["","","37 C# ","A(wsez.B[ST~~}T~~YF594G5F*C+ZB1CS}T~~}T~~","RemoveAll"," filters and removes elements. It can be used with a lambda expression. This reduces the size of your code and improves its clarity. The List RemoveAll method accepts a Predicate expression for this purpose. ","Predicate ","predicate","First,"," this example deletes all elements with values of 2. The lambda expression, with the => syntax, matches elements with value of 2. You could use another expression, such as item => item != 2, to remove elements not equal to 2. ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.7 (2017)\n\n","C# program that uses RemoveAll method","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n ","List<int>"," list = new List<int>();\n list.Add(1);\n list.Add(2);\n list.Add(2);\n list.Add(4);\n list.Add(5);","\n\n // Remove all list items with value of 2.\n // The lambda expression is the Predicate.\n ","list.","RemoveAll","(item ","=>"," item == 2);","\n\n // Display results.\n ","foreach"," (int i in list)\n {\n Console.WriteLine(i);\n }\n }\n}\n\n","Output","\n\n1\n4\n5","A lambda expression"," is a compact syntax form of an anonymous delegate method. You can use the delegate keyword with an optional parameter list and a method body instead of a lambda expression. ","Info: ","Usually, lambda expressions are best kept simple to preserve code clarity. For complex methods, using a full declaration is simpler.","When reading"," the lambda expression operator => in the C# language, it helps to think of it as \"goes to.\" So you can say that the RemoveAll invocation above \"removes all elements where the value goes to 2.\"","Discussion."," There are several other methods in the Remove family on List, including the Remove and RemoveAt methods. If you want to remove an isolated element, use those methods instead. The best removal method is determined by the context. ","List Remove ","list-remove","Summary."," You can use the RemoveAll method on the List type in the C# language. We noted how to use a lambda expression as the Predicate object to this method, and how you can read lambda expressions. ","Thus: ","Using the RemoveAll method instead of a complex loop with multiple tests and copies can make code more readable.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

