["..G$ ","|describes serializable type|serializes the type|","UVXKQXUUUUUQXXusing System;Xusing System.Collections.Generic;Xusing System.IO;Xusing System.Runtime.Serialization.Formatters.Binary;XXQ[Serializable()]QXpublic class LizardX{XUpublic string Type { get; set; }XUpublic int Number { get; set; }XUpublic bool Healthy { get; set; }XXUpublic Lizard(string t, int n, bool h)XU{XUUType =Ut;XUUNumber = n;XUUHealthy = h;XU}X}QXXusing System;Xusing System.Collections.Generic;Xusing System.IO;Xusing System.Runtime.Serialization.Formatters.Binary;QXX// [Note: You can paste the Lizard class here] <--XXQclass ProgramX{XUstatic void Main()XU{XUUwhile(true)XUU{XUUUConsole.WriteLine(QKs=serialize, r=read:KQ);XUUUswitch (Console.ReadLine())XUUU{XUUUUcase QKsKQ:Vvar lizards1 = new List<Lizard>();Vlizards1.Add(new Lizard(QKThorny devilKQ,UUUU1, true));Vlizards1.Add(new Lizard(QKCasquehead lizardKQ,UU 0, false));Vlizards1.Add(new Lizard(QKGreen iguanaKQ,UUUU4, true));Vlizards1.Add(new Lizard(QKBlotched blue-tongue lizardKQ, 0, false));Vlizards1.Add(new Lizard(QKGila monsterKQ,UUUU1, false));XVtryV{VUusing (Stream stream = File.Open(QKdata.binKQ, FileMode.Create))VU{VUUQBinaryFormatterQ bin = new BinaryFormatter();VUUbin.QSerializeQ(stream, lizards1);VU}V}Vcatch (IOException)V{V}Vbreak;XXUUUUcase QKrKQ:VtryV{VUusing (Stream stream = File.Open(QKdata.binKQ, FileMode.Open))VU{VUUQBinaryFormatterQ bin = new BinaryFormatter();XVUUvar lizards2 = (List<Lizard>)bin.QDeserializeQ(stream);VUUforeach (Lizard lizard in lizards2)VUU{VUUUConsole.WriteLine(QK{0}, {1}, {2}KQ,VUUUUlizard.Type,VUUUUlizard.Number,VUUUUlizard.Healthy);VUU}VU}V}Vcatch (IOException)V{V}Vbreak;XUUU}XUU}XU}X}XXQXXs=serialize, r=read:XsXs=serialize, r=read:XrXThorny devil, 1, TrueXCasquehead lizard, 0, FalseXGreen iguana, 4, TrueXBlotched blue-tongue lizard, 0, FalseXGila monster, 1, FalseXs=serialize, r=read:Q","A*EAsCAr.X| 5(CC( 68888778774}b(CEXZCCE%BXBX","List, serialize."," A List can be serialized to the disk. We want to serialize (to a file) a List of objects. The next time the program runs, we get this List straight from the disk. We see an example of BinaryFormatter and its Serialize methods.","Example."," This is the first part of the code example. We see a class in C# code, which you will want to put in a file called Lizard.cs. But you can also just put it in the same file. It adds several important namespaces in the using-statements. ","We see"," a class called Lizard, and it has three automatic properties. These store values and also are properties so are publicly accessible. The first constructor in the example accepts three values, a string, an int and a bool. ","The Serializable attribute is specified right before the class definition.","Note 2: ","It tells the .NET Framework that the properties on this class can be written to a file and read back from.","Example 2."," The second part of this tutorial is the Main method in your C# console program. It allows you to easily see how the data file is written to with BinaryFormatter, and how it is read from, deserialized. ","This code"," is mostly a command line program that allows you to type \"s\" to write a List of classes to a file, and \"r\" to read in that same List. It is fun to test the program in a console