0HIG104H2XIbGvNOt9NI9IhB1FLJvtWMibZ8SmOSNJR/qKzQhMc5x05Gb4FEgaBWTchyQBhsdB5AiTAgHhfQwkWMYMKZYMsrUhQwZmVCDIbAfziAxcQnAo0VxC0JpHJaCAsNJMQoJ5WIKAaAMUkN48LgJizkH8L+S78gv5hUQP4KYAgH8bRP/edNBVmyvpZ4CXv7aC9LNCpkLx9boH5K9tIH5huG3xA6+CgJgCODEpEdyeYrW0aO1osbQ6WhyMc9YS6uoTqY8JxAq9DyIdlD6hw2I/8BQ5K56ZZ4RlZsyzgVPL2yEdidKlrGmgUiUJCX3qHp7/thSyeDvEFRUOTpJNV1GFlPXoAhnzD4cQr8TpkLoaUsKQR0FHUxIYdwtw/CwtXB8sICuQes5Dum0tyZnHYsko77udLKDss7Q4OBhzJ0Quw9X8I5x7xiSh3f4gO/Is3wyJG3JaamLeQsDUJBNATl:z8HG3AyRE0K4CMMWQiok5NdELC4vHDUIWSVwHkLqIYAYnFEzlHuwN1E46pCkRIfUV5azOiTqEi5fk0if8aFpAoEtxK/yH9OK5R68ONpA3Le8aEH0KRwtIHQBIr5WSHG0qRCvbH3yNRFy4WgKcX6dcRNbhYTyNaGE4acgYFfhtIkG0fdgEI6GEEp6dIi+B78SYrAsTd4JCeUODO0gYjFYPcEcpVe2uiYQd3pVn3OInqm7AXLzf1Li7Ci+g1tBRL9wzeF2voMbQeSOedlR7sFtIOhOra3o4rGDdi8DuEYQ0S2pJ1993ZHPxLgsIqAJhJM7220849j7Do4tIENeCbVuOyeE5XzlYzgURZa+BwvrdYhJ.4kce7UHThocihFljuE+HMQqBcSrvph0edzDs0RF0fQiiw4uklHnXJ4KBLrVSoJCUHMiq7Pf0uJ9ct9eWENS5EF9aqsP3ejLJL6DzT9pFDGOQBH67I1mDIdLKf4dv1I5fOx8x7AaXf8YLkK6HvtziAB+KhMiVhdIurxVOdhgUO/8Pzodvr3d1/OZHmiLgPKMYLyeFD7vxmSr6tBbToShhd?qY5QMpsiBfkAiSHz9VtAyYZzgOpS9IIboUhGDNDPQ4JrIwjiXBuby0zpt0g83IV0LLWDpHtcCDJmpyM0B3BrrriTMnDKPufG9ikRV7OrAY1SL0HVvjK4zlpaQExgTV9MO+B6BQWjGuQZgmMYlm/OUE7/rmev5GzFxpHlSQK)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANc)1CAM?ADlL44O)GFBMVEX::u3/yVip9lX2u3qMbU1NUaGhrgvv4d+TT)DUElEQVR4Xt1ZW27EMAgMz9z/xm2jFtkjz7KRVpVi/ixHhgEGsHOguGWmmZ/fInJsIp5/Yuclu8FKvWDtEbDIPXHZgOu8ZKdwmburihzHc+pG2I+oiCxs1qcVDDRd19TJS7xgPY5BvrQ8nhsuyUvWlvtz66APIWGxLFy70OvB9T1f4JKOXm7XB+pvTI7ieqz7RKhlmsvvIXKdqrXmes1U/ZTlmZxeWUKKomeJ1S7jp2bqIYPz9PdUt2n8rGUao7WCZaZ6Fjr4AKJWiPm0EZbJhiy0/dTyjMzcvXYGILUEYFTvika2CokAaKIkso1n2e4GSVEEsEmLen9kZHa4JFchAdAsHlnCvSuT7TbtR1JBnR0s7L6+tKyh14za1F0bAqJTkQN1xLhmFcvqI3dVw4D09DoitE5wdygIo0ODeVc7DpQ7FGKkpMNMgCt8BhSJsMH0QIYq78ozEic0t6Fk4d58BxegVKxxCSaWky5FqnzXlX20iY+RQxdAzwRkGiyJ7jGM6Pp+OOyHXiQU6QQver43OJa6JfHAodCS06UZeplRwnBhkvAch8kG1zLoBRiysL8dDhVxoVEdLsOmyHM8AEcsdRuYi57jdy+yeTbEA1wNeTE+mBssVwSmh3LwrbIhYCwjHnp7+VmT42Xgas3SkNMrOL0wFbhRaOVtegnkBiWsJppLPOcfoRfi6slbjiY4IE0pvaKnlzT0YjvkWs2TpC8b1FFAr493ZWvLBvKzyXFGN46LlL2W2OhCjhh7bE9ewNHRi1yB4bOeXrjZ47J79OpxxHu49HZXRs605OBd+S69TpxnKC7N210ZVfMtDFdPXsRB6aUvcBUs1pXvD70IRAFmQ6++K+NYva4bCpf8D7z0TkicXCpvduWeXvNdxhJxcR5y1bPEcGE3dmPX94degbWzI+d3Ahsygvzbcv3ZEdajUCybx6h7Q2809CLvMazsCX2KQheiRP9w1A+9HAecSfzpiIv/Y6WqUbyJVkcv3pWRXsyf5qeych74xMZVo4SRYH2gKzvPFR91WqaZrd7ndcYlXDX5WVAPTXL8j4ha/ec4uITW/5AZNTB7D8EKtY84dK8tBLvXRgLz9F708k3pFXukIfY1k+1wbVrlpdJwR3ptl4ZfyvlePH52Rk0)ASUVORK5CYII=$/9j/2wBD?cHBwcHBwcH.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.n/wQARCACkAPADACI?RE?hEA/8QAY?B?MBAQEBAQ)))ECAwQFBgcIE?CAgADAwYGDgkFAQ)?AQIDBBESBRMhIjEyQVFSBhQjM0KyNENTYWJxcnOCkZOiwtIVFmOBkqGz4vBEVHSDo7H/2gAMAw?AQAC?A/AP6R))))?B?JzIBABw4zGLDJRitVkl9Ue9Iwh4/ZCNsbqpal0dPJ/i0Exy/SN+pe1x0593kaymfiFvX4vY/spfkMs83x6J2xiowhCMfK7veeU9s/ZnXhcS7XOucdFtfSj+KJ2nlSae0KHHi3XLVl3eXoPSzLxZhbBJw5OjXXvC4K5k5ljLIknMgAgkEEg))))AgAkEEZgEgq2Q2AWIbIzKtglItmRmUzOe+7dVynlqy08M9PpFW8i8YuTyRXE4feOF@aLYdGX4ZHNN46yEq5VVcpcZauT65m9o/s/vf2EfpD4H3v7DNyh3jtjVelDOvXo/wA90OvCYZYfOUnqnl9Ue7E7szxXtL9n9/8AsPTUi0WuYyuruz1z9M6MyUzDUWTLZmLibJlkzPMsmSUaLkoqiSShI)))?IDBVsANkNhso2AWzKtlGyuYBdshsycirkQXSLuRx4x50T+j60DbNnNict1P6PrFJcx00rlwPHbIzNWl2DJdiOfI9dSOeR9HGXA8GSXYeuvjLw4HPieVoOpSNEzkTZrFmiZxSgdaZomc0WbJl0YSNkyxRMuSZMlAgkkq))ACCSGAQyrZLKNgFWyjZMmYyYAbKaijkUb7AC7lm+AzM88irZVmkTRs57s5Qkl8Es5GbkyjOqvnzON1Wdn84kbuf+OJ0MoZtHdGTZju59n8zuTOYupPrIQknI64s1icsWmdES6OaayOiLOiJhFG0WaI5pmyLozTNEWOdkkkEklQ?ADOdkYc7MfG6+1EZosoTfNE6gcvjdfah43X2oakTurO6dTIMI4mEuCyNs8+IzzKuLjzlWYW2wqi5Saiib7oUwlOT4L+Z81ddO+bnJ/EvRRWU9JvRh3dxfRO23aEm2oLSu2XSOR33SebnL9z0kUVwsnpk3HsS6z0txVFcIp/HyiqzlxNrHTQ9CiearbF6cn8b1G8LppcpZm7qg30Uvi5JjKrs+plsmjBzrl6JqpprNMOWRyNuPFcGaRlmv/AKTmNORpmVzBBRm8GQyhfIqUaOuMihZc5GRpFZ8eorkXckXhmdcObM50jpjwRdI5rJZm8XxN0csXmjpizRHLM1RojNGiLGDLEkIkkq?AfKeEsmqKl1b6PqzPjHZxPsPCbzNfz0fVmfEvnIRefPD5s23g3hiCSh04axvG4TL/cVf1IH6rV0Efk2F9mYT/kVf1IH6vV5pEdZf2v8A7DxNpXOy3dZ8mv1iuEwiuhOc88nwjl3u8cNknOyc36UpM+lprVdMILuxMYrVObZ6F7eHoqrj0j56dc6ZuD4NczXX8I76bt5HS+kuf3zqxWHjdHskuMWeKtdc+uMost0GYtrE18elA9XLgzPItXYrILqfWiWjU42mnkzjtjm9S6jGDykuxnZJZ5++cL6yjN6+KyOvI8rb22KNgbIxu2L4OdWEjXKUIyjCU9dkKtMZT5GvleSr9ttPWjzJ+8ebtfY2D25hYYTFO6MK76sTB0XSqkrcPLXVKUehdCuflN3iK7Kt7CFu68mCU2cNHhLs2ezrNp4tWbMorvjh5zx270bycYThKN+GuxGFups3vkr68RZVvfJb3ent0W4fF014nD21X02R1V3UzjbVZHvRthyJwPlNreC2Px2ztkbNp2nZOGCx3jt1uLjHxjEyqlbbhY73DQw9FMMPdLebuvD7q3c0eb8pvPlNq7I8INn+DXgzsunAX23YOeL2jtOzAYvE+Xvw+Gxtu739N2H2jvtp4y3/AE9fkrfsiMkWVjR+t7stpPza7b+1tmbO8DNmV4mHjO0sJibsXtba+Gs8lXgMJ4xbvcLvsPOeJs837I81De+U3m9Omnw9jXsDwb2vjMBZvtrxxL8Wpuw1W7jhY2224mPjl2Hh4tZTVv6t5iPNXUec3hGktvj9BRsn9RwYLF07QweFx9Dk6cVRViKdcZQlu7YwnDVGfLhPRI7oAOWZtDnyOmJzRWTOmJdGMmbI0RnE0RJiyyJIRJJ?AB8j4TeZr+ej6sz4l859t4TvKitvm30fVmfDuccyEXs54fNlgU1x7Rrj2klDowvs3Cf8ir+pA/V6vNI/JsI08bhEv8AcVf1IH61V5tEdZf2v/sPkWsm/jyPq4NShGS5mos+extTqxNnDhN619M9XZ9yspUG+VXw+j6BjXwc0ehjFvaarl/m8OySPNxeG3i1xXLX8z1GZyRs1medGTi80eBXOVbX80ejFxnHUuYpisPwdsV8pfiOSm11y48U+dFE9LyZ0yiroa49I7GuB5cnnKTXbI9K6yManNNPUsonnQi5zjD3yZPqIojwnNnbBZRj8US3E2USMuonIx1GYzJyM5MZFtRzY3BYDaNPi2NwuGxlWcZbrE0V4irVDoS03QsgeDtzwS2Tt6MVerapV4K/Z9Donoqw9GIjonuqJ+QhPkx8pu97yIVearPom+JOYGaIw9cqaKKZWStlXCuDtsUddkoR0apaORrs/ZnVHg80ZI0TSWbaS98ZDUdMWdMUcUbIZrlx+uJ0xurXPOP8UQVafdOlF0c6xFPfh/FE2rshYs4yjJLhnF6iSrTXPE1RJBlZiaKfOW11/LnH8ZJU2BlXdVd5ucJ/IlH8BqAefjtn4fHQULoaoqWpLVKPK+h8o8r9Wdne5P7Sz859KCMi6m0fNfqzs73J/aWfnH6s7O9yf2ln5z6UDIbx92v7M+ep8Hdn1WQsjU1KuUZxe8s4ShLXD0z34rhkWAyI1NnnY/C7+vVFcuHGPv8AwT5+qydNinHPOPBp+rI+wPMxmz43ZzhybOvuzM5w6zsw2IUVubOiXw+LqvS46Z9cPS/vOnJHy1lNlMtM4yj2P0X8mReOKxEFkrJZe/yvXIVuXBl54FS41y5J9I0mjxcXTGqeqLWUvRz5SOd4vEyeTslk+zk+oRGM7JZRUpN/SEpqXMTVhp0vOUjOTeaTby6l2HpYTDuMd5JZOXMuyJrRgdLU7Mm1zR9FHoZFoR62Y4i5NbuBztGbR0NGMjQ5DnkYtHS0ZtEDMwGRpkMgMyEil65C+V+E6EjHEp7uPyvwzIfMXr85A4ovjn2FsyEskQYs9OKKznwyPY2Q26Jt+7S9WB4c3znt7H9j2fPS9WBNfTIxayw32ZjtbaFtUo4PD57+xcXFapQj3Y/DPL2ZgcLj95K6y2V+fKhnp5Pe78zswCVu2cfOfF17xRz6uVCHqFtp4OzC2raWF6Wflo+vLT3PdTc8ki/YcqVvsHbZGyHoyfqyO/ZO0JYuE67OTfV0+GnOPe0nVgsZXjaI2x+nD0oSPFglV4Qy0c1kZOX069frxAPq))AC.AZyhGSaaTXY0c0sBhpPN1R/dqj6h2ghpPnLRnOPRloOBbPwy9rX73KR1RrhBclKK7EtJoMgk@TnLpS1lCuRpkVaJKmMkZNHTkZtAHK0U0nVkUcQDm0jSb6SV?yUTDFLKuPyvwzO5RMMTTO6CjBxTUs+URLmL1tKyDZ47M5Ph77O17OxL5pVZ/HL8hm9lYtvp1Z/Kl+QwcZ909OF1K57DhfMz3djex7PnperA4P0Ri36dX8UvyHsbOwtmEpnCbi25ylyXKUdOmH5S0ItPiUxV1M6coy5R42NU9mbSjj4xe5t6f44/d3h9DTiKMTWp1zjOLXHLq+DKJrbVC6Eq5xjKHdyPBt8HqtWum6yr92vL79czY8w48VCWx8ZHE0uO5tfKpz+7p/pWHRsiq3E4q/adi069Ua/wC35uEd2bUbAw8Ja7rJ3fcz+V6f/oe9GMYRjGK0rLmS0xQBY))))AEENFiACjRDRcjIAzaKtGrQyAMchka5DIAzSLZFsicgCuRZInIlADIkEg))))))?AEAkAFSC4AKAuAChKL?gEg))?:Z%iVBORw0KG;)NSUhEUg?AM8?ABwCAM?ACOw9TN?ABgFBMVEX:/8?AC0tLT/vhr/3IXU1NS5ubkTExP/vx5FRUXe3t41NTUmJiZsbGy1tbX/3orZ2dnFxcX/wyz/wCO9vb3MzMzt7e22trb/4JSoqKj/349WVlb5+fnW1tb/1Wn/4pt4eHj/y0j09PTp6eni4uLR0dFiYmL/5KKDg4P/zlT/9vz/6reMjIzl5eX/xzn/yuubm5v/2HTBwcGSkpL/0V3/2n3+/P/x8fH/6K:7cOwsLD/5qj:fn8/Pz/4/T:v:bhv/+fv/qBz/5Nb:vv/1sr/lHz/x6D/pKf/z/T/jDD/fkL/zZf:Pb/r8L+/v7:v7/oNb/TbD/VrX/hMv/j8:HJf/G5n/2O3/yOf/csL/wOT/icz/LaD/Qan/xOX/6vf/y+j/uuH/ab7/N6X/s97/rNv/z+v/5PT/fcb/0+z/5/X/JJz/lNH/7fj/4fL/pdf/7/f/p9f/9fr/H5r/8vn/9uL/3PD/yen/+Pz/89f/+/7/8Mv/zOr/mtT/x+o1H6di?AL9klEQVR4XtTYZZLkMAyGYV/RGGRopsFFuPrK7a+2s+P8noreGzylREpFrLpULLTbiaU6n1h3iRFxslpi6sRnVu5ZAslkAZQmobV7CBR7FkAdF08MkglADD0ARR6A2HkAijwAsfMAFHkAYueJQP?xM4TgeABiKUHoNgDEDzuHhcPQPDEoM65V9+6PQOlP4KyfNCqAugKwEEprbVaucdQw8cJZYZShHGUPQbAtfQNnDyq/8/j7k+YCSB48hMfz2lv+pkH70tZEoilR5Gin3le4Slty9KjDUAFLQmjAufkFecWHptXfDyDAUgmzkFzIo8HHcW2CvHx7I1vb4R0DprgsdaW11TT1MZx5OMxJuiMBCd47L3z9kyx9CTVg1NVQYPquubncW7GqSw0v30cPU6fwal8Fpg/xJFKKXb7QL/JGWfEaNKjpLTW3Pa1fBEPD+0z0lAHkeoQs3sqv/l7mue5DpzRa+QXIa5kLUsz8PEocMTXkgqeuiaN54h2s9lMk8w5fY8GjsjgGb1HBo5oJ9/znoMHqcCBJ3AUOOIy9dTGMPLoF/HPY8njOQoccen7oigmy8ej34Ds8nzQdeBocMQTaZqmP7P4HwIOumFXe08j0M76QyQlDw848OD0BA46EuZ2e94w8IAz92A8hXh4JGFoY/PwECfygIPaZ8LQjuPgAWfuGckDDjwbwvRFw8FDnNhTYxToMnlNljHwgPPwVN4z4+D+NFn3a7tuDzixB5xHT32RddvDYd0ecGIPODNP0RAnTdftASfyTCLyNNn2sH4PcWIPceK6+3h2nwX4vgR4f19U/PQJnyVOVEGcuJfdsW0vPz7L85cYO2hRHAnDOF5oSqQAY2InBomRqEFCUI;tnQPwy6zx/0404CdD7/vU1WZF53anlv5vwleflR4YjkMHJ5d7GLWQ6S/P5AOj3q5ODyXNL1c1rk3jwu0GzpAt6FJe1wgNXKAvqXkIZA3D4EcHgeou/M4QGo0Oq4fPfnGgDx6GMQegL72MIg9ALk8qVcPg9jDILcHSYfnJVo/eghE+fQwiD0McnuQdHgeQfkeIM8eBrGHQW4Pkg6PBbFnv6E8exjEHga5PQxiD0DHO1C+3WuRZw+D2MMgtwdJh+cOlKstRHvvHoDYwyC3xwVSc3hwQAmD1kqpLeXZwyD2MMjtYRB77AExaD1VOl+ewnQP6gJdcQe60ddm1pMkSfQbaJNE0Qt5AJI5P2+UP09gGjKIPee7E/og4cl6pJTJoE9ZT7pcLiN7QGprQfmG2k+n/j0oYA+KGQQPdfjdE8m99UjjAUj1oBzztl0uPXvGtuDOU/IoWE87e/TMKwkQezRIAWQ8lJLSu4dB7Kl5FOBB9aPnKKm98Uh4NEivAED5llJV5d9ja7Sn5EFA8Qc8uvjBE8ketEkS9hiQ3QOVJL48oWnWFwcNPOOeaUHtR+8pHjyJ1E2FUJP5fD5C8EA0XYtLFEVJ8jxPGYaN6IpZG6DD2IqK8AMe9OCpJKoGEh6AdFOTXK+rqoqoZ3lqwjXwhCF56rEFFUHYuT3QQDeRasKgqU2lSimfnsB44r4WuqyGi0TFWAcP+sozmIwmDCIKd6R8edqFLu4L6EMYlvEpROeZBf3ZQyBkQcvllHuhfHnOiwz1nBK4t2sZl6HuMDMi8jR/8ERTA0LksaKNb0+mO9hOZHt778qypmOiyhlA8HTYg8P/70GUqwmDlrZ0TZ6RR0+QrVDvabPs9V10WbZAYXiaUfB0Ah48d+69rnKhBgbEnmov0pHJm2elK23hijjwWFE7M6BOGE98DpzvU/VNv0+TyIqkhCcV4hIhf55wp+s9q4Y44rbKkBkKgF6F9QzrR8+x54iUXPAgiYgj1nBV/jwL46lNBTjwUEZUAtSIX55Z6/g9Co71DNgDjvEk87kvT/amO5lWPwS67X6BTuRpBHuGJXtMETjsMSDDgQcyj57Vq67Qhe8G2dR1WRhRG8eNYI/rPleBwx4tAucpnl2ja1H2r0VeT3VdmyMKwPnSE+WC79sja9Qc9kwmvjxnbvUuek9xIhHNAy04OLpu7Po/hDm019xW2NKJye/9B+3A6T09iDjsGbPHwWEPc8gz8OtZ9L0xR3RtQSKArsLpcXHgYQ57TN72wIahZs+5bTUIHKeHOZxizvM89O6hud6Bw3WBATHH7WEOe8B5oudVd/1xh7yFGtSJB8+YPcxhD3Oe52lQZzjsWQDEHLeHOewB56meK3WzHPZkBLqJrz3MYQ84z/R8foLz13fx/dNkPatsccf5Sf1Dnr+pn/Awh1PMcXj+o91eVtuIwSgAa1VCV3mArlJKYTbeTXdx3ZBLL/RCKEyhgLKJhhFINkLViGHaV+9/ItmS5cmQ0OYAwgaZXx+6btyHCMcjoN+lyb+PjazLDjYAat6IcRRO1RGgddtKyZX1y+Ax5uzsbGMG5o0xlhI9l5fnrdbOsZiRcvXu6OgtpScAONwJVNd2W/z39fU3jG7Og3RzHqSrJz1G3IyIEI2PnlNwuFIbkzzWGA8PEj2/Ls9le0qeIfOMH+48H+Ehju5jZPKAU3jYs7DXMk/P5zyInvLUYrH1dE299QSOtUFYVRvjKayiABQ95zx4bO65+vT64uLiMzzPX9j+wHO77ic8b54jJ8HTjEk86WkEWjHl4X3wCPJ0KngwPXZDHBtG7mMGj1Rbj+dcSqm1U9Ej4LkRoQRDdOEpR1cm/tT3SPIcdKjv7eAW5NGEgKdNHrYkjyk9AVQFj1FcKksevedZ8ORpdhRfFp/zsMKDyId5Rnhqxmp43JwnJXoseawhj/uy5xFFsboYLiJnPQbtWHrK9dbtg6MXHijgaZLHWnh88qxKz1KRx3h4zJ5nUXjY4zzl/ik9SfgYj1LwDMkzhDZ5Bnj8Eh71/zwpPANSeOnp2JRHlOst91TswJP2j4dnYPC0mcfBM7Pe0ujmPToDznQoPa7PzoPT5OHw+ENPOt+swvnWwuMyjwfn8DwoRzedB74PWIc+k2AODwKPSvcPswQywVNR/PJuZr6m+2ejeLx/XOPT/cN0/8/nNTLnCTV86Zm5TyV5CLRkiEGy1oIzgLP1qMzjM499Io9Ey0vP4Xsnvd9YpQi0yjyYGc927zeviCPJBI/MPExnJfTTeCxaV3rueY86TBBbcQLFnYKwFa26VfxMaTpx8+P9y5Phz+3ten18fLzz+LwE:6T/qXVOPsKyTx/a63j1jphKArg10IdeeaOCc+OEAdBqwikIPO/B/v+X2s5XhujSNhaeoAre8W98yO3ofTvKSTKlckHEk7/rdl0QvgWorWuKnUTU3u7m9k8Nf0fkpSS+tf7J/O8+Mm5hmarVFVpTRLe/u9DmWF7kqR0Ct/uh3O7nAexOQ9iO/EgiedlnvyyzLMx9038iGkEtKwcNjSpg0cXkj718MHj3wHmfz1FmfMgPvEAtHraxblJRHMp9c2eZyk1gTM6ssLZPLf4zYcydeIZio94WEfxtYcVprryPI8M0OQDaXklZEbq75gPQoQz2gGc3VNi11QY88GjEo:kId6eUTPGUydPKKHYsw4Mv8mqkGqCVkQahcfQkjQgGPNdjzb6wtqGVn1tG25ezhS+nO7jCdVJAd87SmOHrYB1BK1OCV5Z0KolQfCwlHCiR6Lo1nLdwePTtvEn57aZT03TH32nPfN7h5snHiUtXaU0s45QhzymDEFOELDK0eBI54OEjNgDse2mW3JeLK/P6nnvMICeveoIJLSzEwI72kIsSHKgFMt4IhHJKL6tCd/v6FKeX2hnz2sQrBv1o6jJ2SMWcS8rtq9CtE/d4+RqxqTE4/DyO1bbJf3eMqfcDFHoIDEM1fBY4geNsRI/Zi7eBQyrFdBo+OrXMToxNNjHO+Dk+fzfx+QDUMlHoqpqxC1pdnrkw/DbR5s2hs4+mW/HnWx55a09cWn72sk6/GYfQQmnm4ESEzcJh6D+UJIhZDcbNGDO+iqLfWJZ/gij8EsL994HbUWEb9RUv+OWW+eQCEOHLd7SjgUs8XTp2V8Usp/jWfAdNdvdL8npbWa6o5Szw/MhRCN0BNu8dVTxKY3kuNQqadPS5Ws0cUNZ89fcGEBkgbGb70)ASUVORK5CYII=!G%iVBORw0KG;)NSUhEUg?ANU?ADACAM?ACkhdaZ?ABgFBMVEX:/8cHBz/kAP/kET/T074/sn/Bwf/vV:sjT/pgz/Jib/qEr/ODf/FwQtLSzVzQ:rq7/XhXFvgsODg3/5LTu/aP/5sP/FRX/+wH/4a3t67H/1azz8br/vLzj3Ank31ra1C749A/+7db:oX:pT:Xj+/+X:VT:Ub:/D:suy/bPp/vz:WD:9nJ/fn:CfB/sD:Wz:sJtbWLj/vvu/vz+::/Bf:Tb:qL:q35:7:reeraqus7Ks/a34/WGj/dy4/bmy/v+n/v/x/v3:AyZ/v7K/bH:/X:Abf/Grn/GaCgWud0dDR/vn8:7j/Haw/eD/+wTn6unU/vjK/Z7l/Yfi36ie7O3d/vv1/v3Z/vr+:4/Pz33/Wzd1z25/az:AD4/Zq2vLvAx8W8tzb:AK4/cbRzXL:/6zrBnb14/GwVKFgCD59WPF/uPk5MSm09P18nfl/FjO09Lb3t7:/vy/r2r7IXz71Dt/Zjo/tzw+ff9/f1RYNb)VTUlEQVR4XtzZ1XJjSRaFYb/LQTEzmpmxmJmbe/DVZ52dmcuplGy5x5LHMf+Fouryi5W1ywov3KrGbVr4qz2udRfmG0l3B1ur1f6PWEShbPdeq9jNUaK656zaStZ24a/Xox4p1P1mPVpdXa2RBdQKWFNQUN0J6zYoshBQZE1GWap693+lOrQbRz0RFFmPVlT/jOPOp8koW7VGwN3jXKWLIouo4+WjVsv/tJAt1EdRT6AiClvdAxJZyKDYSs1GLQsrWy;FlFUEXUfSFQhQTHcCAslrIsfhRFWHShbdR+WooppFF1ESaWLUklYa0RZKqLul4ooZlAZpTovIYtVP7NUd4Z6OtrhhKgiys6gMgq1XBph1Q/uVMWdrheRRZSbQWUUKlGRBZSjmjeroZsiospF/fwzVUAhhYKKrIPsgajAqqXC7PyvRYORNEXlovp9xVIopFBQkfXogKowH4KVnSvLPQOT6+qoOhtBGRZQkqBs1pP.RienSkUVMLaStXr3Xmbbq5yUVQBJWkUVZs/DvLpdKhQokplsyl8zoXlnuzprAbqdg8eDmDAh4MaEqUyqFKpnUZgAQUVSqXkA6w7V3XHSoRA9fuDVfnYH0ENFSpjVEQFOQ8qcPJSKAlrbe1uVTS5KqDQQDxEoQxUgqLKoJ7ncmUfKuSqUjPe6t+nqt91v6neqt6oBoPBm385KqAYUVQBRZVBRVCBZanI2prxUKc3U4HlqCag+AIFRZVBiYosWwXUrFUNp4lP7/FgcJWKKLIUiixBLUZKFQS+QZGVWpi76oojcbWKKLIUiipBxaKyWDgZ80I1Go7qijPxGFs9VuHPT1zV/oatKhyPqs5Lm4txrLdKWO28jqjZmlyVS3JV0sGKURG1YbFW+P+wRi1vRjFUhhVYrPmgXNXEnZCtKjx8a1REIQtlWES1YgSUUXmGNUPUH1tbW4Ki6pqljGXQJ6r/xqj2iUJEkUWUVpHlkTVTVD5lq1xT3gsqJFFFFFUPN/YTFNMosgyKKj5BsGaLSgGVwvYNV0VUOiiXc22iqBLURh8qgA+BAmQ/QTGNIguol3ELCYpXkKzZofJbqRRUhkUVp0oHiSrXhsFVrRUA6PffdpGgnDSK30cSVLElrIhPMFBjgRXODIXVlSodjquIgipqu6o1QYG1AlT4t+HSGEqdDLIEBZX7BDWrNzuUUSVfCaiyn98ve3tKZbEA6vcFJUEVdoZDsoiyD/zxh/MPQCGNUmOV5V4gz/cqs0OJCigUikpMRHmXqui1gCSo6gVuAhRUZBGFiMocvcxERaWK7SuoWT7WqswKZasqeaWiCddPqXKiin2YqALKqICCyrCIkohq7mbilt7KqHKXxz3wZsNKpSWqKpVK/lCriPq4V63uVfeUKvYt1QY77igVWUQhoprNXRxAreJYmuUFAVm3RVGlUWCdno4sRVWEYs2qI0u1tCkqsogi63i4A5RmRXFr/LiXA7JmgKKqIvV6P50aE1Ao+KUqL1Ch4pYPkVIRNaSKLKAYUcKKFl9uCgsojoUre2tWo0EUVcqEHvxElJ+gRJW7VLU8oyKKKrJWN2zV0nBnfd2wlpc/LCvWIn/GDbDWbVmNpDA9ruqJ6kGaKEsVUSWsbBYqjaKKLEExQUHlsBZLm3osvASyArL+C1SqcpmoDKrz4EEnrVAylahyt;soKAqKBQ66qBfqTpfGkeRVVSsaLFU0qxylLs1qyGlR1RhCJKYOlC12+luNwTKqKr2A0RFT1TZgkbtFDto27B2sNY4iqqj5YSFNGsRa5El/XVWQ1WxCpEeSqvAahtUuVytfgfKVoGVqGqFpUyiWFeqE8XaeQ/ekouiCijNKqHNRaDIousGrIaLQmGvp0jgGFUnqZ2ofL/ie1TtVVH09+qzZ+9iQSFPVK93MwnKqMBKUO/JIkpSqExmhHURxzaLrt6n6SePKJbvMaXqKFSi8lGbqPJ3sPai6OvXb8/0VCjo92t/Jpd6d/1SBQ5QZAlqe3vbqAQFFVmCIgvZrKc3VBFFFlU9bUpUfpLnA6VUvBUvLFXzXb/WajZBslUSWQoFFVk7QFmsBEUWXehaFi0uCh3mXVVb+vJFUJ7nu6i4+s2;Pr8rta8QkVWRlDWWC+pEtYFlp/IQtewiCHKZnVUotIm34cKJhT4QNmqatWaqvn5c/BaUFTZqFfCOhKTNdZuxmb9Q6Yfm4uwK1nUEGWx0pcqoqDiofBGUc9evEhQVDWDwFadjKrA2mmdnIyqwKIKS0UOi66pLMN52pjIAocqH0GlUcKy/1EhsCwVWbbq1SulkopQXcU6KhbJclyUdZ5O/UX8GArf3mGBKp/vJCSqeCi8nPNjBVGiaj4PJqtAk06KroosoMZZBsbAul6FbBLSrDwyKM+DiqhyLiBqkmp9/flzoLbHVVNZQLksFLGpLKImsqgSk6hA4qEIJqKoAosqYbgqsKgiS1BkGRdh7DqWoJjLqvhG5UkfP9qoXFQeUf2nmrv5jeJI4zjudxtjIEACec/umhmPR7HT8oQwdmeUG5bwZZEQFwx4BSxoFyV7DFL++P11dU1/x88zXTOqg2V/Txa3j55STb9U41RiWZVAqCyrvsnSjfEEq/dgNPD1Y902lTmxgyqwgkoeVDJFlEgHHhVVMgUWKnmiCtZJYYalbt28JVZs58EIla2VFVGo1OQTl12p4qC0+KQ6hxKrQTlVZBmVUKjEOrSsW4uLi7CKwQgW0VSWR1F4pSZW8xslVTRFlCa1Z1BRdRw7OdsuVVyATQwrsFAFFKz3r7/tj4Lr639/Oz8rjZLqaTfezEeVQYkFyqs0h+39hMqxbi3ejaxhhbp5851YWha/v3798w/jXeI/P/+wR1PO6qZRUon1oCZp7Uk1NrH91SxQRlX0xTIoqRgWLLV49y6s94tSidUTT+l3PiTh63/16IFjQSJMUqlBNFWqPYsSaCegWlWlWKj8sMRCdecurI+V7p1Ye0LBei/UDNYM1GmlOi1rk1S/n+/9RB8VNSipxELlh9XG+mMxqNTHm+P+VqOUhORYaVStOi3jJvE/WJhA0d/Pqcr9M1TzsxrV65uw3kdfmvUIlDdF1ePHJZsEi489veix/FSzAdYqdXYGyqrSrN9+k2oR1qTQsVA9AgULlZBSPS7bTULVLFBO9UEsQHZYnoXrN/VaOmBzsBInrE5RrXYOtgPq+sq6R4V600aFSqw3OSxUyrMK;WKQI1Vj1f34qXs8srKyjomUKpnUEYFy6mmsxQqSrFQOdbYhCqgdHEkVNUGKEyaVG8q6tlY9SaDdReVArY4lbXdsOw5A4N6LOBuJ6DCpCJLJqMaqsOUSogc1t1KdXPRxD8YVosqNkZJtds/qEygtrY2MIEKLI9CBQtVmoUqkWGhguVUQvUPQMmkxHKoyAJlVRksVEnWkMTyKkxjlVC1ahlTZBUOJZYdVVQJNS+rcd1BJV2Cdcux/KgYlFrtR9X1iILlUer40I7qA6oMFqqquVmJ9Veh9vqqulFcMYUNnj2edgpTr1Qo5mApWLWK5mKBUh5VqQZV976zfT46XxkblD5UsFB5loosVKYUC9VUFKrZrBJWQpVkKVgngYWKgGGcYB0fSaXs+gO1Uwo1HwuCgKbtN2kWLliqYqFKd+u4qUBVBUosoaTaKwdpFijHAjWE4Fh+XLAE+zqqPs7HQvUUFZPq8xxpvClsbIU26RpjJy2eot7U4wQAzGDhKhpWKZZU3x/fmpvVb1QigapcHa+qWZt0/75YXqUKj5qfpWCVYt0U6nhuVrmw0Lb+atUOKqGWt5YNSixMoFQhFKq5WbjGrFKs19+LNy9rtIAKVFQN4qwYlUhbt40qsjBx+QdqJsu7YJVqLJyDJVSrqjpkVdYqBUosowosawrLr0igEixcGjeqBGtxkiUUKoeKLFRCVW3eNiixQMGSpwA1k4WLxFJR5Vh/NJI7E9bFhZAZVe2KB+KOUAkVVWKBggUqJI9YoDJYqkBlWXf4a9L6bqpKoRKrVoGSSixUsDCpuFUUqBKshEvjDirpYEUKf8F69yiqBPKqgNJ5pKOgAiVVZKHyLHb1AkGK5V2woioWBaI0f2EVaqYKVk/3VpYlFK2t1azG1LyEy2IJBiuoKmAju7V4JxL1F9tjQEXV0+SsImvFqCrWOZRYflICZLNwjcYqhY2KxiqUiipYoFD9+FaqdaMSCxWsqAKVzwJWjlBNLZJLiVCBUl718KFYvXWjEsugxDphV0eVxSKpyoFTeZZQaZUSStWomrXRsDZhoYIlFKp8FpViSZXqcFgMHlmVR6GCZYd1XyxUsNgqslhepXoaWqoOhw/SKlCB1YO1.sVrGdZrLSqGI87zUIFClYcFawXgWVVbaxAQpXPQmXHnWAlVQqVptWbygIF6wOqXJZXiZUusJwKEz/CoF68gIVqKusZqmyWV83F8iq/W8CSCpZCJRYqWJjoMIOFai5WhgpWUMGKKlgRZTrWMJL9Bcur5mWh8puFMirDQiUWKlgeMPxpBmv4HJZTzclKXluYTTC6XkYWqnaWB3zx0wxW8RyWU83PSv9eKatqYwllWX59/aSSrE/PYTlV7HAmy6jMEpymCqzDDatKs0ClWV8IJVZaNezMYB1ZVXpYUq3q+TQsVGKtOZZDwUqgXr48S6qK0xmsYa2yT9kti2F9qu4f374NDzulSrNuWBSsBEoqsRKqwekMVrGACpRVMa1Pe5VKrOWVjQ2j8qwli4KVRBmWUZVaR78mWQNU7Zs7Kr1L4BGGZ60FFqgvP1gUrBRKvYCFCtSvKVb5yD5jciyGJdRBczphK7CsqmaBQgXKszxKKlioIkoqWAQKlVxJlVo9qFVCrUSWUYkFqroV8ShYaRQsVGOUVLA8ClXLSzk2DKHi5zv1O++tNEuoApVD/VOdpVEPH545FShYHoVKKFSwUAnV6QRV8yIfFiqxmkmJBQpQCBaoYAIlllEJhQqWQSVU+gK1e461Gj+LiyhYRiVWQMVn7KDQwAJlTEKNWahAwUqg/Nvu8BXjJGt1/GXIeiVCtRlYqALrxtIz3QwHVoWCYXp+BuqlQ0UWqvKxUT192rGohEqoAaxKFc99SyVPisUtfmAdHhdftIhCZwElEiZQ6sczVCODk;WqFaVll/DeqyEkqpmrVuVWFYlVlCps6kc+ms4/ORMoH4UK6q6p35UsEBZVaw6ihVVkSVUYE1dghULVWxprHojFhoXIEyTKHVQq7rav+yoYFmUVwl1ntU9CiolFawtWNeMSqyx6s0ZBkKUNKlffqlYQqECBSugnEqBMix9+8ewHGuzjfUBVtIDCRMo9eC46ErhRgULVItqd79vWVKJxffpe+tWBcs8uZAKFggjwuRRShtWpbAoOuJhNCip6gJq37BKfXrFsIKqZqFS165Z1Q1eipxBsCJI1gRqpgqRVymhQqgCqy8WqjFLKlj3IwvVEipYHoTIm2pUVGlzJjBe41RChbq7dd26J7tdUQEre5zps88+:yzyb7ZHqKCBQcSYQIVkoPwICKnemJQhoUKFqr?lWW26jEgmFAloQJ1GkOagFUSBzHssMa3DMqsb4CVSpUsIxnPtNptkp1p6t;YKFCpZQqGCBSZAwgYI1PwqVCqon4jSAuBN2++d2Qn63FIem60c0y0UvqAwrLfImUMFFibl51ZMx64lYMkGqvsXfH4xF41tinkxznOlauFw6KYwKVkIEyZg8Kq3CVdn+fDLOLUFxKylLcFDu9cQyKrFuLB0fGxWslAgSpmwUpVn7YqFSRz1Y5pSWV8HCY0mY/KDSqLTKsIwqsFANeso9wl0Ty6tgwSBEkDB5FM1CwfIqWF2r4hEu5368ijoJECRjykQFKFtGpRKiAnA5GK5x9wfx/yBpVGIZlVheBcuC0qQ0arYKVlCBwqRNsD8Km3qnUYllVGJ5FXXgeJE3ZaFQwUqpIguVzqzeNiqxvIo6CREkTCnUbBWsqm6Lant1NFbtxIO4m2KhCm14Fb3FQ5Aw5aNQ0Z/Myqs6/dGEajmeVzWqza8SqiEeJ4KUMCVRZNVidVtVnX7ZqISSSiyr+uyrdlWREGHKQaVVmlZC1Vkto2qZg51WJVab6pPzpEmYQM1WwaI/9xOqg8EoqPTCh4OdRiVWi6rEkyZhykKhoicp1UG/K9XySlTBQqWuTVWVCJIkTFmoqJqQBeVuStXZ7fbvraAKZ+qsai2wZqEQZZhApVjIxZquir/Cu93vjEosowqs2ShA3pSNgiUKKrFSqn73HwGFSiyjCqw0CgBhykVR4EyqxAJVCqVQibVuVGJZlVgehSfbND8qhkqslGowWjcqsazqhlSg0MxJykd5FsquX4BRJW8vslCJZVRLE6oSQA4J02wUeZXqBlSLqmKh;VquYOqzCJhykIprxJrmmovqsSyqrXbqHTkotMBlSHClIPChQrWGOVVhxXLnSSJqnCOZMwqM0CY8lDUqGAxKiXUpEosf+QiqsL7g8gqs0WY8lGoqDs5Kqs6LNf9kYug+ia+FOk8GBaDDE++yZNQ0b5THQgVVWL5IxebQjV3Ip08DqZ8FC5UsMzLRlSqEMsduRjfXwkFC0wGKQdFXqUm3+I7VVFeZwu098JvAgtAFinfREHlWdtedVirxLIqZgUrm+RRWYGCxcuQPakGjapQYlmVWKhgZYsIU74K1sSodqxKLKMSCxWsXBFlg4LK1ec1j1MNhzULlVpCBStPRNlDQmVYAYVKKFRiWRU3jbDyQJjya1O96kfVjlcFllVx0wjLey6ABM2jXr3qVyhU5v8XPboulLkXxgQLzoWZyKPEqlE7ewM1OarIsqq1JcNCc5EmH6qqQUp1HFmoHOvVZTB53EAoVAGFSiyj8qzLQwIlllOBalioPOtSkEDB6gWVGxUsVBksSBdggtVLqMRClcOCdCEoGo1VoFCJhSqDheiCTLB2rArUyYlYqNKsixeB8g3UqEEZlVio0qyLB0HyLeg5YbtKLFRJFqCLKr3w9UDNolCdlPeiiq55Fp5LgZJKrLZRqaJ7z6puuO9E6dKoxGof1bOiFGvNL0EaArg0sOAuW0cllVii0O0v7Xeil7XSoVCJdd2jqL9weVktCzCoRv+F5VDlwiWudChUgwWxrhQKVrtqd0Gsq4aC5VEfpOrKLNZVQ8E69qqACqwbS1cKBcuipBIqsjpvrhKKjtyonrFvwwJ1dVig1?ULFBXiYUKFCxQV4kF6gQULFBXi3VSB8qwQF2hRkWMjcKwQF2humWoKwPBqr4TBXCVWKCufrBGg91LBPg/FuzOrcE6YDM)ASUVORK5CYII=$/9j/4?QSkZJRgABAQ?AQAB?D/2wCE?YEBAQFBAYFBQYJBgUG.sIBgYICwwKCgsKCgwQDAwMDAwMEAwODxAPDgwTExQUExMcGxsbHB8fHx8fHx8fHx8BBwcHDQwNGBAQGBoVERUaHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fH:BABEIAJ8BDgMAEQABEQECEQH/xACY?EBAQEBAQEBAQ))?AQIDBAUGBwgQ?EDAgQDAwYHDAkFAQ)I?QMEEgUREyEGIjEUQVEHFSMkMmFCcXJ0gZKyCDM0UlNVkZOxtNHTJSZDVGKCoaKzFjVzg8HSEQE?QMCBAMGBQIH))AgEREgMhEzFBYSJRcQQUMoGhwUJSkbHR4fAzQ1NictLx/9oADAM?AEBAgEAPwD/AFSgICAgICAgICAgICAgICAgICAgKXBBFAQM0DNAfoolWVlBW4qKM6oqqiAgIKtAgICAgICAgICAgICAgICAgKXEQFAQRRBQEBBCUqiLKCqqqDKjSt1FVEBBVoEBAUBAQFQQEBQFQQEBAUBAQRQEBS6JmgmaiJmpcVAfoghKCKI+HLxvwvDxfBwfJW28RVMD1UNDpTc0ORc2rZpf2ZbOWamf7mz43lU8pT8BYbhdb5t85ecq6Og09bQs1BIr89OW7Kzpk3xrGtrYdO7MpP267tqqoyCqqIKtAgICgICAgZsgICAgZsgZsgZsgmbIGagIhmyhdLmTIS5lMhHJllLs3MsJdL2UR/JvLxxZxjgtVwhScMYl5tnxfEHpJzKMJQK4oxC+8S5efe1eb2jU79GNR+c4lxjyteTLiDh7E8b4rHibAMXrQosTppKSKm0nkyzeOzPoNxC7OO7bjkpKdYf+pyf0Tym4dxPV9lmwvjqLgvDoxMKs5aanm1pCys9JMcVlu/wl11Z/mq1J/OvJnx7xTQ+V3/out4xp+OcDrqEqmnxSAYPRTAzk43QlJk+QOzi5l1F9t1mM8ZdU6vzXE/DPHtR90tHS0fFXZcTq6Sepw3E+yxn2WjMpyCk0/h2By39XzzWP+yfy/T/dEUONU/k94Poq7EGxHGIcWgCfESjaNpZdGVtR4x2bfuZc9X4aX/LJJfy9fGOI+Vbydz4TxFinFwY9hdXXBS4lQdiip4wExI307HIvYAsnbJ82bPPdXUlOHivclem7+6XivpO9xjFXOircyuVAuZMqF2lpRAQEEUBERQFBEuglwS4lyyXL2UzLpemaLemalzLRdc2