%iVBORw0KG;)NSUhEUg?AKU)+CAM?AB9VCto)qFBMVEX::vr/Pnp+v8yP:+:+8/+9fcH+9P+HR4v93:+6v/7w:wsPSWVpr5uf3:f/91:dneGwcLT/+P/Sktb+9v/+7:95f+kZKj92v/zs/f/+f+8fMD8zv/80:3t/vIiMz4uPzxsfX92P/8y:lpen+8f/92:+6f/7xP/7u:94P/jo+f80P/7v/+6er78yf/ioub2tvq7e7:/v/94v/93f/81f/LhO3y?ACkklEQVR4Xu3a146jQBAFUHcm5+TsyXlz+P8/2xnWlG0MvcBCyw99n6vRkbC5JcTsf+PgfUiPqZ/zfSzZIbM+NTzc2Af3mPrioL+Zy5Q2+veUVt5erFIrtVIrtVIrtVIrtTIgGOMd/0iIvbybclUpX2NKWTylMnAwL4xaIsykPmbdx6n4XCm/CiFu7KcHOo2ScKMlrtNKtOzrK2IKUVd+cxbmJEpstCdpU85RmxKhtWqlEQ5Qos0ESseQhTQrTZkSWeMriVTJm5WWVGmrVhrBACXKplBGnHP8Ho+U8cLCgOA2Jbl5jCn9XinvaHpQztV0TwJK3r17lqC0FTVkBMweDflSKZEipTNEea9amYOSdFdSUFpqlLMhytmESq3USkII7q30fT+bXsmIU67qLvi6KFe1hpxU6SUFsDor0yXs6iqUGIg9lC9vphDqlEE0YMPMPl0RlcrANfors8W1UiUrjP5KukVqleGpifNduWfKu2eDzpR3vu9P1j3MBY4bko7dQxcHpZLucUAT5Z27x0SVMl4pUSagCbo35BqUP9Q0JJxPevS4XSmXinoc+tDpoVxUSqpG2YaRK1Gl9JuUWuldstKF85f8u4Tz0ZD/eKxImbTccg+Uoex56Z8oGSg3U3WPWzEZwdw4xGWS7klX0OM0Pto2FnRUZX7kKRKMd/xskSucvKYUoGzbidDWFOMp4QLynF1AooSMqSRDlJZq5SwcoJxtmpRsQiWLmmWuAYnOlPT5Xfmrrgxs76B8Hvd7IrZrIIYBC2VvWunt9umhpswsQX+D0h5RWcaLTojRfmkPElA25PEtyI6Ur9QvBdl6GmUJKh9BLucJJuwgYR7mvABlLalYxqlI43j5IYTQfG7bW1COkD8/upOVozMCaQ)BJRU5Er@ggg==$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIALQAwwMAIgABEQECEQH/xABT?E?wEBAQE)))?QIDBAUGBx?AgECBAQDBAcIAwE)?AECAxEEEiExBSJBURNhcQYUMoEVI0JSkaHRJDNDYnLB8PGDscLh/9oADAM?AE?g?PwD9/)IBDBBU8rilTi1OSqcPyypxjzwsm2/8AReMbu10vUzcz2CTyeDcU+kqGaaUK1N5akOmu0l5M9QiUXFsvGVywIJKlg))))))?Cs5OKMvFl5F6vT1MS8Uc9WUlKyZDqy7Ir4j8ivVmGMxNPBYWriqnw04/i+3zZpZdEcilNytdngrFU+F+0MowkvBrtRqW2i52/6l+R9ZGpoj4Srw6riuEVuKVL+8Tm63/Hrm/G9/ke9wninveApVJv6yKyVf6o9fnuXqwuk1q1yv1R2QaWrex9ApovFnm0sSr9Tuoy0Odq25tGSkrp3NgAVJ))))))Kz/uZ2XY0mZlkY1PiM2ld6Hy/tFWlj+IYTgOHfxtVMR5Lp+Ebv8D6nqystjWEsrvYxi0m9DjdKEKSowivDjFQy9MqWx87gqL4ZxCphP4FZ3p/+f0PqJZe5m4Foysmt7lc9r+ZjTjqejhno/kcay9zrw+z+RzVZ850UNY/M6kSVuixFzY?k)?AEXFw.))Ckr33LFJPUdSs/hFn3I1GpF2XMtCuV3IlF26FyGTcplRhKD8pem5Rw9fmdLivQrKDtvoLlXBHNNO3Tc2w1rPfoVrRWRadS2HT5texwVqn7Vl8v7HXh4/VX8zpV/IivCpUoyhSlknpzXa69yUlYudMWWZnh4VKdGMKss81fmu3fXuVxtKtXwWIo4afh16lKcKNS7jlnKLyy5dVZ9jciUssZSs9E33bt0Re+t/Mg8r2fwPE+H4KpR4rifeq8qrnGpnnUtBxjaN6iT3uetdHwnBOC8WwfEOF+9YeUsJS8SpmaWalOcJQcHrtntJetzWvwviU+K1p+7VZYyWPjWoY+/JHC68me/wAstjedOLm/rI7Xul5k2PtiDwIYOp9PcSxXus4062FVOFeNo5pfayy77fgeZ7NcLxeD4mvGwk4UadGWWvUSjLPUa5JZZSjPT7Vinhxyt5tknb1Fj6/qTc+J4RwrFYfjNGpPCVPBz1asq1b4oaOMfrIy+sv5xurm2D4bUp+0GHxVPATo4fNWzSlBfFJaSlUzyzX1torbEulFNrP9m/8AmosfY3LHxNfg+K+nFUp4SfunvlKvspx+HnqZ83WW6a+Z3cVo8TxvF8L4mEzYPCYqnOnOMf4duecp5vvfZykeEvv/AGb/APwWPqAfF8f4RXr8TqYvBYGc4WhDFwsv2jnUpZPutKK5vwOj2j4a8XRpe58Pn4vuyp0pZFKNON/3WXPFQl/NrbYlUo8vP8X+dxY+sBhgYeHgsNTyeHkpQj4bXw8qWUGL3INWUe5dmbZWJWp8IAKSqavQ1SMUrlxYz8TyJ8XyJsy2V7s000Ku1mVz+Qzb6CxV9dCtWMJJc2XzfexlBSilvYvWTyr1IpqV1mXL6nl4pXxOzWi5lf8AM68M/qvm9DaLdtzaOxnGHKtDXodNGLW/YSZIANyg?BBXK+5cgAzyeZOTzLgAjL5gkqERLRE5vIsULkkR13?ILFTOW5qYTbuIrmKVHaIMZ/Ey92YzzZmXcsr2M6eut7F36ExOJ1K861SlQjm8JLPeVt9ktHdkqvLwXXzPJlz/lczqYjw7ZoPm7WOhUs20kdpMevoeRh+JVK8qfI6ca2bwZZk82T4ttj1by1Lxm5SlGUXBxSetut+3oY1oqEb3vdPbyPC9scNiMVwylTw1KdafjxllpxcmlknraKZy+xWDxeF9+96oVKOfwsniQlC/7y9sy13Ppc0u5eGbuceInas4W6I0w2tJSXdnTHYuUhexc3h0LM?uQ?ACGSQwC?SVuQwCBYrdklzO5oGWi?QWOfE4qnhsudPmv8Nunq0ZQrwxCzwT7al8XhPesnPky36Xve3n5GVOisNF082bXNtb9exaO5lX+D5lyktzSNrkSWpMjKkrq6OSvg4VajqZpQlJc+SWXMu0jTwoZPDtyWy5eluxvbTbbcpVUvBqeE/rMrUP6raHPWg52TlovPY7Kbsjgw/C8NharrU1LN/M72v2PQzPK9DweE0MTDFKcnVjpP3mNSnOKv9m0pK0776H0EUsrKVFVp1Hlq524rX/ZMownFKUdv7lEbQiRGJrEpGM5yz1Hd99glGEcsFZfiXjsWIJOpaF?Q?CCRdEkMCxDQugQSQWRQFSzM51I045pMkjqWNTCnVhVvl3RuQy0eoABBYHNXjLOtHax0kEp2ZSpTU45W7HLTi7vR7F7Gtilg3d3Ip01COW9yhLiteiRNhYrY0KOJaMdC13cLbbqRkRNxYvYrd6kq5KViLlySESSCGVbJZzTru7VuttyrZJvmFzJS0RZMukZtmlySiZIIuSyLhh2tzOyJJVwZVqbnkklrB3yvqjRSjJcrTXkS2uuiA6lUubPlyu23X8jYyTVtHf0NCCUyQQCCSQACSGirRcAGdhYvYWAKWFi9hYAokWSJsS?CACrOeVHV6nSzjmuaXqythc1UXZEq5MVyx9ETY0KBFkQkSCpJz4tXp9d+m3zOjoQESnY5MFGV5fdt+ZtXi7R+7fU1JsGyb3ZjRjllLW8e/c3GpJDZK?IJJ?J)))BBIAKsqXIsVYIIsSC5mQSASQOgJBBNmUk5W5VmfbYmjUVSO2t7W7Msc1Kb8XNtCq3l+X6kloo6wAVL)))))?ixIAKkE9SCTNgAEkE9AT0BBexSpGUoOMXb9OpFSlnpqMdHGzh5NGhIJRCvZZvyJAIJ))))))K9SC4JM2UBcEkELZEgFTQ?Eg)AH:Z%iVBORw0KG;)NSUhEUg?AJY?ABdCAM?ABw8G+n)GFBMVEX:/+DvOv76rDR5flpsu/a3MKayPD88s5VVf4y?ABmElEQVR4Xu3aC2rDQAwGYUv7uv+NGyiw0CwZGjeMgP4n+DCDiXCuj6/13i5hqAKXpup9llOBS1X1Hq2gCgITVOVc/edmqbL2ooYrtqhU+NtVK7BZ1DVKhp85Coafj41y4ef3igWWWdGVe5XCXy9dobcF4ZsPjAPzXRzYvLlGrvfC7zc3bwYmsJ5dGYfAFBaH77A4MIfFLofF4UssDt9hcfgOiwMTWL92jbsDypvh582tP/1J4bDY5bA4MIXFgU2FxW/WaA6LA1NYHFgzWPy8wmI99kplbjcv3NsQ2IhDWLbrmLu/