project.","When you press"," \"s\", a new List of Lizard objects is created. Five different Lizard objects are instantiated. Next, we wrap the file IO code in a try-catch block. This is important because file IO frequently throws. ","The Stream is wrapped in a using block. The File.Open call attempts to open the new file for writing.","File.Open ","file-open","New BinaryFormatter instance."," We simply call the Serialize method on the BinaryFormatter instance. This Serialize method receives the stream you want to write to, and also the object itself.","Deserialize."," It again must use a Stream, which is wrapped in a using block for maximum efficiency and reliability. A new BinaryFormatter object is created, and it is used to get a new List<Lizard>. ","The Deserialize method, which accepts the Stream as a parameter, is slow but also powerful.","Finally: ","We write the List of Lizards it has read in from the file to the screen in a foreach-loop.","Foreach ","foreach","Properties."," It is important to use properties, which have the get and set keywords, in this sort of serialization code. Properties have special metadata in the compiled code, which allows the base class library to use sophisticated logic. ","Property ","property","XML."," In this simple lizard example, using XML serialization might be best. This would generate a human-readable and editable data file, and would be more interoperable with web services. ","XML ","html","Summary."," We saw a powerful way to serialize binary data to a file. We took a List generic instance with five objects in it, and serialized it efficiently. We employed the using statement for optimal clarity of the Stream code."]

%iVBORw0KG;)NSUhEUg?ALs?ABECAM?ADuirSU)MFBMVEX::V7/mWn6Gi3/N6enrg4eG75/a3uLjy+v3Iycnp9vuc0eOYxtaQtMD4+Pj5/f5J+Z7p?AC2UlEQVR4XtXZ646rIBSAUfaF60Xf/22PR+xkpBurHW3x+9mIWaGkhKJOadBaq1vmkf9n78cfkB/ZG9K/hfeN9gKQf+c/audGOwGa1w03stvK7m9kx8pub2TnKrwMqq2+eN6RjLsEzsz64vWeiQjOdQ8z/AK7ruyRzsUPvsAP2aF0cOKR5uDMpXLcTqVj+yrT0niOHXnT7qe4Kk9Jdhlv+RFGWoJr7ELSnIt2OY1Fnom6tssNKSX6nbnOHsCdaleG6CP2AEQUzrVDZYcmJ2g9vGsHIjrNrn9KpUglJz9uFwz6UL1gEN+9tuc0F8+xc2nf77tfSWxY7WxamnO5fKndjOKPUZW/0g5T79iNE+gCwip/mb0AjtoNKIku5fuyh9aBXAy7sisxz636t/Mt7GHOba92RHyyh9K4ww5hzp1tpzmzuWQSTUWsPiuFHXYqwd/siHjcjlSKuGm3zy8vnWEv4Vv2ErbtJfm7+aKdIy3FG9h1Y8US9m8fuA6LI+VHsVe7sswSv6pPu2axnEz/dmW5kQ3Qu31AbuvNQbspvbKvXEfsB/DszU579cyn7Gqw3Aw7tpc0tvF927f1CEuuV7syMeOLs0e39kBTSfLbXu0WHyUqPfNdR3aZYA0txUofwV1kl13H7ax/8IlrGKg6u23XU1yVSlrr0+2soWknM27+v5BrO+9LdrFU2rQzLtso1nYB75/XQ8z5S/YSTnFV3HHg4ozM/E27nLivaq7r0Z7FC5NwC3vjsgI7sheLOEa8MbEd2ZOMz63DR+jIToQiXbbLE5/hSntByHbK0gDZLp+38rwLOIDP2pGo1mOmVe7lMT2TAWN+XcjRnmr75uCwcYMcMyIzYs7x9duDRf4Jc6LSt+ztQEmF1e1tr/Zx886/C7shuaDkoCN7gNaKkXMd2cf2TMpBP3ZJY4JqN5pe7GbmwEoOajsQ7N/MzZuMMQBu18NUmocEda/G1fXtP47JaK+yvhpR)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANM)7CAM?ADWzk8E)MFBMVEX::79fz47vv+/P704vj25/nx2PbFyvHj5filruvz3ffT1/WKl+Z6iePw1fWapemLxEvf?AEGklEQVR4Xu3aa3ODKBQG4HPjrub:9stajyLhFbYZKfN5P1UBh15gCI4gV8SRmR4k3Bc7sH3I9GH9CF9SB/Sv2M+pL8QPPI0wCeM93BVrsNIRtYQIX87SNysQJJ1EYmCoGk/iI+bB3cw3yxZbOJSxApdWB60os5jFOqDipixVdc0SaQgTWySzBWSwjVMCioT+bkkjO2njJMWrEV2eRXJlHZZXkKyDI2uezmJ7GtIC0HVda8nKfUVpMjNQbLxJaSavgiRSBwnRUNotYit2SAIIHrZV15FokOBX+knmXwLq4lKksqzFavmjJLsV8zIFptKUrtCfpzgkulor846TUXaQW2SJX4CScvSpBcki0NbZyXFGKm6ThMN8bNIkRsT76mkLJLWHG81ut3SmtAmYfHGYqPCAZIpSHIigV3q0PNJbBWBaGwhHydlk5jkc4ruq0LDJGyQmi8wM0TSR+dhwjkndJi6SLZB4sciS9BF0hUOyO4mITiZ2JZZTXwi7XVDJMXXEb5O0hVO27SaCNSk+35NVtX79aNKrpIsws+miHA5tIp0OUCJMaNymwpTfeBcVeZEulfFAVJ7Ly4I3SQRs5OMEdFuVlMRJDL5wqrlaPaIGSWxOXsMMXQE7b7A7SQmog0l/MMnCyKqWs601xCNknSQ6MoXB5eTciG5HACO1q4kohSmeZ6nEFyye:rLZwFiPfyeu0U/Knl3rkQgnPeJ+fSGIk69ws6kcKcA2yyKUZDdJs1zkgm6S1sJG70uYgrRKGoC0MknXcIYyaU1SRmI6nJcHELNkwzgZKmuWVCe52kOb6w9ZnMZjLkyu4nhscmnJsDdTtxwwAJe99LtYnp3v1beQohTNnEcDLlC2MUuptuYQNMOkw7Mm01N+dqkv2BBLI8DHWZTIy7SRtInuCB6StmN93wMBymdIxbUGxF+J7E8emm2fnMYIC26dwtfiexO4rbX/0kNksjOGza50yCb0ysJleYcCumymTkno1AWr4oWqRrjQCkHGQ3a6ZU38LrhYi1qZx7k99JE/SFbJNkuct0BIuF2FemI00TNhbERpobPNr2KKIkhDETUJg1odekZe2WjlSHjvL7WK9J4124D9Y0YsIwa1IPiapjLMarJFjbfKtMGkwba8QEd9MUHI2R7C4yFydesfzi7WRCT3rJmMnrZqkrWH5aI4nXz4E65UMWlSavu4jRued6J13xnzN8WE9zmVKrcaMmnX2+d+Zp+g4bOF0z+RETTUOLubRIV8+2/pIpwfgaofH/xWQ7Tuvkcm8Gt0VNlFzY2hQc1UfjR2XvcqhFmt343BOCX5G0QXJuOpiNtH8mEIUQfkvC8e4DVFPvz0zgV0VPK37/E/583HxK+vumdCLdAN5toALCO8S7Y1/vPLxPyHv/v3r+AfuRu9NU4gF9)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AHw?AB8C)ACOdYti?ACfUlEQVR4Xu3bsW7rMAyG0fv+e9+AG0eOHDVr4qpNgAeO2gQI0G1LJEaLIPFg+wcafy9wYERmGMP59wEMjVuFZN/4MiEtF76pC7/wC7/w7tVyUhFm+oxZNFttR+PdS1amx3Gu4yi8lST0IrZ+DG60JS6H4IW2lfoBuNPGtO+PN1oTTdlKqcvivtRiSX7o++PjW01WvT+6D6quuu2OTyttzCe1O88dMOHspmcAftd5APCpFDkCd4oyAp8SuELwHDhD8ErRQOCNoobAO0X+dvjAXnnUoAcOeqsBh4xMAD4YONsLRQsAv104TwCeKTIAXijicT5eKaI6H+CA9fEcfF2cdZyMt0y30pjn4aO7KUUxXg7EGz1JwkDgbGOicPY5IXikZWDwiK1j8IjLgfjwXxX79XgsjZMnXDNZdT3/4YDrXU+gr9SonI9PZ4q4Ax8OkAHwdZkZAHwKRY7AK0WGwAcHrgh8psAZgheKBgJ3ihoCb0i8U+QIfLwt3t/2wC3I+9yQEy4BZ/ugKCPwQlEF4EMo6gDcKFLkAlmQq/P4Oz8aGierPp7Qi95tHTvi69QUzVa9jV/wcBO6x23uixf6EYumnLN9lZPQjwLaETfaXJ1742krzT53x3Wjnft8hL/uGd6rJX5Jpzbnnvj215O09OAe4cmfZYFvaDQvlpMK397M0pTLOgMe4vbqzbF5SBd+4dWSiogmPx9vRCyqQkTpfNxbj6nFVHAHrpDi8EaMxAWHOykOV9yBc6U8Abh8xsRlInD9ikgcgEe9EPmbDplO1GH4FGrAK+f+Tp+5e7+f9no2rusyUc5fJkpWZRHN7dpeD8MvXPKz0sfHgX8NhQXG/wOMvRhmEaG4n)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEX/6Nn:/+VlZX29va5ksB5)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?APo?ACeCAM)sV+dD?AC91BMVEU?ACEhISZmZn:/8?GYACFmlrM4AEXQAEGIJIWsACXQACGumo5wAGmw?GuEgn3:/fc188?HP:+/l4Nf/+OWepsXv:4/U4f11ML/6ci87v9xl8cpU67X1Mzu7OjTzsTf3deem5QGEnIJGGoHG3IAEWvDx9oZGRkAG4bKvtGWzvna:8zMzNMTauUlJQ?HxmZmYQEBCenLZaWlqMjIylpaVdY6QhISH/990ICAgOJ2s0SHpra2sWRJPR2d+ayO1CcsT/9NQoMZMpc7xgZJYdRKINMHxCO3JJPnMnKmykqsi9xdoWG1yn4/9cjsuSksm7q6QWN4i0lKFJmNcAMZXdr5e0tcxDhr9xx/G8jIQDMoKLqMaDte7A4vzwvJvM::zLqjhpt6eXO2s6zW1tbt6N9KSkoaMXN.kIZKHiNl7dQn+A6Ojp5yvTJnKYYGI0WHns2Zr50a6cmSYyuq6Z0g8ImBWNbOnrs9vqTW4iUs9xber9SUlIJS6cYKXbm5N/X6PZVaqlhJ3EgY7Fzc2XX8/85VJgBB3sAGmHrv61zVYTG8vblnaB2W3mIhqmopLWvmZbTnZRNTZFknuNfSm9rn94hB3NijMSEz/7Lqpeo2PJhtd6uY5E7dbi6p7SxenNSDWkplOTwwsd6rNzd2dNwepDJxr7v7+9qdIsmPHTQzsdhYVpFRqZUUUrAvLU/K2MTF4LotKRAPjr5+Petra339fJBQVB7e3s1QJKCYYyuv+yyhYMoYMaMioVRYYxyc5V7ZnpzOnddLIWdfYyJhoOMjH651OHm5ua3d6hYXYQXHm5sSomKeIcSEoTWx7eAVZ8nFHZhiK5vRXaReZzMzMyxqLGtY3cSElvWztCek6fEwbvcla8wAFuZTHeDfJCUa7m/h3tydsUxMUo9OTDFxcUpKSlqcYF0db62tra9vb0LCo5CIXt8PmhYNYqPUXqqfIK;7NALISHrOY8UrV0c3He3t7w5OQbAGyOmKhra6Ddvr2+dbkkTawb?AN4UlEQVR4AeTWZVAjSwLA8VSNJJm4uxsRXIO7u7s7LK7rwuKsuzurrO/ze3rP3f3c3fXDNTMBki24A46rd1X7q9DdSVeK+mfCNCTlRc0j6dom0sV