QZuWEujkspdLlC6XKF0J/eojmuWTL+KfdIVZ0tbwNWBBJVHS4rrdmha6SSwoisBvxi7l59dib5XGNfxR5Wca4ewaj4XxLB8Ew6vCtxSvxSF4Pve1od2dl2zPm7u3RlnPJObflowjEY/Ktw/xLifD1VxTwjTURwSYfTRPUadR6T2ovZ3vjfMtiyy+CtZ81fIwKKvh8teAcT4dwFX8P8O1EL4doR0cdPZJLeHaJo4/vQ+l5rlniI/R+UQMe4d8tWDccwYJXY1g/m4qOfzfFrSxy+m+D/wCwfDv8Ez/uo9nloixrirg7hSsw7Bq/WPE4Kmeg7PIVTAGnJnrxgxOFvfmpqeL9JJ/V9P7ozB8YxfgmgpsJoajEKgMTikOGliOY7OzzjdbGxPbmTNn716NfxRdJ8n9YXqdBBpbUVGjktdtn332y7vjWpTtW1lqw8pfky/2/xWOLXyr9Ey7NRyMY9Hbd2yf3Pl3LUJ5Uut7tLajug5FNzOIgRWvltl4Z97t4rzy1t60pSv0/ljJnWP8AJl/t/ipxq/lr9P5TKvkmuf5Iv0j/APpZ49fy1+iZ9gZ7jYLCF3Z3bPLuybud/FWOtetq0r9Fydbl1auhEolavnV+KdlnigGnlqZZRM7Ynj9mNxZ95DjbrIy8urr4sSm8/nqq/NlV9am/nLj70xxEfHKv811X1qX+ep736nFYLiKSPT1sNqoo5JI4dUnprRKUxjHNgmIsriboyvvfY4j7QmvZm6tLS3eLE8RChpXqCjObnjjGOO24ilkGMfbcB9o26uuGpq4sSk8Pnyr/ADVV/Wpf5683vXZz4i+eqr811X1qX+ep7z2OIj43V/mqr+tS/wA9Pee1TiPbQ10dbQ09XExDFUxhKAllcwyCxMz5Pln9K7R1GsnVB+H8o3AtdxTiHDdVTVEUHmSvGsm1bucRICtG1uvJ3rz6v8sP2BmueSORyOuOdWGNVc+IjYSOumavRGS9UHR6Iy3ZevTk6xdc13bVUFRpbUNvSD8l/wBrJL4qelfsdRQZgbk/zF9p1nR5fOv7pHk6rs2ySxJHmAueX5bfYFeWPOXr9qOXWrVy1krNyxkjFz9oD5BftFYy8dPSv2Tq73L0N3ZIlhKvkVr/ANM0nzap+3AvB7R0cZuly8mTmxesZMvDixeqxfO6P96iVgPvxmvrQm9Lo5Lq0+TxC/qAfOqP96iXk9oc58m14HFM/eoFyZI58OF/V/DPmsH/ABivdpS8NHZ9JdWmCXNlzJcmXKQHXCcdmXOxcWLOgD711g27gvU3R3jXqg6Oors3RvNdGlVBUbMCua126O27Z9cve3guk41vdqzDhN+MP1X/AIrnhPzp+n9Wd2oxcB697v4dXzWtOONFjs0uisG+65TSrxiXpJ/lt9gV4st5ev2cetWrmTIS9lnMZubXD5BftFTKmVPSqdXW5dm0ImWckfJrS/pil+b1H24F4Nfm4zauXkcnEpFEeLE5PVovnVJ+8xor70Um3Ve/Tm7Rdr16G7vmY8XqQfOaX95jXm12J8mtRl4nG7BSKIzq+9BnAJP6Ew/5tD/xsvRDU2dMn1BkHxXpjqOmSuYK5F6MO4+KwjJu3isSRlYZa2W2nQXFddmnQCbNl2hJp1Zd22xXSLTa2pkqrsvQ0iyIoiKDmfV1ynzZfOeohCecTkESvZ+YmZ8tMfFfPlOmVd+v2cNr1XtVN+WD6yxnHsidpp/yofWZTOPnQQJYzqBsNi5S72fvFIypl+v2Or0Ls0ncoPiYtV0tLi1IdTNHAHZ6j74TB8OD8Z23Xi13GbzljeC/nCm/XRrzObieN4N+cKb9dGg81ZiuGTRwxQVkEspVVLbGEgEX4RH03QfqIl6NN0d89l6nR8viKSOPDmk@gjCopbjJ+nrMebu79Fw1mJ8njLGcI/v9P8ArQ/ivI5MFi2F/wB9g/Wggz52wvP8Ng/Wh/FB68E/7NQf+CL7Cqvpiu7dGltRQR0BRFWlaWldIn52XbTai9Ar1urYro1RtnXRpVR1XdtFERZqiKI5l1XFKuRLiwwubLKw;CCIMELrmzZyIFwwYciiXHhs4oMO6nDTF3AF6IwdHTLZdmmViSVcjBcJwYcSjXBizIxIWdbOVbVsV0aVaURB0UURVpVZaorpH7S66bUXoHuXri6NrbTYro1RpbV1XdsSyIsiZKWSzmQ7rlLmjJAueLNWHBYwRNNZTFNNThoaScOgmmynDGdNYwoiaQpwkxR4RWeCmKaI+9TgmLNqwllVEUKs5LmjFqwylqgpdE@kgICC77KjWiXiy3wqri00Re5a4S4q0Re5a4S4ukcRXN0XWGnW7WLswOvTg6NsDrS2atW1s0tq6ru2igIiKDBdXXKXNmrDrCITiAuRcoi3NnszMyyjxU2K09SQaUc9kn3uV4ZGB28bnbp73XCOvSXSXrZjPtV6KmohpoxknKwCMI7v8AEZMI/Fu666nhaWplip6eWole2KECkkLwEWzd/wBCT8Nxyo6gqqHV7PLT7+xNbc+2bFykWzrnpyz6V+aRdJXaOM5CztBnL6Ms1ZdewlOYTwRzhnZKLGP+Zk+KwxT1MVRJUBHndSyaMvyrBP7Jssw8V/VHVXFXjrqqKjpZ6ufPRgApJLRcshBt8mbd9l5p9XPk6RkMgCYOxAbMQFtk/g7IPn0mMx1cEtRHS1HZ439HLYPpt3HOIRIjdvjFly4narOV3pepj7Y1Jvq6by9NrWJh/a6vU6ulr+Cg5yyRwxHLKTBHGLmZ/wCEW3zWeSK78re:wCrPRKsSSxxRHLKTBHGLkZf4ct3f4lBtssm/SqGSDQtzN8a1HmruvU6KqqrQ2Dcy6Qadcl2baW1VaFydVXRdmhQRQR1EYLquckRZR87iO/zBiVntdml+w68/tX+HX0Y1Phq+hHZpjZlZk1vhllsu8LWp5NdNnmnoXqqOppao9QJ7x5WtcQL2WbLvHxXLhVlGtJVZx2rSr4lfVy1fBOKdoJxrKSmqIau1/7WAHd32+DI2RfJdefLLRrdj8FXWsCSCLCcPjqJhjxCosmn1C1GEaeSWwT6jc8bNssY+GEd/EnlvzInkpazFcM1pJ6aKiiqY9YylMCleYCFzJ7nZ9JnbN1fhzjvLwnnTs5iUlTHgGHa0sEFTRlNKUJvGRaMcTCF48zZ6t2z9yv+nG9f7ofleWKaXDcM4j7KUhyQVrBGZFqSc9PT810r7u12fM/xrn8GlP8A5JyjX1erC2xSLE29WrYaA4jeft08Mz6zEOm8dk0xNmznm2zdFY5Rl+L51N79Xm4XhqZaFq6srp6w6kTHRlcdIAvfIRER3+Mnd/oXm0uXNiLHDcmhHXcOymQlhr2UpZ8z0czP2cmdvxGuj/yZppy5xI+T5uF30HAT1cFTPqlAJDfIRWc7+xn7PvXP/LZ/C+8Uv9aI/mJ/8wLr+P5NdXxMJrcZrIaDEYqau1amSM6g5JoOzaJlzs0Wrm1g9Mo2Lbdco5d2d32OJ+bh7EuZwtppj5X/ABQf/R+9a1OSycqsSo8EeaKpO+C2f0pkV2zej7+UumTeOy5/hZeOonkreFMUrZZDE5Iag9HN/Q6QkzRP72t5/F8+5PM5vu4dTaFKI6kktzMXpSc8tmbJnfuXaDdOT0KjQNzN8a3FaO69To2wbdV0waa0/etYK0Ac3VbhDdXRhXbFtq1aLGStlaVsKtqICCLKMus2Rlc0ZIWJnHJrcst+js6yVfPpsBoKaYJISqBGN/Rw9oneEfc0TnZl7sslwj7PGPn+rnw6PZBTw09+iNuoZSnu+5m+ZPv4uukYY3beebCqCUK0JIuXEQ06zmJmMbNPudsns2zbf9Czw47/AO5Mefdquw6jraXs1QJaYuJR2GUZgQ+yQGDiQu3izqcKMo0ijnQ4NQUUM0UWofafwiWaWSaQ9rWukkIj2bpvspDRjG/cxZrMDw2qpaanMZIxpMuyyQyyRSx8tnLIBCe47Pvuk9GMrdhmHA8Kp6OqpAhcqetJyqhlM5dS4Bje4pCItxBm6qcKGNY2TFwosHpa.pIZaqTlt9PVVE49W+BKZj9OWa8uGPWrmlPTQUkA01OOnBHnYGb+L97vn1Xkl2cquT0VN29sQs9bGJ4NS4vvdzHbbnb7XTNtt8urrmjk2FYf5s816PqNtmjcX2s7v8AVRHoang7W1XZ6wMbw35v7FzF4rbV3kgwDDoKrtMJVEfO8mgFTOMFxPv6G/T9+WWSDu9BR+t+ib15/Wt35/RtF4/iCzbLCPNHg9DDTBB6WWKOUZg15pZeYfZ9si2HuHpnus9EemOho/WfRt65+Ejm9p8tmdueXs7Pl1W4K64dh8FDDowlKcef9tLJM/Rts5CJ2ZvBl6IRbezJdGlFuZlpaO69LboLcrLtHk20tDQNzLcGqOi6tCoqqiCrQICAoMrKMusoiwiLIiIKCKIICDJLKORgvOxWjzHHu68c9NzY01z4bKaTqcKqYrpLXDXFrTdawVzsXPBlg43t+lc5QRqMFqER3EV6cXR0XXFtRZajzKOzCvQ26CurVGltpR6rXVW10VVVEBBVoEBAUEUEURHZRLJksiLKIsiKJYQsICFmbFnFHJ43zXHhsppe5lnhJi5VLFHTnILNdly+Gb7NmuWtHGFWZcrgwnG3MRSbs3Rts3y+Czbbq8KvqY1ZF5PTATekjzce7MX3H+H0LG/ip1TzcKd5dKK4SklkC/qLbbZ9Pj2XGN9tr3Z3Qj2Y8n09Njty3zd1if2uyCcgHJqC/KwWjt1J3bqkb77eQ7DNy+w5Ffp2jl4Xdc8ui7xn262bdY9TWOMm3yYg+T0dvoddYZZV2a3vZiOpK2L0ZHcDydzbM7Z/tWI6tbU2ryumT0DIW/I/s37u27OvTHUr5dLujcc7FHdl8KzZ2ds39/0rcNbw8utlz2XX6cve7bu3weu6vG25da/QybGRtLU39l39/RdYz8OXZrpdXnyd+V+XK4tu9a43byXJdbnYbX9qzu65Zpxt+XWxlu6ru2ICoICAoIoCApVEUEdRGVlBQFcQTEExBMRFgRRLMywjLGUZtyk2T5dfoWZ6dJUqmN6WZGE7eaYi3HfIc+V8+5u/vUjp18zHupQAUjSZvda4bd7P4/ErLSpf5GN6sdkH0dhuGmNl2zu47dc29yx7vTbflSyYI9FDZbv7Gn17m7/jWfdI2+Vk4dDsgldcZERW+G1j5tlkye789/Iwb0ByDd+Qrs2ybfLLub3rfCpt63XFoomIwPN7gz+lnbJ2dbwpejXViOkjCzryg8fd0fJ/DrssQ9n/AGszhR0OmAm6v7LD+h82XSXs8bfJrCiHAVhbud5MR+zntl06N3N1Uno1xrzrvS/JMNmghLa7ltd9PYc7XZurNsrDSrbf5clxbkjLTIRfqNrM+zb966ThWsa0p5Wa6M6L3lu9nL0y3yU4Nb1+SY7s6cjTObDzETZvy5W7N8royxw5UnWtKb1r25Jat7vQvW6CAgICAoIoCAgICIigKBkqGSBkgZIIs2Qy9yCZe5QLXQGZBVbCEoVRZQQVVVWhVpVVUQVUFQQEBAQEBAUEQFAQEBAQEBAQEBARBAUsCoKAqIXRQRZQQFbCqqqqiAgqoKggICAgICAgICgICCKAgqoICAgICAgICAgII6iIsggKggqqiAgqoKggICD/2Q==%iVBORw0KG;)NSUhEUg?AL4?AB/C)AB0qydQ?ADaUlEQVR4Xu3aPY6jMBiA4b2YSw7AHbiCr+BuWqppOQC1W2o6KjoqChMhK0JW/Lewwy6bITNjQhI+S34L6qdAnw32L+t1HvGNVvIihBjOnPcnxrgAzTdaX3HXnUc+JK5acb/vcjB/8g7DxO3YHfFD+aJj++qO5Au2uwP5knnN537zO7/5LPADP/ADP/ADP/Cf/1Wi5JiXfCOnfOVr6TPfSK/52m++8oMf+A1NCRojJK+849cELVHf+HWMPOa3MfKZT5HX/MRrfoOu82zyVGgOl9VU6xe/QHONl8sWRXPsQH7gN37zE0pTkiDq3+Txf+6HVTfsefbvODPv9vsYLZECOn9dkZEYxSSlZRs+1V/LD/zAD/zAN0YruVx76vgFNN9c3dnr2LoBKN8IfmIOXUDy9Ym5xSHyjauedRD5gjkHkd8/mG/kwNumKmn+/oaTOIpw+Uw+28tXgrOmLos8eyMjF61LAfJ5kaUEJzFyqITG1+9oQxgan6AtRY/kd/v5FdrWI/l8Px8fyJf7+dFxfGH389FR/E7YI/n9feie82EQ4qKs/ZFfU0oIyYpn8IUb99TzD/BIllOL94pvzGdjGqO57Al8yR24q9Z8o+Y+G9FS/QS+FP1f7vk214WvlQOfPoO/bjtfq6/5CckojSHzjfqazxqakQRB5utv+MV9L0+c5nle0KP5DfqJb8bWQMKmqqP5dALgltyanEarqREAmx/jmwfcMwAyv5wB9/IxIUfy23gPv22nR/5wvnLlszqdxkhR54SW2/hL6aP52pm/bju/fTBf25fyGX4kX2n7In47n2hmu/lKaa2NMXbqVfxqXupyB74b98X83IG/cNdekHzlwAXBr29Ozr3iAyaPv/waec0nEPm9I79NEUT++Ts+rqqqYaypiixGEPmny4rv0LP5vateSIh84WTnQkuQfMXZuuU32EXpj5XSAOUr0f/jDmIES/Vff+iQ+evg8AM/8CO/+dhvfgWMH23SYwOMj7foU22B8SsXdpRgkmZFby00vkxvcePR+57RoqwbxoWxcwfytb3Nl2USoYmbZvnEbftByOsA8LVd8R2CwtcWJN98a54zxliYfGv0De6cXQLKnzRfc+HzHQv87QV+4CvrNV97zVcWFt+qbWeZ0Ph60+kgOL5VrlyYfGv0zD223xRtmukE6q2r)AElFTkSuQmCC$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAHcA4AMAIgABEQECEQH/xA.?ABBQEB))))AQIDBAUGBx?AQQ?wQD.wEDAc)?gABAwQFERIGExQhIjFRMkFCUmFxgZGhFSMkM2Jyc4KisbLhNFSSlBYlJjU2Q0RjZGWz03SDhKPC0dQR?IC?QG?YDAQ))ABAhEDEiExIkFRYXGRBBNCUoGh0eHw8f/a?wD?ABAQIBAD8A9pxjE7FeSvhmGCEmKXdW53meiKIMt5Zl+SGrk3hE7N5ow2aqd3iNizfseHNLPKA/UihIIw9AqDZ74ffxbHT/AK2wVGp/w9P3v7U28L1LoU5vLsMis3E9U9lyrqYU8eH7KU570XEy7zRHDUOzNY3kpPpjjhGxJJpIy/PqTK+A2b48VtHalmsH0uCrzSQ1YfkDuXApH7SN3zfqZk2w3ultfWqk/wAHwatxhhl/abLlBD6QjCR/rerokrbVdXq3zEjFNvThTpLl3Zy+KVS2Zg92cLnm4W.OPpTTHNEUBEwSGG/I92UbdPo5Ny6l0xmMYFIb9EGciWFtr/Rm7X/AFvd1PrWJQg/81JtdKcez9yGI9E13TRh+fbMaw+reIrMo3u3V+gvK51sop17MTZorUF3C708sxhtBVsWZd9KZ6Jd4NqEQAi0h7zIQ9FvBXbLntoYQo1MKuxD0MLuVvqxS/Aj+xMru0lySjgOIWYW9/3BhB9LI27i+2SJcTXcI8Ckn9Kv9fzZl4bi0lTZi3tDPqscRLYt14s36QHKQVYg+cOj1q3X2fO1GM+P2prdsukcUU0kFaPPwI4oTDkPjHqdOvYDvtmRwKqQxnBDANUyz0byq4SRavk64+ahHajg+htDRsYZJ/WWNDz1PncRDq0j9JpS72472/NchNFSxNlFb7ZudluDZ3DqtkLVYrURg/ccXZ3RfPiKUo3/AGVBil+9avjgODG0VjQ01+9kxcNCT9DQJdEpZOeln5MzZutgLNeWvxcUoyV9O8GYOkGjxtXYsTY6MpcKfGJ/0nGZCvycvAk+IDzBCIMkTesnrW3kVpWox0zW3WmiJW2VwzT7/JbsTfrMluxvPsSAw+YWZlDh09vD8YsYFasFag3DXMPnmy32jXupYZC8PQWnIuvIua6FctYkE9sn0/2XDHEv+pnb/wCdEblaeugmJUEmtHfsTaW7Y/i6jWlOKS5cjHXETiW6hYrMjebTFpfzqGd31uqlmXitqY/Fw6mZ+aS0bAPqCEvWrZ90rOHHKkZPxeI5t63roZmOTSx4TNHCZBNZKOrEQPkWqcxh1C/a2rNS+4GFdtr99t/76pY3aggxHB4J3Pd7yS3IMUUkxe8g8YdGETLLXKz9XeVv+EOF59Vr9yt/7KeyGLdcixVwnD6c4WYHn3gZ6d5asyj1OPcSykL9ffZawzv2qnG4yAMgZ6TZiHk4vk7csxLJ29KnjFs1HJLmTYc530L0Uz9qtibZLNyTwkcX61FKFl3Dx3DhkrL5OoDdAzIfJMSonc1JaMY3Wp26kxo3UgxkhsSMew6PumVwepVRF82VkEjZJBMxNi3ctl8N@tJyxlLKP8AeSGRyenUTreXPxUMbwU5o8HGvdw+WU5o6lmU4JISlLWYxyhHPqDXmTNpbLPrVypLtDLOPHVqdav4e6nlsSfahgFvaiStuVoWDpKLTtJLbT2VMHf+UW0fjDLUAPo+GA/xma31iXsKxCLEyxrBZYhsTRDBcqWdW5mGPVui1x6ijMdWWekuXeTXk2us5xcNQw:ABO/lt/sQ7iv7TQ1dNNbIRPLaae7apXu7IsVL3Vx/DsHi+KoGOJ4hy6PQ/RYvnFJ0/qqTG34nGMCw3+/kvzfMqx9H/uzRur+E4TXwmA44iOaec3ltW5nbezSeOfLLq5MzcmbkyjDDp/4QS4tLo3I1Aq1R5ueZSFLPq5ZMz+95ZP3ktq+yTryGV1rvKSb7JciTG6T4lg9+gLvrsQSRx6etj0vofzsWSw7d33dobM/5pPXtzfMrx8b/qRgPpXVrmMF2fxGjigz3ThKlSG3Hhu7M9ei3Y3/AL4BAIi4ALA2ROiLQTTtaaS/n/p06Hbksm3LtLHOXBVaNitn0N7Ylhk+zBKKgNtqsQjKAxq4SBtpOeGY7czN393rhgAS7HfVl2JuXuvY5z5U2/H+Rk1nKvsztZwPxEc2I8BGDdH4rp6f+fvF0+EjGGFUQi+L4eLR2adApamG06WHhhkEfwUAePQTuWrVnq1F15k7u7v33WPTp7SYFXDD6I1sUowNoq8TMdacIvAjMhinE9HjdHzJzal/YxJwrTSqdcvwdBKYRxlJITCAM5ETvkzLkcF13ePx82cfdSVnqiTZO1WEd3By+X0pPrLQsYXjGNjusdOGth3Le4dTM5N9z7iewYxPo7REGz7cuSt2OgGmJh6LdAeoWybk3kZLF5e9jMVOfZLa+Zy2EM9m1i+I56hmtvBF9HVFoP8AU1rTGPmsjC6u02GUIaPDUJd2xa5eJmHWZk8hnlwvLURO60qb41v24+vUigyfpQTySH+ycEbe1TuXj2Z7wr6+mU6bPY2hxGfPoU4YaYeQzzsy+w41qOxZ9SyaVXaOgdzdV6E3FWZbO8OxMBOxu2jUPDF3ICI9atbzab9Tw/8Aeps8v3VF+PYfLVVqvwy3pdTRg+al5JrPzTXJsdHBSat2TtGOSXdimanTxJ1HqWqw3pSX4FaN08etDI0uku9x2RR1iicXZPbrZVc3FPGYs26k1xJFir6tC0z81KKriXNTg@LTJEIQkHAhCEACEIQAIQh?hCEACEIQAyX4sli2ZHzWvbLTXP0fey52WXpKTDV6lX4mdUuwu8JKxuo2ThdSUU1J9SVndSaXUQkpmE/Ff1JrJY0+4ulkrMKY+rsdN1Oihc8VyLGQJXcVAxJ7Miu45TvRRQ55XStK6TdeVOGNs+aS4ipYr6peQbNSCHNkj6fQnCY5skvoPUafE0TgKs;Y1YTGTwQqEISDwQhCABCEIAEIQgAQhCABCEIAq4k/wKX0fiZc07PmulxH9Cl+r+Jlg6eSkhKkVfiMLPJPoiFmdWIYTk8zdbuonF04JSDlnl5k5y0IIYazcd12LkQMD88uXYrgu2SyhmLPr5qwM8mWWf3KOVst4VRVJDpy6T9igUjsSVhTlJJEM8KUnbGJwupGj8idw59iXOgWDJbfoa0jo1un8OfYl4Y+1k24kmXE7kTm6AJ9TedTcKfkSNXk1Ny7/AJUmYd8tstwq2PUqUTPmrg9SaSpUOQhCBQQhCABCEIAEIQgAQhCABCEIArX/ANEk9H4mWMLLWxU3joTG3yfxMuaa4SBGaLiOSjKJvMqT2X7UjWpfGQhryvdWW93pQxKtxUhd06a8jpdQSXI0RtB4SsBLHI3Rdli5upAfypGhybNoXZTCskLLeMrUdlk0cqLyVRBKyk1sksWh6cmNK3YniTJbCh4iykTWTkqEFQhCUQEIQgAQhCABCEIAEIQgAQhCAKOMDqw2f6v4hXLDEy6rFf5vm+r+JlzPLtTZOhVG9QaIUbkUuryoYvKkzDsqHBAyl3DJAJTiSbmFyFYoVCbEtNskFHEfdCyVTB4ZiFISAmLNaklGAu5zF/X96iejH2unrEiMeHOxsN2Qe+r8V7Xyy9qocG/anhCWaa3FipSW5rhJyUwHzZUInfJW4+tkyx9FwSUmahFSsnpjGiRCEJ40EIQgAQhCABCEIAEIQgAQhCAMzaCXcYRZly7nR5PDFlwzYq/ifa/Jd1j8JWMIswjl0mDr6uRiuFbCZvGD1v8A+kVHmrDj+l0h3ui/i+38krXy7FSIGAyDPmLuPq5JeikqPQWsTqaI4hIpwvydqyh09qsxnH2pry9B8VN8zWjtSl3/AGMrASSdqzAtQeN96mHEq/a7+hRu/tfolSXOa9mkzunLN904ux/uSe6XyfakqXQOH7r/AGarMnclk8fN2N7Uo25y7/sRll2C4muxMnhJ0m86zYt8eXSf1q7DG+baiTW63YtdmaIStmytASpRsObdauhkpYSIpqiVCqIUpEW0KohAFtCqIQBbQqiEAW0KohAFtCqIQAuJDrpSj5G/Ey42dnAnXYoTiOZ5DZmfip/pC+90oTEvXUJzQyB5OMpdqmGQl6khMZMjzISdSM69JQmMkSR50DqzHku8Qo5MsYcexx8bMrIzDkunQq71epPSWyOa4wfFTxxH5Pt/JdEhOUUIzGgxMtY+9t1t3/yWzBNr7yEKTDRXxa6H/9k=!A%iVBORw0KG;)NSUhEUg?ALw?AByC)ADMwOSz?ACe0lEQVR4Xu3csY7kMAgG4Lz/86Wkp6ZAokDy6RTfodVsTDSaxPy7/uux9a0LZpkEb20YNzNVEWYmItr/hYiYWcS8Tcw2cKv8DTPtoxCzqFfC+wGXgCchYlGvgDfp9MBd/xNsIj7otL8XHwC8x14Sq04/Yine4tRvwEvP6ypqPXp+dgneY+nbaZPwHscOh7eww+HDjoL/uJ1m4D3scPjYFw8fawDxUWjw8LErFP7TB7/z0/jYFA8fB4+Il1iQh47UwF:fvrfLPV/t0WEj+52Ev5yjWc96y/MNNrdR/EX6yRZuxb3Z/Ge10lu1/MsPm9auZXFS09iL4n3DE+tLD5vQrQsPi+U1ArjJcELAv7Og/eeAT4+cor3r2lbVPk7Sk30ODeEt3R/QcZ7YXxWbKgB47kyPis2;y3ynhP8K00frw9lcbbD8bz3fiFJ0S8jvEyCb/wioy30nhZ+Kz/Mz3CPa8S0h7hI9+AtMeOeIb3cBRswGO7UviFfwO48Au/8Au/8OhfUgu/8EkzUhqvNfELr8h4+cV477EuGvSw0sPnPaz06BHbDOJHp/UrMf6TkYVfD9RagndkvCI/vpfSeAN+9yDbn0rjPdnfEPCC+JpWS/BUGJ8PGWldfH46XBifzy1oXXw+qkOF8dE1wr2Cful4uC7epQdu7OLimBRpRfzlmkDiw1kjNRFmmjehto9DLJZNeT2P1zfG66jKbKAjDzbGCkS8Iw/zxhJAfGyLiI9aj4iPRYg3ToQeEB87EyLepQcLnyzEwIceER8VEwT/6fu0JuKDzwSA/yifWGbhIxb+y2wWm9DDJnc+UtE7HwOfXOTB/KX1o37bppq3efkDT4lpi2pYKzI)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEX/6Nn:/+VlZX29va5ksB5)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC#!