56xGSVXm+vBVzXuOPR/LT54YvNbPqswlsc6qsd+FDusce+45rHPse1Jb7Rz7TkthnbPaKoPFKoPFsTuseBX7uhxW6xC7cFVjVtJVPUFlsDh2hdUgdoPFsRssjt1gcewOKyB2gcVZGSxWCYOsqqrq/CfJV/lZ/cd+n8VZ+a5IUAkuyEpwgcpxQezWAmJ3lhlK7PxRICArRbX3r2IWZeW7ripb@XmApXmApXrusptQVaa6w3VFyLLQb5f38Lo)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AIw?ABpCAM?ADflzs9)VFBMVEX::2+fju9PHy9/X0+Pbx9vTo8Ozj7ejZ5uDP4tmwz8Dd6uTL3dTV49x8sJe208Wuzr/P39drpoq61chopIecw7CSvahgn4F1rJFjoYOAsppyqo9IgRfD?ACtElEQVR4Xu3XyVKEMBSF4cxh7Hn2/d9TrtE+VUhTaJrcLPIvLGXjJyegiq/0ZfPIoIBRt2sOBYzLCePzwZiA+bgwtvnBaNES5iylYUlrLbffGGnlF+YiteJKNyPMWUjNkh0wu18YprTNCCM1PwZpZfLBmJwwumAKpmAKpmCSVzAFUzAF47oQvlgCcEMrYtxfMBboVTBtTpguG4wfDCoXjCXQNMb3g6/3Iwo1Bvlq3/Wti8aIfdfVwFCghtw8BnP3Jhbj.EMLMjNYhSAdSyGFO43Zk+KvuoJs39iTLhQDT0xNSm86wM7DiPCww0MoA6fvD7A6ueOtKSPxVSkGGPa502vCTuD8T9YQ8xYDDHUGENr+Oc362cw9LNYQRHGRmJoJz/GYBwoxxgcLmepeEwYov4/pkPxmDCEeRNGxGIsTTJ/ZtJhaPbqH08T2AqAaAzt5Be+ZwxhzOjR7u3bMEG16A2MWSqBlx6qojHYff53E2YhJy68GVMBA820RVjAoXkTBqz5v2eQaseXXRU2da7831QwBbNmUjapMPK4na1pds0lFcadrgtKhTlkhPH5YIxoCXM/ve5wSIXRAbNTbjLvvFKXK3VOgJEVYRqpJ7PWmPPTsjJG2m+MsFMpZRUsqTBbIScyRmhYEmJeBEsSTAvMjCUl5jhv4cfAwo+BhR8DSzKMUMBMWh4yIeblTE2wWJEQo19gtsGihGC+M7A4wYyBZaPA4JsJG/HfGVj4McfReeF66cGygYURc8RG3BicF34Mzgs/BueFGwOLEvwYbMSPgYUbsx2dF14MLPyYY4eNuDH3xwGW5BhkFDmw0SLMppls20S0o84nWJZhEgQLP+bmxTLMx/qWUy8WYjbX+7pdb5VYlFau7uq12g8NH71YilHGGLlKhpJieUZbtWbWavGH5MqJuEqfDRAN8iKPPjs)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAJYAzQMAIgABEQECEQH/xACV?ACAgMBAQ)))?BAMFAQIGBwgQ?ECBAMFBAYHBAgHAQ)IBAwAEERIFEyEiMTJBUQYjYXEHFEJSgaEVJDNikbHBQ3KC0SU0Y3OSovDxCBZTk6Oys+ER?ICAQMBBwIEBQQDAQ)ECABEDEiExBBMiQVFhcYEykUKhsdEUcpLB8AVSwvEjYoLS/9oADAM?AEBAgEAPwD3+CCCCEIIIIIQjEZXdEec37yfBYLhJIxGLx6pGhPB118NVjFwmxqtIjdMqcK8tOtYgexBhs8u7vPc840ScW/iW371N8ZGPId9JrnfxmDlQbXvIp3OuFtpUtu2y12UpxLFbi8+RvNyUlVvLRe81QPJFi5dnGmxTNMBAve3UjBJKTCHsCWid7TRapyWJsThNLPiJCg1+nzI3ZmBCOoPr4Tg5jFH2HSA0LevslaqJzRaboy1jQmvFF5iWAEEv9ScUdFuCinWq+fKOSd7M4+YK40yBDX3uXhpFni6foeoTV2ox713iB+36yL+Kzo2nQD7frU6JjG/7X5w832jP2iEo8/SRxOUNzPlzBGl2y3py/HfF3JYecyIlMvkLZIuw0iKf5Rpn/0nHjXWuVWX0sn4C3Jh1ZYgaL+23z4TsGu0cqX2lQ/zQ6ziks/9k6JeS6/zjlncPwFgG2nidYNzZu2iJNOKlFSFZjBsPcllfw3EyOxdojpYpe7sppFc2JQfxgeqNGE7/FfBuj5TvRmhiYXg6x5Wsx2pw1SykN1kKbYqLoU8E3/gkPSXbSZrZNy217VlRJPMS/nAMDFdSEP7QfGVNEVPSUVIzHNyHaOSmKbatl7riW/Pd84vmnxcFCFUXxTVI0ZGX6hI5NBAkEawhBBBBCEEEEEIQQQQQmjq90evsr+UUjTwZ4ttvA4ZV2a/LnFvOEoycwVK92enkKxxzeKd4n1dGjqlxBzpDfS4S6vt6eEXzsAVske0uHWgzTbKjRAnslVUXfoqwqnrrNDJxfgVYVcFybmDeemVyq7LfNE5J4xZSOSCqxdyTiRNeqQwRoTem2Fij87mKk212duN4s486T4PAredRPtEVR+Oqaxq7UhtefHMrxiipp0okMvySAt2m+CcCWGx1wgbzEptKmqp4QK6d3T7Ch5eE1N0dRPnz5ysKXamCUHX1sBNkqKtfCkbyT8xItk024uXX8PFIkpLG8TLLgmYohEIqiqicljf1ZgnSYJ1MwRuJtOJPCJmYFdL2Vq+JhSdQZOeLuTSs1MuqptPIf8AZHs/GsW4OmScSEmmwNNPjHDvYpLypFlS0w+AfaOUQRH+fwi1YxSTbbE2ryF1Btu9kl95PCIs/REgd3b+UfnN8ecgXzfO86JWQdHvgH8+ekedYn2Dx9nEnp/B8XK14jMGqFeFy3ZYqK8PSH+0Pap7CW1eaO8zNAbCq7WnFs8ok7PdqpzFcKmXb2/W2albVbt+zXwVNIkw9N1mDGcq6GRyAVYd3/BN+3xkBrqjzsdxvuvl7zlsTe7c4FRiZB2YbtvzREXB2fe0uSKge1+MVMMwBvr3du7X9F6x6thWPyGMS4ScwyYOPIoGye3y97pFO7JIzNnZKpLDXgEeVdIyuJWyOudMmJxuQr9x/IqDdfEnH+ouqhkTFk8NWkK4P9P7Ti5KcxCaMe+Izrs0Wmqc6abo6BiSmpp1XZlCNwqbR1VdPGOrw3CRNCcYlwG5e8K0UqS9Vi6awgRRLiT8KxAP4PpmbskAY2Cdr39ptm6nqOqIZhQHG5P57TlpHB1uQrNPOkdHJyZtINlRKm1rvWLJqWl2ulfnEyqAc0Hz0hbL1Bc8febKprciatoVE1qsSRhVTqkCEnVPhC585JMwQQRiEwRCAqZqgiKbRbkRE5rFTLdquzE5N+oSmNyExOVt9VammTdu/uxO75R8/enH0iz2IYzM9kcKfNjDJHucQyy/rD3tgVvsBw+aLDfZn/h7m8QwFnFcSxYsPxSYbF+Ulm2/sa7becd113W3hghPf3caweXnBw9/EJZqdNREJU3mxduPgHLuu2uXWHo+OcPlsck/SzhMn2kfdmcWl8ZkGpl99wnTOx9qzb2vYtt+EfY0EJFMCpy7oDS4gJPCqou+OSLDX7ScIRHLuzPC3p1SGO0PbjDcB7Q4N2YmJd5+bxwrGibtsbG5G7nLi3aruTlCuI9vsKw3tPhfZI5VxyexMFcAhILGxqf2utdctbab4nw53xA6Re4kGfEMhG9EAwCWmDRCBsrbUPdyVKpDQMk4QCDZ3D7S6IsW4T4/9CN/WQr9mm+sTv1OXe8VVFxixUB2l/ET9WfJpWjOwPFU+McB2ldbmpOSmDQ3AZvABopClFt/xR6abu7aCnlWqfpCjqMGhXquWf7NsRTXqq0jboutOJ+0bGWo33fYwzdOp?yquxsN8Ubnl/ZzF5eQmjmbCG0VHhVUVF36USOgmzxOZxFualpZn1N8RPPvIXN3uU/WL9MMkdu8lPVMvTh8+SxIptSqoUu4pn5IiIlIey9djyZe0x4W1FdJ1fT/aQjFoQ2+NtjwdR9623nL40uLlhrjsu6jTgAq2iO0tE4QtTfFBgOMPui2w8y464C2nsFfbX2udfGPQlxBJZhG77iJS9mlvTnvhL1hmXdIyVNqlxim2i/vxnD1XcZTgv/AG76Zh8eJBWTKi3bAVq+nbSGTzhMYUE1NszX0WJZYqjbtqVTdy8YCw8mjFqWwrJmde80ENfZOyukRrijBulnzcyA14gVeH3RGsOtdo0ootCeWPtmtVL71PGF3ydSpVAhYAeJZf7zIHTdmXbKLPgNy1+g4qW2HyZsGn1NpkbE2wXW/wBod26Hil0PZMEIKdOcUEt2lfJL32kt04F684shxKYyzcOXO0V6jVfLWK/MmYNqfSpO31fuY5jbDpOgMwQ7kKaHzVRuTRloyabWlyXWa8odiulZs3iEsghGvGZJ8k5xYxE5tud/cSdBSjyPHtKSZyPWZzTboOVRNb6JWlPGByovB6+i25NB3rtU/OLNZ2XzDZuXMBF2aL/pY1WflqBxbdbNlVr8onDvsNDcV68eH2ipxJZPaL9V1W3PDC9+YmDP9GZkzXuxPKr95Nn57oZw1prIF5viMUv6ViRZ6XsFyq2kqpwrXZ8I3YmmZiuUq6InJU0XzjR2cq1qQC1+nt95vjTGHWnUkLXqfX7SaCCCIYzPiHGFH/nmf+lOD6We9duru9ZLN/WPt1FSiax83+mv0X4mxi0z2wwNgpuRnSzJ9hoVJxh72nLR1ID4lXkta6Qj2S9P2M9ncIbwjFMNHF/VhRuWmCfVhwQHhF3u3r/PSCE+milZbMzslvNqneWpd4LdSu@49hsxjGDzuFys4eHvTbStDONIt7d3tBtBr8Y8Z7A9svSn227XN4w1Lg12ctJt+XdQmpPLr+zctIje6EiL46R6v2x7KMdssH+h5mbfkms0Hs6VUUc2ELZqSbtqCE+c3PR5MYl6UXeyD3aNybOVZz/AKVc7yY7trNybc37QSL390Yw/wBH8/jnpKxPs452gfecwhr1j6Wobkxs5NrY3OcYE+gltaUWH+xvobdx/H8fan5ydkpHC3iakZ7KynJu43RF4M32bW7v4kjXsJ6JfpecxWYxx+dkm5GYRmTIAVk5jU7ne99hUFN2+u/SMqLIAF7zVjQJJoV5T3bDJT6Lw6Uw0nnJkpRkGTmX65jpCKXunqWpFVd8M3lrGxjeanTiWv4xkx7rLom/i5w8KA49JWkEsWPjZuLlMKNYjz743eBNbqVWIKrVSrVeqxKoBHEw4FNubvbbmbG8rduypXLr0TziF15KKsZJdU69ISedWpV1VenTfEyJcgbYX94pMzhCWxXn8YSJ560neSr13qnhG024IbPPrzirdfUhtVdPl1hsoukbVf6RMuGYmrqMg7eBuXjsLwV2lr7qfCNmp1dd2m+m/wAoqG5i09yEn+uUWExj42H9UYuoljghRR/OIsmFrskkGTX+FVs+fFSwZxNBXZTUarvosWTc6RAhVWyvWiL4xy0pOvNzDc40oidfaG5KF4LFszjieskbLAN307qlwJTnbXnCvUdPiagQTtfEmxM1DS6g3TKSQa9+J1ciTxNi7eBB7ICVSSsdO0eY0DngkcVJzjlUcqLdxX2N0RE0pomtI6zDppZllbuKsV2XCqfQKEtcOTVsTZry/aLTEnMOzD7wAolUSZO5NbUtpv5xgpSZy5QMpe5Qr7SFF1XrXwhp3EQaccAmj7ql5aURF3c4CxAcw2xaMrKV3bl1RU1jcNlod3/P8MjKYLbvmyd/6tXl6QUHjkzvZTOtIAGqc0t4q9N8SSTZNsALgWOUtLdrTxjR2fynMvKOtmZy4efPlGXJ0G2mnrCIXVRB3Vqu5F1jQhyPp+reSA4w2rUSUWjf68RqCIJqaCVASJFK5bRpBLzKPkewQK3TipGmhtOqpLrXVoveTwm5hOFPOE87Iy7jpLtOG0BEq9eGsOQRrNphEQUQRRLactEREjMEEEJguEvJYoZ1SF/foSJ/JYvj4S8liongQhA/H8/9on6c03vtIc4tfbeLCa0SNjdW3lXxjQUjBtrDNRU8SB8703rotdNK+CxAKXRuaWr4wDSJxsNpGdpCdBhGYcG1enWLB6kV04I2LpE2KiZG24qUGIvZYrrr+vhFA7PJU;m/wD/AGLmcFKLql6rzWKdyTb+1sUyovDpuiyYY+zAJFjfcgfrFF09pwea2HjIEm0u3Iib/P4xo48prsry5axKZsEzZXapurCoiAL41RdUrGCUIA8j7yYIQxbTpPrHmH7Gud36pDMs/wB6mmtU8dEiGXdlK98S2f2dFKv8XKGvWMKqJhKvnZ7zlgr52ItYT6jSSdOo14BbP22mceMk0V2J3a6HzOmw8W3kbO8yKqfYjciJzrzjrsEcFqaOXuUrx503x5q3MYZntuOPepNWrsNOd4uuzs7/AJRf4Vj0u1PtBnoTNw2G6KiX37nPHyirykMGQKRQ+k/UD6x7HS5ECvYq+DRHkp8/Sd8kkpTjr7wgbZ0t31SlKaUpEbknM+suTAI1tUy7lWo20ovDFiipRF5dYIVGVvyqMnAhFb/UW9bP/crpqRemXr9i3Ls3rXz3dY2clZtyXZauC9skLetNlPKH4IO1b07sOwTvc97neIOy868CC6TZbalbSuzRLR4a9Y3kZV6WE8w02l2QGuz/AIocgjByNpK7UfIQGFQweySPEmEEEEaSWEEEEEJguEvJYr320cZIa05/hrFgXCXksKUiTGa+80cXKkefT8ICUablou9UWM5dhEHRVSMGiUh3a4kR5xcgZFdy16qtVjVUGnWI3V2oB3RNW13IjdzVy2K2dPYXSLFxpa7t8ITDK2qJRNiq5G047FEO5bV16RU3vEig0pdLU1VV6JHTT0sNy/nFajWQ4jzCqDre025zFVh7Nkx0utdQA8AOf.48h3ApTfJ4qUzbL1220Tf7yKNVjQwIVXVa67+UWsxM4hMEJTcwT5Ci23U0RfhFbNJaQ67W/l4xnYpaij95IXZslOVO34SSPzqatsOmW9E68ty1i0bxJcPbG+SB/M1A3KomnhuWKbOe1K/+GlImlZgGnBfftMdeMhHl9+kQZlZgNIo+J/7qTAIQe0rIo4QWCT5WtS+ke0ptC4Hq5MtHwHKsg64JVXZ7zl8I6GXxxJlo2QR9pwQS3ZG41p1olq+UcyOOh6sfqoEw+I924y83xL7aiCbvNYQGZdxBhyansWdCbYTYE3RASHl94l3xVZ3XGSDkCaGrIR3+0v45m4wdtj1HEFojSrgMV9tBthtuWIM9y7PzhT2Dyr5iQHZlnfxXNrZ898WccF6NMZl5xmcw5t914mVB76wSEW2lhW/dqKfjHexXm7PnLL4hBBBBCEEEEEIQQQQQhBBBBCYXcvlEFsMLuiO2MgzBErZlrvVLrCjgLFtMN6IsIuNlDWN9hFsq7mVriCK7vjEInrDUyy54D5wkoEHOHEojmLEEczZ013itITfJYldPZitmZlvLXvRu80VdPCJ8acfaRMu0rMVNWiS9PFPLzjnXphw12UQfzp5xZTBKZleWhb4XBmQsXR05mqWACbNOdUpWHyqqq9otna9ILRYC2IXcji9h+cSFnEHrslknR+6i/pELuGYga5hskAU9pFTnFwjUxw/RM2SfcMxRem4ITNzDAMxCRmM+tpfWNpNddDS2N8eahShQDspK3/VZFTYowoaSzEWdD42UfZ9pTuSx2FrrThrupErKYe42gkDgu0T7QhUbudEpFoY4LkmHqUwL13G+8ir59zpGsrIdnchTm2HCOi/tnAp/wBts/nEGXOz60U6dPOkBtX8u8Zx4KUM+LIxO6laavXusdveVE13SrpYNOlEjWbZBm3OknWyNOJwlRFT3h2N2sW6SWFX9+2r0vbwhMOl/wDVOmkQzk/gxNjKELgNiQ7bzquOBaiXCF2lFSKTMRjIGPU6k97u9+iORRsVH8J7RgGNMo8Ca29K8fKP+jibPCe1cuy+ih64JSx3ffS9v8TEY93jwLC5nAWJwZiVaenn2jBxnONvuibW68cpB3W11j3iWmG5uWZmmdpp8BdbL7ppcnyhTIVLnS2rYHhv+SyRMmu7BBFc1e:AK2SPmSwQQRpN4QQQQQhBBBBCEEEEEIRikZgghI3B2VhF8Nlaoqovu1r8osVSE30KlBVdOaRJjMjcShfZbFdkVrrqSqq6+cR1t5V8F1h58f94RIvCLFDYiTjcyB211VvH8NIqZqSlRVSbBd9d9dfjFu6RU3RWTSHauyRlvtRURFSGcRI9vKL5LNjf4nOzokw4jja2/ovKKedmpx53ON5Scom1VBWiJu2acou3ZScmXUlwTvDXZHfqvJd0VEz9TcdlZkUz2y29PDdviw7TBYVz39N8b6feR4ceX8AD6DxzzFQmJu77d0Oehlv/GGJdmXuQZuuQSqTm1Yv710KG8wS7Cpdp/qsXEvg0/MNBMgy0+xVFLvmlRf3kuRY2HZBT3x/9ef3E2ytkFdohW9j+H85ltnsy0HdTD2/2VE/mIxrNrLsqcrIzKuSzibWipVei1SGDaZkyDMwiU/g26U/cc03xO08TQXNYfJ5Z0ItEM9375WxWZ2RiSzg3yTQvf0bwqTI/ZkMA7i7F5FKEj4ux4SsYlZaz6yBXVThLl4J+sX+GPYSLA+rMJ3dQ74pci/8q1iHD8Xw+YIsxpBbt+xydpOpc9IYmx7KOpbOlLcPBauYl3JEtuSEAyo94sxCvwCoon08aEcfpurc6c3TZGKksURTl249o48fZ8zDupApyuWPetNubfd29zcXtU0jv8LZZlpFmUl20aZlhRlpsV2RAES23wpHA4BhuEOTbJYU463LtCq2Wrlrr99u6ty+9HeyCCFwipfxeEQ5jkIp8vaUb5P95LjOMDQmNseklSG5+RQAjsEEELySEEEEEIQQQQQhBBBBCEEEEEIRA8GsTxghSMg0ZgixKh9tNU5xXG2lV1pTd4xfuy9yQqsklV2fKGUzhRIWw3KlJcnk2eKE3WxqN9aLoWnLnHRDKqCKNqefOMepp0ReVFSqRt/GUTv+81HTCuCb5nKTGFNTqn6mSAYftD