7qkdS712SRjWtfgQptU0gXX21cXm2/EfNS+hcodvL8vaivBbnsvF2B4eOpzeOOaPOYayA8SH@WEYRoxLG3XmtUIdP50X+MTCej/svAH/wpEeEnqJcAW4yqA6PoAt4IfCYFAYVApAdQgJoVINrrYYHkajkXUumICOBoC1Y4u84DbxhOhevkXTPSC7wOHlXshejxPU1yBgg8cDr4JB++lC+tbBy8CfTaaI+6Fjxp7tf3+dOhau+oCS/Wxywv6rBrF4e5Ke+CYkyO6kMVw787Y9yTS40PWI33BNHwkMTMRiwMCM4h8mu6YzFYNPc9cs/QZv/t7lF8D2J+G0Sj/Yg6eu9eSoNZ50zs6FdHGNH87b25sVSlHY/tHyHQql5OgUc;6EwvtU0BZ7++i?wGkjBZkTa7mn0YHYrAp0GsDMTkZY0+a8SvMQ0Hb55sKbf/foPwKfuOzcNfYwQmDsNgBVTMJWPcOfjqv0hXOyj96GyWe01YWI37tzjXQbqyNnjTg8dJWk3NQvqzbiQ3EuGuuERWlYYwIsf1UdK0vOGcDGiqT/C6/G+tdakfDYS/YhLlJ2wwfXbwUHv8KxOFWYGp6MdvPGO/RdtoQX0j2/Wxyjc3FKTsLudZ3iwsKMjJjrSkFmSa2t9rHD30lw86kXjoe17Hs5jmVpPJN9OU+lFm6hf9pyIioKe5XPMFNHV9X11iRt2LhQVozuG1Sa/Zyauv54Wx8PRpzRdB7j69W9XO6T/2ux/m7n4fpDeEhtv2gb/0C1mfDl3+FRb52VMWi0USI1MXSeNEx4qkYln+CXvSUUmRpAXaY31HFv1cMhxe+XW4SBKnP8cbsFZtYH+e5BUpPRvLPt3Ge7/yzvehtw7wDnLlEa8lw+ZI9m/gE+f7z7HXd/SVS94V5URBnul3FKJiLtbKa0mPjok8f/mkQnS6DZrgrk2691a1eqs3ng42VCySn+raNef0mZ+TGtatqwubTS+xVYDbHILozceLkUOD/O9GqI7lyaaLqnps+ZMVjbKKcknaOXtURJ0l4tVPTlVC7ySTy/INuSJ2Tvaw5cH6GCsUvb9M+lUu++PuuKHKfRvZu1p5B5lIF3Qmzwq1/5W2WZBUFn0LNqePe4h+23Uvy3YmXlTMHLUKdnfHcRWQ5Ktc6HR3YAy2+nQlB1AqiXQVh6OaS+fXkPyDN2mUzulN9HV/amho+FGQe5OYlsF+SSy2SpKRC5L+ISg6NB36pKRS2SbtEeVbo+NsFbm859KrkmWCd232HdnbywSJSIb0bPj2dCn1BCS91TmSAX1YJnghdvDLXzZvFk1thJ4/wAv42RN/EFw5Cp3/dYxON3nyGdFrHpnbqjyg4ihor2x8I3Ts+HjuvZMdnSO2f2778o/D4J261X/hL3oGAzc5eHpTLZ1e20Skc+hudNVNHxbfOT3ILSCIRHLz8/a/Kx4jH0HRz+X0EEph/Q5z6UvUWOGOEvnuwurs0ufDhWjKWyFydE+i8UhAo7w6QS4UTtAoQ6+uLxUKB8CV3QtHpaRU9yuEKQPxKLpnRP7kDWFSl29cKYruMh8RCoXVh8ltU3Asinb3fRhTOhEvTFKgqPCKvBqLAr810/e9rpQXwTvRxNWn83tnALVGA9JrN83Muqm8Dt/gKZUaDYfP53Cc039ImjMjxo9x/CDP28aiIBTwlEFFwAt6xGhEEMSonx0MCMJAaAZ8qTeX70Vg2Eg+IHiBTINh2?GfEGDaTR8BWA6fCJzwV0RxmEwlwtjTIDLZM7OwCh4cMHstepzne9PrwW0Wu31gGltLY6uBVed76kl0J0Ot9BLP5lzCfxLM6+xkboow8Oam/EpYYvOcbD/W834SHaxZuf67cd+MI9YEjCnjccW0ikrZCTQloO5FO5a8FotR/rvviG+3yCOFk/3ZH37/8LL/1OsnQv8H2iI9MeDggE3n2AfN1f/Ys7+VRzXFTiO/6RtA2bh1jObW6kRQkISQuCnyfUxLlye0pCXWXbhDpwi64OqdIG8gIth2muB3dv1ncTOn93JYWeWe4b7qTzil8B3kjEZojz7kZ9Htyl1tby+vjn23t88np/nxbn64Vgpr9irlSaZbeXuw+cpfUipMAZ5rfG9YBleHOX4a4TgrL4MXe/wUqAi4KVyAYTh1nwnclzLheV4Nf7hLCTndFk2Unvfmh/X9xzfC10pPP6SljhLSoBRHHjD8BLfbyhROFILnOg9R336UcqrOefriCverfO3pP/j091En191otA8AOiGPAXSkAIPIWggjk4Z7xKSYxZ6AKgIUchNWaSYpBWGHIykBTDNy20aEfs2BA8dJEORHC6RErYqceRGp+4dI6QAq5tAGI6qsYm.h8fuVwQjfPc7R1LkgIskW6rAJUVQJUQ9rr05afn9k/P5CWdTem2z1uJQrcBveWNRMwqm6ITsY44in1POfKM7zqwxqy+ze1PAg2B572Fn+asXEso03Pu4fRXjpDxxQKh57Rjl5Yl74YyK/3QHIZH1WPftqF61F0N1wbuTumPdPGA3uj7woesGnuAZQXKsdL01ekfv3y+md4laFNer3qBjqAPiI+0U2CJdt+96jqDbgDbxzTHUZ+gJwAoBdQ0Pz7l0M+R8XCZ9LAWluKcrvZlU2AsnntxUjWsHgfdDIMGWgmc5xxQjRgGh2rUnEzpKILGa9N/S+Pd57u763SfSQA9QSNFDWvRG7QBfM9k64h7aCImpPWHdJ82x/lJ3ok6At5a743Th7nKpEfouFDwfM99aGB6REt6gUncl4KorFJjAd1wynCkR6iWyBZ5CjRSysscUGMOEvGw9NNvo/Il8dYCyhj10/TlALAv36UraS1D1UlQ7YXglJMUVIPUTPUst2bwOIrWasAHseCoassv7U8OYIJSoaZ5QSlN4EmtAUkXtKooUgHGlbWYEEt3QLGgqYdf1anHUVF7JMETYTnAKXXnufHAhtLgGbUpgIpSulI7IQpA1R37Wfr9P51zrFpepzO8F93KTuP9zW/4wzdNH6:1pPovfL4JW99HM85fuDfK319N7ukD7qrjXX4FfJR4yb28yKlcNASvIfNt38/fZlc0gkERb3AL2kkbondT9N9XeIg53gPMc1Piu053QvrulXR5Q/CK5MYhSiMUCiFIAqTcisq8N8N3QAhgAyndP2coESSeLiasZrhgHWNEQyS0gITT4SN8MYYhYQK4mEyQQtEKiowa2iFWHteKz8Qwf+O9D/+NfsjJJd00+8CfE/TrzL0+nEB8sRCBVqr3QYTJcPI+J5VmYK1qCkmPaHS21qvE