["c# sort","","37 C# ","A0swtytyytsr.z/a*CST~~}T~~YF5849F`BiCEP546849F.CEE*CCCCP954FXS}T~~}T~~","Sort List."," On a List, the Sort method modifies the existing List instance. It does not copy the List. With Sort we can provide a Comparison method as a lambda expression.","Other methods too"," can sort a List\u2014these include query expressions in the LINQ syntax. We show how to sort List elements on a property with the orderby keyword.","First example."," We use Sort() on a List to alphabetize its strings from A - Z. We could also specify a comparison function, or use the LINQ orderby keyword instead. ","Note: ","This program will populate the List with three strings, and sort them alphabetically. You can use the same method for integral types.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.6\n\n","C# program that uses Sort","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n ","List","<string> list = new List<string>();\n list.Add(","\"tuna\"",");\n list.Add(","\"velvetfish\"",");\n list.Add(","\"angler\"",");","\n\n // Sort fish alphabetically, in ascending order (A - Z)\n ","list.","Sort","();\n\n foreach (string value in list)\n {\n Console.WriteLine(value);\n }\n }\n}\n\n","Output","\n\nangler\ntuna\nvelvetfish","Reverse."," We can combine Sort() with the Reverse extension method to get a reverse sorted collection. Sort works with all value types and classes that implement the CompareTo method. ","Reverse ","reverse","Example, LINQ."," Here we use the LINQ orderby keyword to sort a List by any property. This makes it simple to sort based on string length, or a property value in any object type. ","Tip: ","LINQ works on IEnumerable collections, which include List. This syntax is confusing at first, but makes sense.","IEnumerable ","ienumerable","C# program that sorts with LINQ","\n\nusing System;\nusing System.Collections.Generic;\nusing System.Linq;\n\nclass Program\n{\n static void Main()\n {\n ","List","<string> list = new List<string>();\n list.Add(","\"mississippi\"",");"," // Longest.\n ","list.Add(","\"indus\"",");\n list.Add(","\"danube\"",");\n list.Add(","\"nile\"",");"," // Shortest.\n\n ","var lengths = from element in list\n ","orderby element.Length","\n select element;\n\n foreach (string value in lengths)\n {\n Console.WriteLine(value);\n }\n }\n}\n\n","Output","\n\nnile\nindus\ndanube\nmississippi","Notes, above example."," We see the \"var\" query expression. The orderby keyword is called a contextual keyword, and in this place it means to order the List elements by their lengths. ","Tip: ","You can specify \"ascending\" or \"descending\", such as with \"orderby element.Length ascending\".","orderby ","orderby","ascending, descending ","descending","Example, comparison lambda."," The Sort method on List includes overloads that receive a Comparison function. We can specify this as a lambda expression. ","Tip: ","We use a Comparison lambda to handle more complex sorting orders. Here we sort on the first digit of a number.","Note: ","For your program, you will want to modify the right-hand part of the lambda inside the Sort method call.","Also: ","To sort in reverse order, we can compare the second argument \"b\" to the first \"a\" instead of the opposite order.","Names: ","The names \"a\" and \"b\" are not important for the lambda. We can use identifiers like \"left\" and \"right\" instead.","C# program that uses Sort, lambda expression","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n List<int> numbers = new List<int>();\n numbers.Add(4);\n numbers.Add(0);\n numbers.Add(10);\n numbers.Add(50);\n numbers.Add(1000);\n numbers.Add(40);","\n\n // ... Sort the numbers by their first digit.