8R7F+8jjmSjFMo1y5cKR0PrZYCofU3RCd8G8LFUHlAtgdvzuGZ8r4o18lEvMvzv/efDh2+zdHdJF8eQulZFNJ2uOKAHDUCvckxYF9Kl4qMvMoWFhT2nm99z1FZXEXHv3HpO148ANiPKcU5f9QBALRYL1Fv0AXHedgFujG5kfPTlElWmq+Jvuc19Pn0vI8/pwdW9AlgjPLDtmNEgqyKrIHQ1Fjhy603MyvKrz+8VGBUtm8/3Wt3nhjKaw0vRDx5HVaM7FbNSNnO6bKIxSLrY7dALNAQuk3UBxRsa49fo/nTP8zyLRcYeDGaurT1mVbbFCcn029N/u/s4ub7DE1ICOSERwEBWgEoSCbBtojHjouKruPWReABWYKJNCcIRSAoAxSPHTIsNUBjjMJOEKGAgw+m/HXDxAEQTQnCEKcNQiKIYUO12DjNmAk5KccnVtMAbbe77bnb9aQ5vU;rcEMgTxz/t5zMTzbbX/00p6LDLc6p/7JLByUAQmEQBgULaAHFeB6MJQgWMZFnb/+r8GRnGwz7Df3ueJfafTV6wPZxrW1h9Ompnbn0OYnudXTBowseXfDogvc6uuC9ji54r6ML3uvogvc6uuC9ji54dMGjC97r6IL3OrrgBS94r6ML3uvogvc6uuDRBY8ueK+jC97r6IL3OrrgvY4ueK+jC97r6IJHFzy64NEF/6N5HV3wXkcXvNfRBf+Vd8eqrsJgAMeVrIE0kPnzS/cOlhYuB/o0RyIOHTMKvkxQUK5DpXQ6m9B3uHMLfYDT+Sq16r3z0ULzRyJu+fF9u55lUz9USZ9l9JUnOrja1sQuOsnO3qONdfThXxDW0SWoJpHn9tEVDcPfYWHAPrrAqHlTbiFdogjXpUC0kQ6oBdpJRzBoJT0B/sg6+s2tH21j9qSfVkPX62qS9r+uh/nbj2W7wu/aLBcdfcdI37cmk3T0gSxmr1IL0nXbKdkH2ZP+SZLmWzUHhJTICUrSKM3Os5ckmTFKtBdgvsSh40AHRKFLgDSmC5wgKMPLS+hJChSbwB3RuczGdFGuqZmMzv+E6WvoqFaRAOQjOr+X46kD/XAC/o70JHRihBGdn11ajehm47wvfR0Y09B7uVb/LLzyHT0p/fIiutp/lGJY+Fae3I5jOqhCv+XURUEF9vRW7jE9WniOiBIA8pgShJ/vhXQ0Bnt6K89OwbDwJ8JzaGrpmuRvRPe8bpCm9mU381NwD/qpF2zjd0Wf3/4k7S9Hb/6+elhcSOR3VycsuJ96uuuy+tkXY/U0gTTzN2DYElCWVN20CgLoFj49kznKXtF/FzhW7VM1J2/oogJp7EvQyMn10sboNnTiQ2RpfwG3cwXHxjxu5g)BJRU5Er@ggg==!D%iVBORw0KG;)NSUhEUg?ANE)7CAM?ADSO585)GFBMVEX::2+fbR6dTx8fG85MHr6+vl9Oeq37GkfBTm?AEQklEQVR4Xs1X27LiMAyLfMn5/z9eZgt4EiVVz7BlVo+osaNKNtBW6N2GD9APoP0WoKNfh3eLnwfqA4ufN8J6u4xnpTp7yKJ3BQb6A6vXg/k4nRtYe16hFOElpxDXNMF+FqAXUuUZWDwabcCiSWctpaiv+4VMEJ/kw1rRqB4rmX1xate8NYhbCX+2MErmEmFY2WFTp+BTfV1weystqU/TM9/a5llgUTVys5vBk2jDKbJCgeoSbDF0nU6fhwfsu6SCvFsiHhAZnxCjlzjQyaUBJsuXETuKo0KIvyYCvhJ8SVAWbH1jPEGxBsB12W?T8qetfZb5xhMzwOhTeIqloVcxyo39fMBUC4pdshMqxN1CnAPbgnP3LUMNUNlURXg3DlZWC8D68I2KYqxGRrWLuDQU1Cx4+jmAFuaBF+Xj3RvhbZ7l/Ac8uDetoo86UZkIi8dtsjxLLX7VgJclu+SOlqV8awoCXqQjIKTqHSceAxV3sbEMmWZ3gqAbxW51yAIRaAKXhwpGkI19uc5lVRm0nVYkaPCyopMWBRjE5yfP49dn/wjKsqi7faennBqacIiG5dVO1fkp7Hj1hy6phRhol0q6hM/v5PTWOE0dj+KYou0oiYVxayIYn22/nk3gEPH/nXKw3VFUIro5/OEc0V+MqhFMEV7QSvSYebQaXAHGtSoASUUxXvhuqI8V2QfKnKO3f5ddbEXrinq9yoCx45utqEy/QZF1FeiNR27StbEDVQmvqEoFFpTu6GX+ZFrqvbC/YrANx4x8yCTrApbxoKqvXCHIhqTGQtFajdUskjt8GXUvqIoCUoROHYVuswlVXvh/tRpRYRl7F4+ZGwpfEeRSUWXYtffhtuWav+tIt4N/R06cOyC9sK937DmAo1B02KvZHmj2IH2ws2Koklc2Q0vi+jvTLxC53cpSv6VI6F3Q7x9oNjRXrhdkTUNvRvKB/Kv9sJNiuLfxM5IUBw++Ia6TZFTv94k9G6o4ceGuk8R98OHu6FCV0NG1I2KuF98sht4+D2TQ4d7FO1CEf9iN2Rm+cfUrYqMJeGD2JEPmTZTfqOilsv1avgwdpbJ/hV1pyI/JBGs/zZ2sRl+MHWrImRJIlF9qAfv1rVJFTpNaUVdKQq+yiCJEC+Qx2TSbvhRlA5dn7OiJLNmZP2N0Qi9G9iHifJtDZP576uLRgeZdFlS6N3APvhIoRhx17ryIeckSobBJK2pKsvY8fCDKYbpaJCgXfg8taZa6Tp2PPxMMbpWZEoRS0qLrat1QsWOh9+ZYuBAjsCB/ROOA3PHglmwmldFx7lJD5hZpitqD88B3HBWJMscsBcy/S/oPIPvoSl133R5VwhJAn7p7bqgNgA8GUMu5BMFfK4I5IOkxF1LlH5Ea9pX1rGT1G/buw6S8En4I2Lnivp988uKtPXaHnYZgloDkAzE4avj6aVGmuSOdfEk6svAG+07+AOMW5xU/5K0ng)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANo?A.CAM?ABZAIXj)wFBMVEX:/+DvsZ7w82HzNSJ1Nrs7OXn5tfx7+Pg39Cb5ef39ev8+/PT08HZ2MnWxO1RYGC98vLD6uzJ9PSy6O3B7vJppbW56/DU+PXW+vCSwMOr7e7j/Pej3udGT0skMien6OrJ9u87PjdkiZZVdotDRD2y7+/a4PCgz9Dx/viV3uOJxM02Ny+DuL2429mr09P5:iTzNHj/fG38fCXyMuU0uATHxOU2OHx:R0tsH99ff+wfP5h+n/5/r/NeH/9f3:/qnobj4?AObUlEQVR4XuzVUW7DIBgDYM5l+yf3v9WWlcal0EmboIlQ/ZK0b19inHSZfPKJgDVZjO+s52KUrNVBpYS4Z60OIiUWGNeAMeyJtWhxRFqWBkyibWnb3qTJUqeQQU6hbfe8ZzOYOjaHI9+Xs/+c5cLByK9oHEjbOpm+hoFXNJg2QDYXJxCtgjXt4HEobR4u+2PcdC9XNDyv5AjYLJoANu2DaahpN7RvRsjm4GxoaXQjTYNXZBRtEo59mk9ThEzznyxuXJ6GrEeafJrszbQpwCA0ZEKG2QSQdPNYaiVAvZq6kdUyWjUANgCnzmCo7B1Dr2qqiuZn8C7aX4+VaU8CK5xCcwfH0Yb;or6NPcRECqazDpd5hLWherSSCXJtCDYvOKTbL+dLRcykHKnkMh5l+BRe9CIE2mtLh8sO3ijoTMjKXn8EabRm3EqzTqzGhoL8JmGlgZkA86mpWKjVXikOappu9c0T+FlaAJDNYKpT2NS/pGhWE2TWVegCXt2hbaCEAqNQF3IclHD/ZfpixS73U4bBwIwfAeyJcuyAQMYDJAQ0qRp9iPevf/b6ow01miwU9rw9hxIc/qjT2ck07Rte8ZaqFtCWbbkMmiLZdg2m1WYMVZrB2l419ZaF96MxUzSIZmHqiBEHAJtwYVTdoo7+Q3qmfXFe3j1zq1WXrmKnduuW2Y7aNnBV7uuNJh1RVGs1+tCBtb9HsDW5oGZKyAwDaiepm7STiek4VT/RcAXae+CFnAsi7QMhpltdzNjcGZoS2UB6Sg7hDJJM32vDlWgVZWk9f0wqBP07T+cHQDuonGB1p55Zp62RRy8lUdtqkBzLoGx0gkebdRBMQ2qIm3ADWv7QW8n37d7aStJC7g4Mk/LcGi7J11hngaxTeSSaGja2h5GojTBTKWI5qvr6n8Kp9f3sI5kw+6hUQku0EjWtdnxctFaLzCUIY1tLHQMK1IaspSK1wtMnWk+pMXTd0q6kwYOGhPjeB2hZanNcCoARjIem0tksvFRoxSJE1r/cVhwwnYHjW2UoLXZBVZoyMPiaEgztYwIJtrYRkcr0tShxhZpvJJfp624CdpyW2oQYSjLrSvWDy8/npuCdNLGo0MqErieYAfvkitZL2p8hSZw9521AJQyT8senyFnrZ+cKcpyW8IT/Oki5nNFi4NVKa63vI6CJhLDQ5vvDtpYRrQO7sYsK4/H52ezqCsNzsuFPoIMjc9apKleaUUWhQ/xnGj9h6qmqysxOcJ97axJWrxEAu2MH778aczMgqvSMydzsd4btOqZZpGGT+1fV2NycF+kkemdIlrXImj2djzOML7Ban64sU3k8Nf1UfMy/AiWG6y6lbAhDn305Z/QZGFq2bacmXT1pYyiu3IiQet1+MN52EojeWZ6dsIm+u2zNkXrykYbvLqmYEjjaHbuFzRVDLeLBZw1GPM2CRJjXM1X5XS3aBTT8BbZelpdX7kCza/WmDemqR5S8hCSjXGEYZwYHek+B96ksS1ckMs3p3nnwZj+u8JasUkcO0Hr+9GjAQvHLhdASUMg40Kkm+4WTUytmzlt0EIoZlF80kh4hVNKSF0EBl5OwHzEM2kb0Mn7crrPzpq00WOt/FE4a4SKYE5CXCol37jU7bA8Ti+PQtpNI5LH7o9oqKFS2q58aQpthvwK0WUgBB46pANv+j9zwknlbPM6aYsjRdzr4m/fb9Li84xtKzpru/IRaOnyBch4HPG8hZ+VCBrEvLHse87x2Ys01m3Q9ipst2hJvJxnaLn956VxMIWmiB/x15N/XZekIbGX60QnAxeEJnq3bBPlwsbdoo1sA63Lnp4LoFlg0bDQ06QVTcojpuaNZZywEdN9dw5ZnhauzJy6suVsIxz3+Vl7l0UbVDb+iuANa6YazSMa6XUOqmibFxz+AGwfZgdf+eeJd4UlvbblHveKuCveralRQB1wqwxo++apsBOyh4eHRNfIpZO7Kr+139OHTHTOaS3ph3ygBBe8+JB0xdtsapwcJni3aBzZ2vLt8bFsdwXLuL+o8RTRGhpdiz;zGFAW0PzPcYnFpx0BOXwEIu4TVXV4828tZAc2brlbtedZzgIBjBN2G6vqjfM5/M9/wYGhzS+jGBF/bfYZwIwUvMNNLaNaT9Zt6PeNrEgCsCBeB/y5N2tXMlS3BV2IrTUjVDttfj/v2xnznAyIyZwE+TT2jhSH/rpzL2AS7n352DBvZxOh+N1pASSHq7Xa/TdZnzfIEQ/GjkAhLKItRUImnTJqM/rC1WKDmNZos3iUNv2dOyuKiGAuY65XWlFTP8xEoENkbn8bTQ/q/9WqODHP6Q2C2iGEyJqY1bTjruqFwBHTyikMawvRYr8l17ZdZ6enkxHmpYkUYfJBKs/Ge1VZbAb8NWgINLm+SqtaQ7b0+7cAQAaOUxPHrSuzlaxyZ4KH7vTfUUA9lE/K43zyJHkYOKDGdGe2Jh52giZpQ2dAFJXyONjpCFhTq9TnAU6CHX/R4+2SdpOSRFeo1BCrImBQ4hb2EZodFmkaT6Qaa5LyS0a8RlEsY0TCpRihAYJQR6b5bgKFUfdLA2JH7nWDrrWHiewW6Q5bzNDC1LX3cwm0Tdba5?ClKWadO+YF:RBRYoKXo5i80Ka2fm0dms9lAuJHgbUOo/ShHwPXDbUOf6pDxSmwU+NjxgEEEy/OPFofYia5wys4ntsPpOFTWyi2ISHPb9AORMYZVpvg2cfU9S574N/eTgx0QACc28b5KrLdMW5KBthvqLq6o3mS9hpbZQKRMHASF4km9MSOQIY2tRVuobixar+Dl6qtEAyjSGhnIoa7NJijRwNk/miym6x67eWAObXZggensJ/lNGRKbwzarN4l/F2npXxF/bncDegsjCGPHACWpE62soww0xluhDfHNJNlEV6ZFG2liqxQAF2i9aWrRvB9r7VZfsMJTdMLE8qIQAY7hKY40RmmK+6t?4gRG7b/k9iquq45dEiNVFVlqBo0wKQ7OJHygN4gFB2olmhjwGJt+kYZUqAlHWg4sw2SmkFFcCmN6epq1?7Z1O946IPuRJnCd3AZO8x62h8wAK1aeAb4EFhOaONH2OclupLzrixvJfDA4TO5P17gZZxeMJJaJIhRwQjGR9IpjLpcCjavMaRB5QRIctZRdPoQzFH5xUD2XxmT3wZqIHNQ5s4iwNZtv34cYDNcz8bM9sexzLa7GXBLW6ZlnEEvuABu2izwzwygbLP3gq6tKkw4lXxs6ZIy7bYnTZHnadosyOx0VZ3nRnpm6UhwFHFvPf2Ea35tK3BWEJXtJG31KTQ0Fz9qeGkTT0uW6T9QVsRiK+