\n // We use ToString on each number.\n // We access the first character of the string and compare that.\n // This uses a lambda expression.\n ","numbers.","Sort","((a, b) ","=>"," (a.ToString()[0].CompareTo(b.ToString()[0])));\n\n Console.WriteLine(","\":::SORTED BY FIRST DIGIT:::\"",");\n foreach (var result in numbers)\n {\n Console.WriteLine(result);\n }\n }\n}\n\n","Output","\n\n:::SORTED BY FIRST DIGIT:::\n0\n10\n1000\n4\n40\n50","A summary."," We sorted Lists with the Sort method and LINQ query syntax. The Reverse method can be used to specify that the List be ordered in the opposite order. ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

%iVBORw0KG;)NSUhEUg?AL4?AB/CAM?ABmHoi+)wFBMVEX:/+Dblr8/f05OTlMSEX/zJn+/v7+1az4/Pz6+vrWrYTmuYxrYlpdWFTy9Pr/zZuioqP9/v7En3r1xZS1k3Jzc3Pw8PD83LycgGbt+Pbt8Pj/6NH/8uX/z6Coimz19fX/4sb2+Pv/7Nr/+PHu8fj+2rW3t7fR0dH+0aSJiYnz8/P/zpz:Pnu+Pfz+vn049L059P338bw6ebz69vw7+j+/v:/fvi4uL8/P7617Lu7/X+:7u9fD69/Ty5t3:/6T4wwc?ADtElEQVR4Xu3a15LaPACAUTX33qm9l+39r+:VkHJOsy.wQGW5rou+DOM2c0QrZlgWqSvY7Hnc6o3R4Msqm26Hqe1v5fFK7W9ZTDMm65C09haFQzuTPKuWvljLRa9e2uUq51nfqBUroa9R1FaP5UbH5XbL4i+ZIv+ZJ/3SRf8iX/fei6k9Y2IfnDFk1UvtsSmW+0hOa7QvNfJkLz1T+Hb8UQ4m0Q9kzh+BbEu2LR+BbBAvMjgkXmx1hoviM038JfM8Xim7nbDk1aJBY/zPmWkLetOOcrdfElX/zJ48QxhA6OxVt5xF/35V1XPvOUf+JsCPe8b+NdMBSLTwsbkGACYRxG8lW9Wr7kS77kS/6GntL6cexpqi3Wa23ENX+TnyrLvp/ZUw7LOOVv2vmZveONuOSPFwpbGo/8DateWfPIHyjM8cjXLsw30rf5fDbz/WWS2A7B2PGvyfdK8tWf3CXlEnxYckX+udfN6fA6DsEM+bzx+wk+IYczPkrwSV2S3y3Pn+H6+NPyfLtGfqc8n9THH4DyfHwu3ys78dugTr52jtnrLrRpNhi0R51X8Fu+RXeoYSO8Bv+OlfvxkT083N399/iY/rW9DhQVBEjfN0KSAxpX4LcyFu5eBXy9+dm+Ee+yrsBv3WkeA/c4P7htMvDjy/HL9lV/0/w134GNOCY88/XmroJ/bgM6XI/+zRF+eN7kIbDX64Vx3XwLH+OrKkLIMIxDIFRoZt38mALsCBatnEZ/tVqlNL75xC78wJ3SuObnU/9svg1hnfyIlOFHEf3pXZzvMvHz43wEhlYPxuGp/Dx4af7wCJ81dn50Yb77UilfsS/Jnwypvgp+9PlFs1GaP3Fddzg0dKRScEV88/NW1zuZP5n8ilspv8fIz7nvB1wO+e6OG+xjuOJbhStnaXHFK4/QfAtzyPeY+ZBH/oKRH0HMI:hGN82TdNSFMsMGwRXyF8zD/7zIb+4Kvkaq/4p5ZF/z7Rrpw3+TbnkN7MCL90Gm9JtsPtRZzzegG0Gp/zmveat8127+6en5+d/mrt0SueaX1x5vuRLvuTbYvNnQvNtgzO+fYo+6QPO+D4LmxDHTpb+HID6+KiQnyZFXspNlkvfn83m8zcjB9TIvwXF/NR39rmP6ddQ/fyboJBfXGX8W3Y9j3x01Lzt9nsUwCMfoJsirq7rCKEgCP7OzZzyQaAf5fLEL5/ksyf5kr9Sheb3AV98oQcfoNPGXgWc1WcY8n5/aBgIqYC/0KqQS70qECGjzwX3G1JcKg3+uVGc)AElFTkSuQmCC$/9j/2wBD?@.@.sLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwv/wQARCAB6AOYDACI?RE?hEA/8QAog?AgMBAQE)))?AUDBAYCAQcBAQEBAQE))))BAgMEE?CAQMBBAQJBgsGBQUB?ABAgMABBESBRMhIjEyQUIGFCMzUVJhYnJDU2NxgpIHFTRzgYORk6Ky0iQ2dKGxwmSztcHwJVSEw9HiEQEB?ECBQIGAw))?ARECAyExQVFhEvAyQlJxgcKiscH/2gAMAw?ARECEQA/APuNFFQmZBkZGR0iiyW8k1ecKXT38EQBZ8A5AODjh6arPta2XB18vYw6p/TUy3NunWa4Lis+duW2SoLZ7ARjP1E8tcna8ZxgN9R4GmVm20YeuqzI2wg7CfZmpF23HkAof21PVC7d6NHRSePasch5R/8An7auJdo46QD6M1cxm7epcoqvvx7K8NyvpFMp6NSzRVXxpPTXazq2eIpk9GpPRUYlQ9tSVUss5iiiiiCiiigKK+f7a/CNsjYW05tnXNntN5ot3zwwwGKUSIrAxF7mN3Xjp6vXSStvZ3IvbS2uljkiW5t4pxHMmmaMTRrII5UDHTImvSy6uvQws0Vn/CPwjtPBmyS8uoLueJpRCfFI0kaPUG8pJvJYlWPUNOrV13jqt4M+Ftj4UpcvaW17AlsYgXu4o41kMu94QvHNKrsm78r6muOhhqaKxvhL4c7G8GJo7e68YnuZF3u4tURmji+cleSWJOsnKurX9HSQ/hX8GfElud3fbwy7prPdQ+MJyat9+Ubjdfr9ev5OivptFLtpbTg2Xsy42jMsjw20BndIghlKgZwoZ0TV9qvnz/hZ2FGkbvs7bKJKCYne2tVWQL07t/HNL6fdoYr6lRXy2X8LOwoGCy7O2zE5UPpltrWMlfWw151WooYfUG6Kz88rLIzAjAJ4jop+/QaysxkErZGeY4PszWdTrt9S7acwzDqBXO8GteHHk6UPK9KPF5iSytvFPSYzpP6YzyU32jjTErFQDv.RnPU6AOb7tJRclWXBII4ZY6Tj0jPLL/PWXWJtOtTwXgOO7Hb9JF/TVQSPFgvjT6WyYHHsfrRVbN7aSENnd4IWS5TgsbHgN6O7q96oriJ4TrDpPG5B1xEMpB+ch6rfEtXAmXMikAiPj1WOoEe7IKjlhePjliO3WMx/fFG+tCjAERlQM7rqn2m3bmqBLlwSY5A0Y6NEm7J/VSUuke+OyxdY6VHe7v7aswbUIBdpDoxkMOIH11Xa5F25iSDSQBh2zbTv+a1ck/3qpvskx4dp3kTj5ORNzL+iHv/ABLWeJk1TwhMoKxHp6GflU49BavZNpzJhXk441cp4YNZyeILygHBOAQDgewkqNDe7XUNvcqAcoFPfYk4A7vuN71TNo0D7UmiAOrWpGcrnh9YphszaMk4mOrq7s49GddYt9TuqQTgk82pgdSDt3qaeZfeWnGyrV4JLpZJNbjcnl82Qd7xXFTNl4rww2aXygczHJ4Arx4/VV+3u3bAIwM4z6fqrKhDrGntxxwcZrQWhK4Vzn0j2+mty5ZsaQHgPqr2uU6o+quq6PNRRRRRHwD8I39/Njf4fZn/AFG5r7m+0LCK7jsnu7VLuVdcVo9xGtzLHz80duX3rr5OTmVe5JXyrwr8BfCfbvhE21La92ckUIt1sBO8yywxweUAZI7GRH/tTzyczTdf9XHZ2Z4IeGDeFOz9t7b2hs68NmkkRMBeOXcmG5WNVjTZ1rA2mW4Zuai+D/8ACT/crav/AMH/AKjZ1T/Bb/dG3/xV3/zqa+G2xNreEOxvxfs6e2g3txE10LouI5beLVIkYdLe4dW8YSCTl0dTznyclLwE8Htu+Ddpc2e0bqzntdUb2UdoXbcsxma6MjyWlu7b3MGnUz9T5P5QMV4e+CG0b3b3412Q8F1cS7nf2e+gFzFNbQ6Uljil87FuoI9UXX1/JyUkvfCi02vc2tr4abElglg6Lq2E9lcRRS/PWknPLH62mT8xB85tNpeAG17/AMLbzbUW0o7COTRJZzWzzeORTx20MHlYtykTRNokWVVuedHpLP8Ag18KNt7UW527te1mjASN5oTJJPuIzkRQxG2t4ItWW+B33m7kov2fZLuxtNqbOks5cyWtzAIm0P14mC9V/hr4f+Fawt9mWng3ZWwYQW0W0Yog7lmC5se+etX3uKJIYo4kGEjRI0HoVRpA+6K+TeGngT4U+FG1DKl9s4bPg/IIJ3kilhEsNuLnUYLF9eueLV5Seb9X5uiZ5tZtXwK2F4QzQ3d/FPJMtrFADHcPF5OPU3UX841FOdgwbXttlwRbXuILq/TeCWe3AETrvH3IUC3t+rFpVvIJRQNj21n5ULO5UgHURgHOfq973WrRUjliLu5YaRnrrxD/AJwdapXTbvNkNryywGBkKjJkUBhli3J1Seq3u1mrp7lwxYg5B1ZGGyO3HVVverebUiEcavIF04PlMao9PL325NX5z95SBzs6EaDJ44WVyFHGYL7oXLal97kqYy6sja3s9m7MpDiQDeJIOV8et3aeRT2F3MiRB0uZ8YS3j0xo30mpur8NKJ4t+Q0cYiR+KMel1HTqHVST3a9sLt9mTmRFSQODG8cqZVxn+b4aeKkM7+1EdybeWSJyuHJZN0RkdCvx1N9qobeDZoJbeC5PQtteJheHTpmTqN9+p0msbp5HCSwXDZbd8JrZOHTz+VVfhqaysnu2Lw2on08skkDx7n7UT6HX4dNIGUc5wY8LBEFGmG8Anhf8zc9z7VWBFAkSlGZnDgxw3chk3RPSbeXjpX1dTVAmxZ3hkFrIel9UOcxj3TbS86r8LV7Bs29CFSFUjG8GS0Qx60PXX4qXj4U2u3heAJIFMrJxfk3w/h0S1jL+C9jJUSZj7jRDdxv7uOsklaCd59MSpa6l1ad5Gd9B/WlQGyv5CXkKFZMqIziRXA6ArhtOr3WrGOORlLKJJJWMgC54ZXKyIT8ouO97tazZFrORMQcjEQzw08DLxB971aitdmRJKQ0bgjlbe4VUbpxrPMnu1civlt7i4glLQqu73atG4Lga8sNOVdfepccCGASRCCXQYPRjV/5qpnbhAwK6j6dXHjSEbQtNQG8yT0eTkx/JTWC7gJ4P09mh/wCmrMLWpRxgVKDSuK5jwOb/ACP9NMEcEcDW5XDVp6paKKKrmgdnDYB4HoqYZwM8T2mq0rqJACeIxmpd6hcKCDntBzRuzhMR7ISFyDjHTXkZYgknPoolICHJxnGP20QsCnA5weIony/lzI5DYBxjtoYyKBxzntHGuXeMuVbgRwJqMyBDhXyPZnFGpOE4LTEhCR04qEs4AJPT7KsA5APpqvO6ggEjIzkUZ088YelpAcZz28BRUykEAggj0iih6p2jqks1yYnfUm74nTI3mn+L1KdVnWnCyzJGGn4vqtmxq6eO718rLUa2+qpdwmR1ZJMOwfNpMc29wDozhP5WWk82z7LJ3YW1nU69xKdMWfoJl50+z+7pldw3b7trTQY4y7TWE48r3fMSatUUi/cqriG7DRylrnA8rbzoBdwjPYnVlVfnVpl1heCmsjQdbgqIt2GkLD1j1ZY/VljbXSO8sHfXJpMcYPnM6ub1fcb85oetgYd7bhEG/suGOlbu2+H4Pv1TnL20LyOxvLc9a6VPKR/RX9r349PyqrrSisih3CkmBpIwQTLkrcW7H0S9bT7snJTu1kDuNSnXkNJc27mG50/TRpyyrp7y17ODE8bW0Y5o9SRFxJCYT19xIcLLE3zEnU+TqjaI8rFoisZBJjhiLrg98W8zeak+gk5KchuIrmC7j1qyziPOLiB/7Qnxcvd9WvQEnjDyHx2DsuYSY7iL86Ebm0/+R1lbVgj+NZlt+fdSXESaW/N31l/98dSm7WO7Kb5dnXsudzLGd5Y3vqe7q091ueiNEl3uIi/C4t8nE9vH5uP/AIuHral+dVagRkkuCsMccLuu93bvqhul+chk/wDHrM3+0NoRXEbpmw2mgHNn/wBOvofpO59ludKgSbxuWR1S6gk1GW5sYiG3bf8AvdmSer60VTgNFKNYLySMCjlC3ytsPpU6s8HvVXlSJ1NtO6Fhz2068wBI4GM/Nt3ou5VdJ/G3jiRzHf7o+KXjYaPaMfqyx6dGruyr+7qrLjcHybRrkq0WR/ZLxTzr+Yn+5WdXZpHEzhmjYAOvAgjikg7ftU6gwcH2cAOArPLOJCsvEyY3cwY5bEfBG/206tZV4YIrMGghOMU9t24CkEZ4A02t5Bgca3GdU4G/ZXtQ.Y6a71ituF0vDDGxJIyT0nJ/qoEMakEDBHQcn+quwwr2iZveuXRXADDIHEdI/0oSNEzpGM9PEn/AFruiiZvJGY@LEZJ6c5rwQRA5C8R0ZJNS0UXN7iomhjYkkZJ6Tk/wBVS0UTOOTlVCDCjA9FFdUUBWau4ppH0x5OGcmOQYbBPTDL/trS0jllCOdRaSIuQJEB1RtnoJ9WpXTb6klzDEgjkkM86RlwZFLi4tWOjpQczx+tXbmO4C6ysMy/k18gAU+7n3u9E1G1Ip97AItUdxpl3FyXG6k6nkLmLvq9Jjc3u6Mm7ghSFzHtawUGXd/8Rbaur85UdTcO73JUgQXaLk9O5uo+1lz1mr2JUkeSe3kEVxjy8HDdzY+cRvW7stJorYSFrWa5uLqC48rs6/3nlIvot4veTu13ELjR4xhfxlsw7u41J+V2n+7WnMvv0V5dx2e5aW3Qva69N3BGC3isvzsXqe8v6yoPEZ8lIgWaRN4OjTcxL0SKe7OlaYOiTx3IwYLxESQYxwI5G9Xt0tVWaIqxtEk8tBi4sSzhdcWeeAe6vm/gpgKY7d55I31AT6D2eTuo1+Sn+kr1LKzhVpIId7BIT+MNn43kkLY87EnXT7NW5UtgUlWQRRXMoUOof+y3vRp+2/K1EkdzNOLqxj3O1LQiO4jlG7W5gz0e/G/WilrOO4ptZ+M2n4tlk12lxzbLvGI851o4ZdXyifxpVOKG716p8/jLZ3JJGuVjuIvd3fycvdpnNa73LTyFdmXzaWhTMclhffPRv+d63qPVSC0Fo0jyF32jspwssnnPHbFu82pvU/jStDydLJ4RPwitZXDHSDvbG46N7EdXKuvllqYIXefeRRwXFvEPGpHHk723bVokiTVp1e82vRT1EtI5Ru4w1ptGMv8ARb7HHPq71aoxPc22qNY7eWWzO73ksnRbNzRnOl3bR1fsVAlmhDvHPBDuIgiOJ5TjXEwxndFdb+r3KjRxFKRGcoeZDjGsdulO7V6dRKxw2/3bCRZ2QrbxiTzkcKHr6aWykhA6tlAxSS4OASD0LHjlrCtNFcLoXgegDhx44q2l2gIGSMnA4dJpPAhMUaqCoYcAfk4/afnGq8icAce7GPS3p+zWgzF8gJBcAg4IPDjU6XanBDA56MGkbwHVpB4k4J+ri5r0REgggjPMPZEv9VVMRpEuQe2raSg9tZaJ2AzkjHEj/SmkEpOMGkrN0w9BrqoImNT1tw1TFFFFFEFFFFAUUUUBSaQCKaSMgbubLD4u/j+anPZScpG4DMATHKeJ7DnSempXTb6kd6Ga4itJLhEBDyxAgb2SOPRxjk7rIxpXc3GD40kbSXFo27vYY0J8Yt+3IOFZtPlIqebZEKS2D4LEXJTyY5tMqezu9Wq8sTeNoN2/lYpIyXwM+pH1vV1d2o6zkTWyOxntYOS1kj8fsNZ8z9GqdXkl7vv1289yILPaqyKGQiC+GgAPDI+hzgqfNPzVxYRXcUcO80Q+J3clrIq5aVIZvN8/U09WmkWzopYto2LnjrLpJ7so1pye69FSWVtDE9zYSyNInnrf2Qz/ACf2HqR1DbPMuB41s6TUkjnm8kejX1mV4qpwNI67Mu9XO2bOf0ODqw2PWV0poQN9dwE6keMSE?nJDK4/wAqeffhHk8Yl8ah4abq28ZQKnysY/m6teTT+T2fe6hnkinPrxSjq/vdNU7UNKuy5GLF8vGzZOCuh13f+VEUaJs68RBlI7m4RQ2W0DedHH66WiZ4oHF/asvLdIZY0kORvMcdP2grVTNyhlsLtY0IuYjs+5DDjGy6sH7LBlplOESWx4cSSvtzu/bWWcPup4zwWPayNyg/KOrVPHv6f2VegilktbyxeYmTZsgeCTHLusbyL+mrQ8UnSC5lYhbq23ckYJXeEDOMJztpryJwL3a4ydHisTH7j8KiUSxQWaxJHwthmSVyoi1cB73NSircEyxarkrZ2kcUaRxjz83HKKU7itjzXXpdfM5hieQKpLDxa2XrFvpPs1bQxPtAmMi8uZBuvGJPya20jjuR1d58P7yq8729sQImNzcuxje4ODHExOOY91fdWs4U8tIS6ohOWKo8zejh0CncUPFXx27uFf8AVqpbMjDwBFOUVc3EzcMnHEL8VO1QMpdiQNI0qOG6jHZ8T96tSM2l5gBc54g9J6OUen4qmeEAjOMN5w9gXuRj4qnUo41ntbV+gcEWu3RAjN08c4PbJ2fcqpkolQq4XpJGoj3uwfZWrFuhBFD9GocSOIJ7fb9qrMBBwQMZx+2ovQziHCrFRR8QfZUtbjhq5iiiijIooooCiiigKRyorPcrhRx1D9I/qp5SKUIHuXJ6cKOOOgeipXTb6otpqWtoOPy8J1dBHOtQTBvH7Vd584/SB0I3R+2odqBZfErbPPr3uOPVg0/7itQmWB5bi5cAJZxlCCMAyniSP4VqOsV7hozHt.up1X1uoBfGDGYgcjVUllcxHaW0CzBeWFQM5B0o2SMctV4LJNAiZwZblzfTlQOSPPJHVlN3BbyXHDNw4RfJ9PcjoF6EPY2aqGdfHi0YVCTgSPx445aZwndXt9IY3JFqkpQAKMDX0e9U6GCF0ReEdmmWOsY3rD+mljbSjePs320Zd18EOP5dFMe/wCKurPfrBsrUMb+4EgTWdQBDv0fD1qs4liTbGACjXQ3Q+kZEyv3q5WdBPNICBFs+LRGc8Elxz/w6a8iQ67OOWQ+VZ7qQZ85w1dHqq1L/fv9QymiuJprRV3aGMGRtWW7mn/vSF9nSNDK+/YG42nHkIg4BXVeBb6qanaEUYvbhH1rbruuXJIbGo931jVJZS8tlATJ5NDey8h4s3Rw/TTrn39SFd/baJ9r4klI8XiTOsjJx0MVwuqu3iiZlUW0l5pit1Ees4QqNT7zeOFVa5nuTPs8eSkIvdp8WUcTFC+T3tXVjrQi0RjIQZIiRpL5Qtk8RjUp6q1FZ25hTMb3O6t4RjRbW505OG15l4M/wxrUcxdreJURbG1KSNrkQBnVT8nH3Gbu6ud60JsLbVGyrJPMvHeSOG0d087LpT9XVaSwSe5Lgs5jBCsxQwQ6e2FCnNJ7zUDiwQiGCNEKoI0aOFjxAI89ce83dipm.ApJIBIY9sjeiobSJI4EVXduULJO2N7Lw6er1vhq1pAyASOGAPU+r3mqsWqQOC4Y8Ack9GDXOsyalxgDGFPYPb7zVYeEZABYAdA4dP3aiWBVPS3E4JJH9NFVRxYAnAB4+jhU0LEOy9nSMej2VMYEJOCeJznh0+zlrkQoHyCfR0:wA1FyZwHh+yp6gg?OPZU9bjhq+KiiiijIooooCiiigPTWZwZRPrYqPGZEUqBxAOONaX01n0AIYYH5VJ/zGqV12+pdc2kD3aTvIxFtHIg1SEAbzQzkkfBSUwb6C2iyG8eut66bw+UhUtJzfw1pbtV0XHAdD9nuLWfhAEuzsAcI5MY4dysujsRRCK7mAIeWTxaMsScKp0eTJark1uTfbPt4xiGBHmkG.dIVUyB71KiSbSIEnHjWcE8M7zppvCzeO3hyci2AHHo4VVUAifiy+nKod/cXDdHd16P+1TtbRG72eCpBjt5GUqMcdCqN57tWIFUbHtuAwZIsjHTmRat3I/t6f4fh99ac@ZQPxZcgMNUs8udQ5XJfhn1amhmll2xGjKypb279g7Qo1LirF8B+LoOA4yxZ4fTLUyfl859Fqf9Wp2Unl0/iudU@kvL7Sv7z+LkSrayNi8uOfqi1ttA9UafV9ei1AMezMgdeU9Hbh6ZRAfi+PgPP56O3eNTvPwhHMiIbSEySBLeDymQQqTSdJGF85p1VpXB4cA5zq5+HW6nd9Wq1wqlXJAJMnHI9lMpRx6OxKf7RUd4wCHkZio4RRDA4D0Cl7SEqpc?LkQg4AHY0x/wBtNJgFgcrw4dI4GlbAaI+A82W/T6aixooGyiEdOBjhhRw7tTE6eg5Y/wCXtPvVFCALdSOBITP7K6xwqsOs5GSOI6R7KjBBOTxHRwH+ldjt+o1F6KDzPEj00DicV6Ov+ivE6f01FXoDyn9FT1Xg7311YrUcdXxUUUUVWRRRRQFFFFB:9k=%iVBORw0KG;)NSUhEUg?AK)AxCAM?ABqK1L5)MFBMVEX:/+zzvd8rvO/1fj1+P4xiu5tpfFbnfDg6/xIk++ZvvWLtvSmxvbV5Pvr8v3K3PnaFXRJ)1ElEQVR4Xu3W7QbEMBBG4Xcm3/3a+7/bVZRlqEI5Vs7vhIcwE+3lQbrP4/kHN2LNfbW06zcAMDTWlFnA2LDMAsbGBwaMJTqwJDqw7HRgpQNLogOdDiwHHZjowEXqflXj7r56H2hmW43AevttMIVeA+qsRyILqE4HKrxyhwG3sO1gQPt34AQ6HJgHfMxsBQ081uBrGKC7txJbAcDbjA7scOAQHGhw4DjgQBMbWMUGtswG1iw0cMsiA5dDwgLbkrJEA/rZYpb2gGMAdRMZOIETOIETOIFfGWpGTAdlDEM)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AO4)vCAM?ADThAYB)MFBMVEX::suOjW1tbn5+fjid3z8fSZquR4keT5+Pq1wOr32vXZ4PfK0/NPdeTj6PnkT9vNZmRw?AFF0lEQVR4XrWZ6ZaySgxFM9QIDu:tlflIyscqgOXpfuvkmQDp5sIGfTopdT7/V5L6ZlGTBNzevF8PlNizuSZa3/QCSaGCpdp72meS6mJgFJujf4k9/uGehtURhJ73fdRdp7WOh3acFCB6tqcEJvOxiKGeeDclZdEueHhrhxQZ39JnmPS5HQ/lDnQ5bAClVWqEVBX3dVpSvtS3GhXq7e9bqv3ET3QNdh03Y0x1m0prkA3vIaG1cbzdnzqSgZds0VKoGuw6RplBl2zjX3b7iis3cEWmZyu0ZvpwifALdS1FqZrlIGuswU4CC9GN54mNdCFcewWGpNP6CZ/JyI9yq2RQQvCi6FOz7NnDtl8UEsXkV6K6RbUTStweUNdmDExiwhzwjMmcBX30ZW8DW5iecHOfwp1/ZhdVrp9ef6nm1JiFg9D9h411HVfxxI2pAochtEt0nwqkhgJzhyVOtYt3taAy5tlwLZDFumuB+omb2ts05sFwovR7eqDlcSRIBg6HIeaiYkH0gK60MF/pZehboMZ8foubbAtRlfU3yeyAdKr8gGM6eYurqdais7q+igYHcPP0ZAK4R1GN8GJg2Qkr4vGZA3Apdi8p3UdBXXxkmANDsL7sGQJvcDkYjCa08Xzb9GtIqK5EVHLKiLdpci56IrVH+rC2O6SQBu7JkF4b+Po8qfUp7X6bE2ma5SdbhHJtNJE4DFTVXNu5Jjgj2HTU7rQxoJIGN5hdL2uiJKhuxtFh7rVdDM5xAZ+/LHFwXPGYqyHuthm1Z0gvDMZdfxfV5QcKgnHyao7XcuFkicL9DWliRdV1LUeQ137LrY5/s+bfXS9biMP6NoFGOvWvqUMtpO2mCJCW7IGugyYLoS3DKPrdRlAXTMG3ZiOqzmShHboQDeGMbz7/UBMN4aQjNk91m1OFmyF9qBuOqmrGCKMLk0ndJH+f3Vb+ttWv6pb4ci2ie7vdcNxWb6r2yxnZR/dL+iWQ10MDKxfX9PF8I6jS/pj3eG0KSVbbdo3dTG87jmofUFX/sLrtq0pi0fphK78BejuwwvRJRUAN5YU6eqR7m2bF1NF21hXz+pieGe4lyn/RLd7XYYtBG2v6/rHDPwFZzNp/a2uZRo2aiDTRV1cIpXG4cXoUgticV3XNrFAV032i7rZhReiu3B0n/AV3Xusq6qNjOu6uDpgeB8uurFuOqULDN45eF3+mGYwDXVDkulmGoa3u+UvwD996JFu8PldstWCdfULumwzmg2E10c3IicbMdYdzP8oZls/bbJ/6+TInze+07EutsG3eGmxwSVwni3HQgaUgv2FI93FvJYXtukuLfxKrTaYrazuRcIpXX5LvWDD1+TVxpZAQJzEE0ulp0OOdAOqLLr8DDipGyFeV2EkjG5YiSVf1+2iS5zST3V5aQPhNSC6kW0SaZd1iyy6WfiXury08eEFuv88thW6qlvWdSeL8O90GbcqKVF0KbbVi7q128FkG8cIvqAb/kKgPYouhbaSY925lDqSLeIOVv8aFRffo+zaK9PhiNYmCG8RcrCVGv3YQLGuypveS6n1n3etpcuCxWmB0wt7rc1ssyKwMK1tmNMb+IkAZ8yC6L42Vop2FhXTUQloeAByXjdus+VAN0Dpki6KtC/rxgU0bBHaXtRFj/Y73UyHuuSJbC/rokbToMkF3SgLLdQIbI91m6qek8ggDItvrBu3QUKPPC6lmQ51TSXrm0DBOqm91s6ZThK0uUiDSudG+Q+cSRLJ2s8yWg)BJRU5Er@ggg==$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAH?+wMAIgABEQECEQH/xACJ?ABBQEBAQ)))AEAQIDBQYABwgQ?EDAgIGBwQJBAEFAQ)I?QMEEgURBhMhIjFBFCMyQlFhcVJigZEkM1NyobHBwtEHFUOSgmNzorLh8BE?gIBAgQEBAUFAQ)?AQIAEQMSIQQxQVEiYXGBBRMykSNCobHwUmKS0eHB/9oADAM?AEBAgEAPwD3ou065Nlfe+CbcngbTrnytp7LNPpdjcgGVvTJg4vluG8f7VkhjMZmszuz5eLrVY2fScSrKjjrp5ZP9jclFo3g74ji4XN1MHWSfwouVxqmyZ6hglM44FTUOJlr9xrtZy5s3wWY0q0YnoxetwsGmAn+ou2t6IjSrFyoaZghOyXurHTaUYxVUr0ssu7lldwdMRHK+GpNrA6m5UvVVkNQWupziMX37hdXtDpBPC7aqWzZ2xdlDh2kNVStqayMayD/AKrZkzc2YlYSaK4PpABVOj1Q1LVd6jl7D/d5iu+aV2yLp/uG6/8AIocjrctaDSieFnEmaYSfxyfP1W7wzSOlxCnhjrAjmERbWBKzbPJiXidHgWN01edFaUM47TiPgXveGXmt/hGAdGCKauPXHkxWRvdA13Z2jtfNSNlVACdx0jmyoB4jflU2VTgWi1Y7TgZUd7v9WbEHy8EDFQ0VJraPpQVdHL7TZOzvxbLwQwWhuk1og72Bsyyy5eTozCqLD62tLpbyaiGGScwifJ3aMbkNQdwVVUN8xzghyW1KoFyrwrDQ0bxc6kD1lDOL6os+z7hKp0zrwqq+CWAuyD8Fo8KxPRvSrCsVrMDjnhPCWEz1uZDIPs+qjjwjR/HICnkj1U4fZvlcinRj4bGqIwa9JoHmPOZbCqg5HG7gjMWp5aaSDF6btQuzS8ndleDomNPb0Ayk9w8s39ET/aqqYCpJYCG9rSubgpWxlSjJz6xhLDnNLorUjURwS/aA5LTESzej1IGHjBSfZg4+qvzJEkX9pEXoe84jTL0wiUV6cFgz5ZNelvQ1669O0SP5sLvUlyEAl1XWRUFKdXMxEAZdnK7edh2bW8UxhUJwa8jKiAszE?dSekOYk+5DU0w1MEVQDPZKLGN2x8ibZnlmnS1EFMLHUShCGdt0hMLZ5cMyy8FGQIQFfVoo6r5e@uT7lGLbGT2ZMMeDC6ct1/VSoam7ReiJULSUTly5cmxYPVcBQdRPqaaab7MCP/AFZ0bWN1L+67OqHG59Vg2IHnt6PL83B2ZTIPD6SHI+kn0ufPUtG229FaNVsNDXyxWvZOzCB8m9URXx7rDzJBQ4XWSRSywg+7t8Hf0UBXwm9pHiexv1kel90k4ny4qoo8NkmDW9381pMQpZsRp4LxsMG3tm101gGipWDLstl6umI5ChVNmSXKmDDaOoJ4ZasKWTu3tu/NdHovpLBiEQYawnrCbV1MUg6v1LauoNHsQx6rYvqaW9hlqCbh9wOJOvQKbBqfB6N6Oig1G+3X1kj66/247d0dvJdlyhRRq+xEecigUOf85zhq8TotXh5xvJisDN9Ns3Cbv9trbHFPGqqpIiOyKO9y1wRdm4d67yEvzRo1kkonh9TIYSEL37e374ebKuioKqi1Z4ZL0ulF+8Ta3i+tjLkQl58ECSCDVA+fI+hjR3JsmCVEm80l9wE25tbZ6JsOIy0ZjNAW+D+KCr45MPc4DhOOKO44NjOLg78Gyd+ymYDC+keJf2mGeOlvByGWbPe8g805FdiNN84/FidySBsOZ7TVU+lxth82D4RgMevrBLpA0Ydq5vrLAZVlFgWkmDjL0sRGlEbpDuZjs8w45M/FeiaP4FBozPRR0eckBxyR1dWeVxlsILvBs88k3+o89PTaL1k9jdImYYQLLfdiLeb5MrIA6fxGhePN8lWTSrqxs6h27dpg8N0prpMRDh0YG+rHvZebrdU+KR10XFhIme0c/JeL4fiVKJM99nhnsWro8V3N57vZt8FPiYHrcAzMD9Ne03uFR6qsbfcuN23Pkrs1jNHq/X4jCHtXfk62JoiAsdpESiIk81CSkUQPI065JcmOkUlQcvC4iQOk8jDhDj7cgD+ZftRERofGqOoxKkjgp3HdO8rnybYL+T+KgyqZc/Bc2NeMwNlYKquCSfvLyjjaKkgj4WRgPyFmVHpc2s;6f7Wf9Lf3IvDZ8Z1zx4iEOos3Di43M7e9wyz5IPHQlqcRwoQAijCW6Qsn2bwdrlyUFGW3B6cfxBC2RGoPk1KwZfpZuc08jtFBJJwYAIvDgyw2i99JX0MxO+qrXmht5bgj+uS1uJ1FmFVpZ/4JPm4uzLMgL02jmFYh3qaq1pfdvJvxtZMowz4aQeFyrt+O4w++hyv/kutGJ56jEsXkllI4hntiC53Ed6Ts8m2ZIjSHF6+nqqTCcKt6ZV/5DZtwc9j5bW8eXJA6FndS1dR9rUu/wD4iX7kta9undAUuVmp3M+HYl/cmEeKPONDx+e1VhhxFghHhLY8YoH3klNimOYZitLhuNnFUBWfVzRNwLP7oc9nZWqWRxpxq9LcJpA3ip8pZPLa8n4MGa1yY3SDcaF04MgRUbJj1MFGlfqIuum0jnG6GT7rrJ4+5ng9UAdoxYfmTMtgshi2Y05xe+w/J/8A4pcP0vKbjTpCnyInl1XQuJ747wo+gpDjg6wbdrvtVjOwdNaMmbhn8U6bKx0PlH6QTHkv2kY00M8dhA2azoYEWI1cnTKiOioYX62SQhY3+6Of4ozFcTmwukKphfr+xBzzLxy8lT4VgE819fjIiU9U/wDlzKVvNm7LEX4J;prvT0hfzvDtzl9Hi1VLIFLow0Q4PTR6saiQN6WTN+wWx7G8eac0+kBidPU0tJWQyM/V5@f8T5Ei6eKKIHEd0RZrfyT2nEHe1uTjs5M6i0KxDN1jkYbEygGqqhFoa5mIxd9TIO7KD927z82UFHiLm8moc4asXcjDiBk3u8s/Fdi0P0nrCIZ8mkj2Pl9/JuIvwfwSOZQzRVMgtDJa8RF3d79HQp8JqLqv8A5DTlkxajIKmkOOtyfo8kT9ru6v15OzqfB9BIKAIcQr7jxK5pRASdghL3cuJNzd0NSydGq4DxXdwwpgLqHfti7EF23YOfgvR5QEm4sQl2S5Oz8HZPQMcZKnSCfy+Uk4dmGprNE9+0raOvlhNumzuNOHc5u/hks7pTX12K1ISWv0GH6iPP5kfm60tRRxTi4SN/y5ss3WwVWHydY2cWe5LyfyfzUmLicmMgFQ4Gxv6t5M7lhpJ59e8zEujsMhtUQD1Uvdbu+6poaGXDnYDZygLs+6/gtJR1EF1pi1h9rLk/irGagiNnAmujP/8AbFPich9WM1XeAZVKm5BotSw/3GCfbdmVu3ZtF1vDWGwKnkosap4Cz1dzuHo4ut4askyBxqA9pBVqYIahJEmoCFEKYJlWQOmqQkzJSgwVhOYlKMqgXLiAYiuVhevdOafzQW1Lc6b8sSQcQ3eWA1CeckMsbwyxicX2ZCzjx8H2KtvdLrHTThBkyca61udt5YwFBTDq6eMYgzutBmFtvPJWGI4Ph+OQRdMB7hbq5Ae0muba2f8AKoNa602Fya2ii+I/J0LxOPSqt7Sz+HcdlbMzB2Dgag179ufvKPAMAmwfGKzqb6Oxuj1RkN7cMxy2fF8uS1C5chCZacRxD53+Zk+rSFJHXSOc5Y/SQxp5JLn79zN45tn+q2CwX9QCKKqojHgQnd5uzsym4bdyvkZWfER+Bq/pYfrtMmchSVgy+9l8EZO26oKYYZWaa5t1+y/in6yOqleEC3Q3pMvyXZse5/WVWNqFyvKkCoqgkkdjCF3t2Zts4u3xRDxtnridyPP4NybJlJKHWsAZauNuz5v4qKQt19qFy?1yoQhDvZjZJXytUDVFlXBT5fW57c+Fv8AK532cUPMb9LpdW3WFcN3Jhba7uosYLZAvPt6wjVsb7SxxSJqiKOXYBwmwwz5dgibeAvdNlRVA1EDmEUbEUbdZT5OVwd0w/haOknCarq8PmHVa6ICgmbaJWe15i/DyXNhUGypp6iTsnHIQvuCY590m8W4IXiF/GyBd/Ef3namH2ExVdK0jx2hqwt+rydtub8RW10Jxp6unfCKkuuga6mL2o+Yeo/kshjAWVT7Mtn48+CGo5qikqIqumJxliJiH+PirhcIPDrj5EKDcOXYAT2BxfNMlh.HimFjAvxSYdXQ4pRRV0HfbKQOYm3aF0QbbFXuh6Dcfyp11sZk8Qwg6Unkpsyg+bj6+SIwateRuhVD73+EvFvZV66o8TwvUl0yk3bXuIW7r+0yYrFTqHIdJG4vYy9w+MenQbNt26/wdaQxWX0frQrZor8hnjdr/P3mWtIVZ4HtbkK49j6wMxUJCjCFQkCKVoPkxwMhUZCiyBR2KYNBHxQW1Ip3BNcE8NIDjkKRS2pLUtxhSRrk+1IluN0xq0OASXU8sfsn/7Ms+rfADtnlj9oWL/V1BxQvC3sYX8PbTxKdmsfpL9cuXKrminLGf1Cp/olFU/ZyHH/ALixfsWzVBplT6/AZ9m9.SN/tb+5S4DWVD5194Pxi6uHyj+2/8AHeeQ1DPk+1WeFxPSUrFk10/WeeXdZDlSmfLZ+ivjwyWGjabNjAR7PMRZuKM4g+Ghv3lCtkUJXZPkXvcVCeQMnQVLSxvs7L5eqGqDfaqvNdwnHchmPih2ktnAyfdjF3+L8MlII3dp0VJhsI2S7S2Pfdzz5ZeDKBc3yD80r0ITsWr9h.oawTJqbF6XDqTX4hnubbss87leU9TBIA1dOY9Aqo2MNmxifn5ZrP1FLTFA8cjNqjZm+asGp44aIgiJtRmDbH2buRDayCwnVtuWdqv1ktA0vVjXlMppCLdOMx7Ob/mosOOGwmN2Z8+aNxqNzkc+L8c/N1latzjO1XhNgID9IA+0NArY9pttHcdjwzFSp5C+g1bsB+AHwE/0degE1rrxCjztYjf4L1DRjGmxHDujyl9JpMhL3o37Jfo6izIKDj0b/cad/aXRi2ajfmJJNc2aeTNIHmyEYaTqHXn/uNqxX2lTQ03RNIKPVfUySt8PdXopCsTRixYpSMTf5Ry+a3dqK4YqFOnbfeKi7GCkCiIEWQqMgReqMfHAyBR2IyxMsUgeDvhgbgmWIuxMsTw8gbDBHBNsRdibYnh5C2GCWJLES4JLE4PIzhg1qLwotXXR+9mPzb+VHYnQ9XNHJ7JN+DpHOpGXuCJ2JNGVH/pYGahcuXKqmhnIavhGooaiD24y/JErkoNEHtEYBgVPUV955ZNSBldEQkP4p8ssgUBx59x2b5OyKlogpaufyIgt5bHdlW10zZOPLgic2Wm9Zmt1b0O8pYMxB/VQzm2aJNgjAjz3RZ3+DICUA6M9VKzjNM2sjHmMfcH/kmYOFbKxyMBSjVv5SXXVAdTW3cwmiAJqkANtwd8vgrGpqoQB9Y2XoypqeqDXMFJlrKcRGU8/rC77/dz2Mias6nWRlWCFPF2uPEfaVRxxfNlsDwL4Vr+dYZjxso5bdT5yallaoEr3YAzffPgzefoh6CsGvkIoX6gHcIuWbM/a+KptIcUanwCokpmLWHIMIna7MwnnmXxyTtD5X6C3wRHw/CKfIRvyA/eG4UIJYiuwMva+OK3fdvisniQwyPuZXZ/grnSAnkjYc9nFZl2sZ83RAxsrF2O5PLykwPeR74ur3R+vPDK6KqzfV9icfGMv44rPNUNerCKZskWqBlII2I3iT1g8hLde4C2iXJ2fg6njPYs9o3iLV+GdHN/pFFu/eifsv8ADgriM1XOpUsjc1NRnIwqMHHE6GUW3JJRH0J3W7dlisPlDpUISNd1gW+RZ7HW4XcNYDA99pKtEX35+sitTLVM6TJFAziIO4JliJcU1xTg0aUgrgmWItwTHBPDyM44LYmvGinBNcE4PIzigrxptiLcE1wTg8jOGCPGm2IuxI8adrjDhltCV8QF7rfknqCkfqB+Lfip0CwpiPOWKm1B8py5cuSRZhseqcMpMVnjqpiA9h/7MypDqNGCPrKmbLbsFs29FYf1CpH6bDUiw9ZDvEWXcJ/0Jl5rjWsoqeO0/pVWVsEY8WH2kTiC5L8O6DrKbMMa52UpZLbe+82mKT6MRsIao5IzFurEn2/eVRX49hcjBDU4cMsebW7zsWzhw5MqAKizVRU8hGQM29m73F68xZ1WYxicOCywb+vk3ZDhHltz3i/JJxTnGy4EOssLKjaE4Dj5/KAvYbbmaWXE9HtQcEMJ0E/28TcC8789itcCeDSDRqqpKo3qKrD5H1NTlt2bwv55jxZQR4NhekEktfdJCNXGBUphk1pZbbg/DJR09LU6HYLi567ptRcxRFGL7w/c5ZIZlH0bc5bYtJ1JtprpCaHCqDFKafBcR3oqkH7D5O459sPMXWapqOqwCaahlF9UEhBDKXfHx9ckLo5iFV0466grRnqDAh6DKPXDtutDkmUOlNdR1lXJWxDN0yT6ZFMz7O7bbyfJMxJ8gto/MftOONKHQ9IXiUxyBd5LNzVBk7rRVdTS1VGc9GTlHk/3h911kzkbN0TqFA87@UgkHmIRHG3azRUUnJnVKVUefHYrGicjyUmJjdRtTXaN1ZUddHM3YycJR8QJbktw+Obcc/FuS8+wkXvXomEUVbilKGphK6HINYTWi48nzfjkouLx2VyKPIxCtjbpCKIvplP/wBwfzZeiLJUuj+oliOepG4SErQbz4bVrVCiFbsVccqkDcVcTJJknLk+LGZJLU/JdkludIrUjipckmSW50itTXBTZJMkuqJUgsSOCntSWpdUTTIHBNsRDiutS6omgRaXskPnmiFDC21/RTKNuZjgKFT/2Q==%iVBORw0KG;)NSUhEUg?ALQ)xCAM?ABEbnNr)flBMVEX::n:rD8efE8uii0MZ3pZvH9evq:q+7OLL+e/K+O7N+/HQ/vT9:7e:jY:ZEcmjG9OrP/fPM+vD6:7b:fx:zR:Xh:j3:3F8+mCsKbI9uzV:a149mNu7GXxbvu:tsmpBSgHZfjYPO/PL0:zk:mr2c/J9+3Ac952?AFiUlEQVR4Xs3Z13bjIBAGYEC1917cW97/BVcIIzwQTnLWym7mLol1+IJ/GAmhLcvemeZgWYM5l+va6KXKGrfNNbgmczlOjb4q/DB1gDJGO4uX8qkIufo/OkVwzcOpanHHALvhnMp1svYz30ZRfU/ywh+z3iCsDC+Y2vutnBH2KjhwQL5PU4v62moKr0HheQ1HdTkhyE55WUgpcwUo6KTPRr/Ip9iJKPlxSfVlos6Jm8D7sAV6vtwLmrhDyJUF+cA5ZRIWvp0ZBvGe5IBejJCYHxVtrQBbRheZ/eFdmxjfZjJmH9Sjo7qdrhBNL5/aUkFjU/xQxmHgjyu6TAhh6GGFuQp6BZyRXL09ekFY3Wk87XP6BRrdaD4kdJEndwVtX15+iOj3M4eKoeuRcLQ+Ai/RGWRzndFBp/YYAbMWXeIqLHwZXeEIooVGRSeEF5R9P9IVi+SyCk/pN9DO85sWaL8IFfQ+1aJzItAvob7Isr0+0g2baBqOQ/oNdHSMGxkdhLED0KdTqqJZpn2fALQIdS7JLvpI++M8ZkUnOpeElmWdVTSi6DAPMg2aF0SXFV+IoEAIdhCG9cEp2dqvl69D1PnAO4rrmhZA13XHd3gn8b6Lpru7raDBcjtA2U4f6fuy9mmi8WsvyfUrIgKb/DfQA0XzfVJBI117MfWbYTWno4mdEqGHMF/wF8v4++iTaVNBFwbeKKH9pIYtRNdakFzByNMxCLSLtkGf9zxkHe/9vPq8/mJG4UIGINYZaDMEIdwCfTbxKrgtrX9F90m5CtzPs2uDQUvQWtgm24ERd2+gAVlU7X3QiTZkMgj1oI10dIOR5iMKWYo2QDOyQPtzop9oTlbCe5Fai+B0DmgtSzs8gg9Z76MvcqM4jnbGzGOnn5McthbBud0j0Fr4OrSE7H20hWQ0NS9oD8nlfpZLDDg1JfIqM9palnV4WWWPn0BnPBwqGn3WXnYg0scYg9biKZuH+wNoZ5lnDdoCl8ljouXOshKcivfDH0dTM0RrgOo/wu7hBSegaPluCf0MmmjR7ifzJUV6uopQ9zM6rDB96vhhNCFaNBSysqVIN0HLNfU84H9GwywMukiHRbMO+UvQptJe9nKki4Jrwl+C3oH2AlrL4Rlpb21K4y9BY9he4C/4Ax5mmNL4JWjxRH2Qpx6vz/8Tw9yNX7J7oIO4EI54QutJS/AckZ9ZlOBhC/979E7KpqVGOusZxhOnQ6Aj/ns0lgZXIz2jnQXDzuFmdPS/0egERrA/iXRvJNRSz+jlLq8Fm4wqO+jRzftoOMSgRLrkh4cBz2M2zmgMH373Eiw/a9FdvxF6B9rL/jXS0XJMm/XGuGCIYSwHeUc4nSelyWrRHtkIjUF7uYBtez0GpO1lJGRGzyPeYHDTXEq0Fp2QrdDo9OLEcCO7s0gb5I5Qyc9pw4gCXA3tkWrRMdkOfXhJxA5+5w4/D28QunN0wgiCdsbADNDAvCF6B462QX+8sUgvlyb8hUnLDIOwWSAbGnRCtkRjMYYJI42iZ6QJSZLxifaPPAfKAaRrpSo6YorC2BQND/Rhb27geatB88EUCIPD6NPB3IutG3RV7OCqyPqN0XvABXfXlXTeOqMLcZmmzgIjbgUYut8KDRcPbBj4I5PQ2YQQnGr1tFaL9hP+zuVtdA684ACmHCW00bdg1al1ziH62DYc3XcrGpdvokVHUfuFlxkSugO5Us02erxiouPaofoaxet7xO5d9F6NNK+GpUOoP2DHlutkQ4x4JWf4NcXwN7a3d9EPNdK8WhkdSo0J1oBBs7wszxFhQdFBuWDYnWITH99F52qkeXUyOpYufY2I5Uobfzqno52Whx+HrRGKZi/13kC/X/hxsKw5F5Zp8wvcuTADdMeqmZq4XjVzRX8N+AOuHBJq4NDiuw)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AJY?ABdCAM?ABw8G+n)GFBMVEX:/+DvOv76rDR5flpsu/a3MKayPD88s5VVf4y?ABmElEQVR4Xu3aC2rDQAwGYUv7uv+NGyiw0CwZGjeMgP4n+DCDiXCuj6/13i5hqAKXpup9llOBS1X1Hq2gCgITVOVc/edmqbL2ooYrtqhU+NtVK7BZ1DVKhp85Coafj41y4ef3igWWWdGVe5XCXy9dobcF4ZsPjAPzXRzYvLlGrvfC7zc3bwYmsJ5dGYfAFBaH77A4MIfFLofF4UssDt9hcfgOiwMTWL92jbsDypvh582tP/1J4bDY5bA4MIXFgU2FxW/WaA6LA1NYHFgzWPy8wmI99kplbjcv3NsQ2IhDWLbrmLu/56xGSVXm+vBVzXuOPR/LT54YvNbPqswlsc6qsd+FDusce+45rHPse1Jb7Rz7TkthnbPaKoPFKoPFsTuseBX7uhxW6xC7cFVjVtJVPUFlsDh2hdUgdoPFsRssjt1gcewOKyB2gcVZGSxWCYOsqqrq/CfJV/lZ/cd+n8VZ+a5IUAkuyEpwgcpxQezWAmJ3lhlK7PxRICArRbX3r2IWZeW7ripb@XmApXmApXrusptQVaa6w3VFyLLQb5f38Lo)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANI)9C)AD94GjJ?ADQklEQVR4Xt3awW4yMQwE4P+heLq8VJ7HZ5/nOtf8DS61QIFJCt0I5kKlKM1+8tpit/3XLiEBd7cedwfYVG63kG1/WpAIt0H8PosYb8G0Cp7Bi0nJGcRHqNT8GsWrQ19L4ggijpM7ZGD2d6Rm6ya5Q5foWJI26R2qRAeTtMmliaJEf0ty01kmmSjRfhKWSRAl2k5y0QxyR248ggTLeET0RpDWu4lmh5HcAbJlCElyAPzZROi5DDuKRMq5dHsm2WQNMFg+inQvy2dStN9+EkS3q+YfcHeTKEiqTKJK2EBqgiR22Hgtq/4eJH9A4u0A3X3j4QlSehOwh4Rfk/yccaflQ+XuIc550t1nb2RBDiHpiazDCwg9Q7GzbSPR1o9EiHAOR+Rw7iHBfnffdVAtp9OpfOXxLs8cQKKbrY9wdpGjgyJtluR/QYI9SlsoUj1NkvATdx5NmjsQWSTrQFVbRtBzNIkr4w5fonoNsO+CfVu/f4yOc++fxdrtQrRk8QvAajlvsBaJX1fLKRjlfGp8SpLPipJUNOk2UAs/HZr6SJDqComzjRQmlG6qWCRVtVBPpUSdxqRYwJcRkmSYFQWpA84qihsPjdF3/aOohUgNQ5LKmRwWno8qLxkPud27qZwi/pBkeYXdLBauCp56XnVW3H9TJIMWJQm0GioqkiVJLbQYD9ckC07OhzJNMmhRmtgZHVVfSArP@TN1JmYJJkUJSlqw1eSAlfM6l2Sd6x114XEqwDDMmmRhWiKRHKWlM01IKXQY5T/Exe6+Nre6WZdVHM+tNDZmJQyRcIdUjZTSZJ+ujDO0Xk+PFLytIggyRsvBkQdkALdlz1JyoRJUV5/PlvYkASgWwCsjYcyIOUhLUmqANCicHtM21KZ8Pge9xSJtWuqlXukFt4kyTL5VI1W4hlne0WilZKkX+Rp0WZStNIzJKhv7Mc+1UbnrZCUaAHz+tcp+QVipZeUaCspW+mJiQd77pL2v+Y3vFi0/524cV60n0RqUZK0aD+J8XwNkg/+om4Pvv75newjDS5PPAPCprKVpMOPI3l7JxJmSPw4Etqnkbx9Gsnbm5Fc33XvRmpU/yf+fqQewsX/5r8bKUIiZe4A21vmP24hqdv1SRFy)AElFTkSuQmCC!