3toeDetCfD+dgx/IqnMiURhmNriMyTabTEHyPSNpaW9NId0cJHiFMcVnZ1kG2dM1JYsBtEg4yzfeH1TZ/WlKf2n15CbSchQl12GIAIy3yMu0Z+faw2mZKLruGtKINULoAq/S30qDr52TI4r4yMklbbXMmaM0Wq62km0B5TY3W+ixLI2oLLtuwrYgNRNJW2fLDoELT7JZ8LmMqBgPZS3gsjeVkR8FLf22ctsqWn08T2nZ70hyZQoMMYFWHKK23wEdhJvKVYxeapBVtGcbEqcR/C1AfsoDLvZmMrLLNk2m66NDaCpvD0lQ2wtta2N8iLbtiaCvjpMJgk4C2vresA1C6kwDH9uZoZ4dd4GgzzTeScihU26+HNbasi/slbMTN6EJpo0xpbSu/ERINTEAvv8px2hpb1k3+pUoiNOCom6NVgJmMoQ7gC3GuDLH72TJt/TVXenaS1SFmy/NIGWgXkbQ5YTQTrc5Bu/311pJ2b5vtKBLHHTXJRhpsiZV0y66KOJmARMu2nyWb+bLNeI1vmBraRtlZbCZr00Dm4fRvbJMs9wbaWlvuzm2KQ4RGm7x8Q3Hafg9ai84WcChWKi7SajuRvD3cxeZTmYs76FTGNWc8l422C21v7ZtHfoxTeXm34RtA5+AeYtChtDkgbb0tr7hcHLeUqe0soQw4T8ApNAyl2HrAhKYv000u27B8Sbu3jd6RJsXRhqgNewhpbYbFRJudxWGz4qohJtFW7pPZNgWbrTEaozSTeWsBlkPzxWg9ZArLNJ4rQbtrb0nMjZIh7Vx1GtIirJ2jWWud2CgjK9M60tb35icB0rKN1ycIaLuBMs.2c6gHXFszUvL9+8V0hKw1gaPsphk5kzSpuuNpQloX5R5b7x6jjZ3abA7kbbaRlpO0pMGW5zHDjLCFmjx1K0xWrDtjqetRNewhrR72zKfvZG2Exov+RGoEi3jLoRBFmm7rZ5ATzKSmVa2vXzh/i3vlKC5bQBuD5qP4/JE0mYuwmg7yjxgsdnpErT72kjLQxkXG4vDPhJxX6Kdz4PbECttD9o9bf8tFec0idkERxqH8lMTud9TBhptfvlWoK36vmTB5rRgO0ca8gmaVJ1kCGUraLCtXW8NadEGHHWfpUklcE1k77cTogZttS2nVNqExt6QL9D2oEVZvgmsSLu/LaFJQ0gTGW1+kbxIu8TWhjNYHtLiDnnvffIDchNayxNJWYEGlu6QoE1kwiRNc3lYYTvEUqZfISPU+bdAFI0sjqOZIunXXPKSk9ChQ+gjgGrf/m/njm0dhoEgiCrhkaC+a2L/XX0LDEbGXmIpWQucCvbhwJTbhUaJ1trr6C/pddTeRUQppdba3+2zj/8Jxs22+6mtNXCJrIkMGjJTW4CbPA6GLEQmNCMZNnAELJDlR5uZ0bjbTGDyzjiaDDKDcTdCxclUlk2yomE76wSmsj1f5CKjUSPQwQKWyjQfGdVSQivAVJZPMqJhOzqrJktgyPJsZNRrLTNUwHJZng8MG8ESmMg0Fxr1LihcpJM0Exf1tP0LGHnIaE9V574ZZSLDhuoqjAxgBEO7NMrEhU27t+qEgmVhG8B+uiGqh8CwyfN4QkPaHtPzVPSrrNVqtVr9A7Bb7Gha9QQ+)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AHU?ABYCAM?AD86Ehm)wFBMVEX::b3+TMzMyYpb1jV1fD0eluXkeir8S+xc/e5O2QmaTy8/OgkVeMeFO1rp2tnlcxNjp8bVYxJROspI1mZmZiT0F0dXqLg3pETFIGBgRMUFXz+P/i8P/Ckxc5QEVLPz2EcEeVkZLUpCAZERKqnHuZkHrcv2D5434ZJhTKr1z11F6ftuL/vx5lfVbO4f5aq0ONxYVQZUvX5v/o03zswTv/8m/ty1UxjBcnYBtBkCuTYQ/432t4mt7cry6lxv/94kNGVDL7?AE9klEQVR4XtXY15LjNhCGUQGMOSjnPDmnzbbf/61M/E3NAitqCUqsHfu7I+fiFIdQV0utw01G6Gwg2lKXaLvfGRqgDC2oL+grClrVeY2rnobKgG5WknoGtH2syjVUXqJuoHZ01N5xajxCHTzFThVdKpCcrM5T9IX6LIo11ICL3KwvCqmFqPd9vxd0jq5QZC9F0Z3oEfGWbtxU1J7obb8Cv877DvpTmEXoTHScmtVRP0FN9lX3ODWCatdTJVZbdaFGf1rFaRokKEpxmg6rqFDtDB2lrtqAlii6An6OVA5do0/odbYWJUkoekCBrtofbfLaPdFiSVKIylQCSb2lEkSqp69e5qWkRgSFiegIlemq3SZVrq1i9C7qqahanRyqZV628xa2qBcCuU4QQbXUR1W9+bHfDYrRy9uF6NyOomhZnKO2aHOleK9Sa3QbRqKHryJ9tSN6uSB1GeUlpC5E7Z2KytQEE+Yj1QddtSOrV0eos8MqmMPqavdehbpM5Pe6G1HEyuottQ5RiTqRHCSdI5QUXaEwQSiMUELS+i/RGs2o5R0q2RKnpP5NWcjddkQXKKMpEV685F0NTdEbslO0fIU3k/pG2U+IVCarXpUa0ec1IXUM9TvU5QKVq0hWuazel6iOrGaF+tKkap2gpnXUuJZqS:hC+W9Zimy/6HTJDUrUR/31RuLijuInos2Ap/qiys7Okegx+tbNNvQgERttDBtVJzhzyJFvVHUAkXbni16V0XRNanjvKGqjlDBmpSsPmipF/8FNTuorkna1FF/yKorqwnUrCn1q4ROVHUrqeG+2gt11R56gvr0GUkjMSDVotyONIC3mWhgUANchfT9yRaZs1saugRdonSB+tTdEyKVSSpH75cIQM/FVauI8TzWoS0KY+F2MUKbrsj0nTxfXQUHo0vRF8Ql1UWTAmVeHoNqxwHL27EcdeiEQX3tjTaoa4pWvshV1JWsSn/ySG3JKieVn676shr/qnJZDUjN6qnjAVRHUWNZlYYTU1U43KZn9SrUbyO0MUk19lUX6ojUs19VtlMRx08RZ0xceIFymuIMzUTr5ZwaUKu8vq+obP4kukOP+6pmzEG0XsTyBt/y03me2dKJ11T9WETrRWfK0FSUq8O87oeoYy3VRV4DqgF1GGigQU2VF2pPtDpRDfRPkysaiLJYVicO1LnXqDpB6q3pBE2f83Yq01A9fVVuqiSrKddXW39WZY2pU5dUV1vljajzBlW1atWpO5rUJ5IcqQCVqdaxqms47xkWqU5lhvUsKtRYQ3UPq6yuOoTq6w/Ej1WdE9T7MdRVzYGoCoanr07BaqueqhpSPqmBUV2hmpjD/dqqJzdR71GMspTu0XNXV2WkAqiobDQ9Uzt1Xk/V0lAZVzStqfJm1D7UbrXKG1eH3UY3xHKcktXxpOZADJgnpd5jSpaaogZVaKCqlm8g5NCexHyjMldWh17NgWgZD@ui1TDqepdTaGymqp7muprLoneYdXQU5Gqck01aFJNK1Wmqo4hRSpOWFWOorqVKkelwz8gNfDKkz8/90epvxsLOjviM5oYpDoNqOUpXNFUV7WAsoZUJ9VbEnnDqta6Fnyg6kLV7HeqO9da1wILeUeoarVUPkD9bkMNoQ4qVKePxun8cMOieXVDNO/rqeaQGp+YpuqTOv6/qzpL4qo5FdVSzQIwT43sbvBb9F+BoNKC/cna+Q)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AMg?ABKCAM?ADJ/ut/)MFBMVEX:/805jS09LTV+NV47Hjm++ZT6FOU8JSn8qevr6/m5uaNjY3S0tJoaGgdHR31+/WX0r7d?ADgElEQVR4XtTXy2rFMAwEUG1HL:/3xbsJuNrBG03qTKbPCwIBzImEck9E.jM8eIzlueDAe3uyHP5u8QTAjeD7EJiVdDyNPsB3E+PVxF3WOdu98j2CF+vlkcVFiuAPJ8WAvwUj+wZ0lsh1ST8i+JfUtSkg5IsMbB606QwYqOEXQcEMuVcWE7Qc6Smk1PuY67JOgIYU2YUUIurn1XRFtBWBNGpYbcJeGhHUR/A0GuLJe1hAiSiVFD/FqfB/SHJGqIHEXqCPH8iNcQSyakI2RMAFh5LSFIBj9CsPjPb1q2VT5KiCbjHSG4Ku6sSQWRIEQaQpxvE1iTCsJl6wZRANMRgAoISeD4ODeoc5WzQPUZD8SjEE/G6x8/3wa23aD+sdrTGWJEvhsCVuTdEM0VtIN8VWcHyw2EIBiAWRDx5vu/bds0B7K/uGU6HOS6huFz8msyq7ypzXPJNEoufF6sCJFrU5vnnGmkHsKbhX8dT+ohz2o7GGIech0M6QA+DoIh4TMhyG5HQwwichgEJ5QqiLbvWiHad/0+v61or+LV1dVCiDxHBC7EYLzeWlNaV3sKwXAOwnqecjxHhKKScDB09yBQ2KrPBAT586qCxBP0uXJqoo2vt1+KIWS7XWzY5Rliy30cfqIKyOwL.PSaA+JxzSISCuBkIYXMgdBz0E6RMQqIHFMfEC6JiCy2hTx0gJIeDDax3dOKAHR1XE+vLQCEsfEfIcMhGBPbptFFRCUYxnlIA1D4oPY6iA0do42cxAInXxCRwUkjokPehIiGBLzrkqI9hDClIUQ3q++/ayEEEeOTnmI3STzMyKlELJIMtIQDIl3cjFkhjGRNERvEDOvKoaQhmmfWQj1W4fuulE1JD65WhpiV1hWDuErLM5CZNOrDIJ6LE1C5qZVMUT7DtJnDkIt7ERVEAzIimRJCG8i8n+Ixm85zM08VxLOQTSCyP8gCORojjaXU3RNQagHkFkIgf+CzuWBKYhFJ3kNBC91CcewB.MySiFGPiWMZEMZAYRqYQw7noqJgiJD2AqhCjmIIpJBsIrhxVCZoctD2MyEhBdQbgCMuVVLugmP/WjURFZ3ibv575ejTxbR.4gJVI36vxA/iy4rau8bvMQxwL3U6Xf9ET/wLukI/six6seggjxI6ETITwgZBlEz0TMvD4PhKCwHEmBA9gORVioDsRgjO3GsgXcJluV+P6uAo)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ANM)8CAM?ADLy3+8)GFBMVEX::++Of/8crj4t+/vr2SkZFWVFT/67CB/ywx?AEFklEQVR4XtWbYZOzIBCDN9nF/v9:I6FzBVKGaXyOs0XW5H1ntsYRr2zWiAfWSRgJ4W/6TOzK9k1Ah+NiPWzpWbyJVB49EQsni2xZVpBJHHxbCFdzsTHQPhmNifPj0VNkrBwtpBaYVWTJEwhSafSRcIyJOmr2ZxxCZY5T+IUkoQJlyz0noQpJGnYpG+YVvjncUw4bxHYeqgp30ocEK1isqolYIcRc1DMwtyieE1OEB8awEP2IQCwJSJxQ58Mbx7hMSZDhxsiIjwivM9kXMtkfKtzNLvQsQsKUmxZ3p+5mMnYlsG5PGbbAtLTtiUH0rbBelrNZBif0cZQbDlJPDsEANsWY/OBa5hsikkE73vwNJ6NmEy5ZLcw8XiPxbTtMgPiIxMz0e1MY7VMYfCPIWFQInLX6wKwhgnfeIFi2mBIuU0jgaJiFm68nAaeykGe9B;7V/MLDKpwd0dZu47E9yZ5buQd9tzWIpIKTaV2WUe4eZaLlT62I0aTreYalQqTNmJmW0Tmz9JYc9tgGVWRPFt5OFdvklblHKZ0ENMKt0RICKJEzcvhAtqR8LriVPeSql8DuA5SYoyLKTklikqQheKSg/89h3Sg0QIyuzPINUv2i0VGLW0dCijNQwo3VW5lPNHKFDpShcgQZNICCqs+WG82UYZB+o2yrL5a1RXpYZDh6hko++R+IdEQBbx94iIik3MsGI2seGlbRBibbN+RIyZMJH/JOEOWKhR3YjQFi2DjhdyFARvhu0VRZzz3hsjlesClkOgExFdj/UtKeu9O9deKqjFl2YEH5KQQo3qR4S26d2CUVu2spe2YhpGhF300Jz0nGJUNn+MCFT9EAP0XeiVvZqVaBwRNn07IyQx7QgOECV027xqGMUiBmQ2DeeNHYmIMzdpB3zXMhkAZXUbEW+M6TUSgCoikDejiLCKsxKLTrpPSG2fTBCK6BKDUPea/ijhgTrhq6trS1qQxaRDxfRB4DfvAUikUl9nfLLsO/WhjgrkHXkUQLWKJS3d6TkuWVaookqe+DmPI+lZxBaRCpLO7FqEm8hG/LEmALIoCk0ZhqDUkr9DdKqheObBUSvC8m81JVkklXTam4U2k4HneE5BENlHOrw4K+RZf2HSISVfx8JR813x2IckpPE9obv39hZPX/QmnN0unRQbnayQtshmv4bpbEYOqmSaiUaHluVrmDDwHSstfO+u1aGJCGKOaYDUjC1lcmihq2piJiPYQfr/TEp4f7fzuAM45DzYDUzeRcrC2bN0kO5gMo+UAh8K4vOlf84x65nO1CN59BZqcMy9TJx/d/44o7kX9yuRaL/DhMdkm36fCXYX0zIo2m1Mq6Bo9zEtgqLdx7QozmG/yGTgqEk/xzSmotm9TCv+ZP5nmSSg+teGH9U/EvuFGjU3drs)ASUVORK5CYII=!