0r4UiqnMKwdiXD6sExOVXPOpKq0X3a/lHbzWHZ;LbY/BERfjFeODzeZmZyS5N8OwhV8oF6w2G7Tj4Ztq7zSTsPAWoO96mWv6ZzE6vZhuVG7DmQmrUEe4dbKvvIpJSqQlZgj492089p/VrRIf3qhtR2swxjHD6268P92Kf+qJFa7KYuwYpnGyRp7NNfOJcGYqneY0WLaS4f/jM5U6dyCveZRs9tjr+Xu3qnPrJ4SLYibT8uplwXPtCPiqW2fOMJhOGCp5JDy43XdydVEIuzw2emmUannHpps14TNAD/ItafCITwpgDFoZdsD3.uqVPAuSRMz42VgG0lv9qs3/AOItbhe5k6kEli:AJwoavGqsiJSUq5Ktr/RUvMarY+0rxKo9CKyqxcS8vLSxdzIMgbqJmWk6zS3ddcNVRNYmlMDxLKXKr9wQcMRX/.D+MWDHZR1wfrjq/xlmEnhuHT4rCuTJiBHZ9w3uRbzZcYyBu3xLlBq/q1MeQW1NvRhhsizLm/N5DbjzlBzm3SO5OnhTSLSWPLdAiAQ1pbepKldN0MSWFScgyjLIbOv4w4IAHsp+ELvku7Zn8LO23tGloClXSNqFsdvLkzaCCCIpmEEEEEIQQQQQhBBBBCEEEEEIQQQQQhGKJGYIITW1ILUjaCMTNyOwekaq2MTQRoRM3FchpvvQFLuu+IllAmCS4B3eKaeUPwQAd7kza+6fH3iaYdL+2nwHZiZqUlWdW2hEvepr/OJoIkkcIIIIIQgggghCCCCCEIIIIIT:Z$/9j/4?QSkZJRgABAQ?AQAB?D/2wBD?cHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwf/wQARCACrALwDABE?RE?hEA/8QAOw?AwEBAQE)))?AECAwQFCBABAQEB?ICAgIDAQ))ECEQMSITFRYQQTIjJBcf/a?wD?AB?I?D8A+kQ))))Q?AB)?wD))))AIGADBAg?QLpGOgEXQOl0DpdAlOUKWQMAw)))noMrQY6AcpEYBkRUjIjBdCbYAVpgu/tmapRkKWRqI1ED))ABUGm0GQMug+HLElxXQXB0iBdMukC6R8TaoJ6KOJZmuVJrlVKnhyrhHKolKIG)AOgEZptI02mqM7olcL2/YUc1E1PFzUT1Niul0uDqQnpHxPTh8TascFpUFGZnKk1KTxcUSotKp9KIzIG?AabTHE9Ck3QVGWtGv1YXf7DX1Z3ywl+hzyxBejSeaflmn+tc8s/KEf1n/ZPyjpeib5IcHqXv1oSppZBIVGZqIjMLik1UXErikmogYACLZP/AE1SM7pS5Gd0fFyM7s1+rDey41zhx78v38h0Z8bm15/n7Jv/AFIn8n9s9Q/6Vz+R+2SNeNc/kftFY+jbPmtskqeIuG83PyqRhY1m1o4fspK81Ia5ZmuEk+KhKhlVxcSuLTTMgYTaapGVqlstaNpGN0pp6sdaU0zlyeTyfsOjGHneXy/fyHb4/G87fmvftNjrz42c8179s6NYaZ81/KHPrDfPl/aKw143X4t/KWO8OzOqJHPrLozqmxuGtt4E+rTF7SpWerpz9M01ofEmZKiuFVKiVKhH0yFMM6qLjK1TSMdVUXGG6ptlyeTfIrjfGXn+XyffyHX48PN8u/tLu8eXDq21FrpkTLeotFw2xLUsvXLs8fj3+Euff9bu8XissvUufesvQxifAcm3RnMDn00mZT4hpnNlKxNbzqWdX0iHTLhy0y4rqi4qUyqumk6ZI19KXlhVtYz0a45fJftbfDzfNv7aOzx5eV5vL9/Id/jw4ta+WTqzlEzbfpjqnderq8f8a3nfpn7Md+f1duPBJ9RPXLry+zrzj9Ew1tvnJsrpvmGy06Mw2OnRmRTHqvgJaJ4kFwJ/8Liimvk+Di5pSVyhK+mldCE01Rz6nyuNWWqqNHF5tfFaOrxvE/kb+a349Lw4eV5N35Rp6GMoxm6rm2rVen4fBJJb81z2uHyeV358c4hy622mP0TP2XMmhcUlcUmt81TLTpzTY6UaSmioBGRcB8MdElArXIZ1oENAhNhnGO58KjXNcu7ZGkdGXl+ff22y7fFl4nn1b1o9LxuL1uryMd6dM165eh4PDJPpyb05vJ5fZ6Xjx8MK4t7dEyTHq+BJmCUAsNc6UiujOlMdZay/AZ8KmcE10uCqSlchpX69CVSAq0JCySV+h0Mdf9U1y8/y6+2rrw8nz6+2s07MPL8uO34V7OvG1eHw2Xtny596Vvy+3+L0fF4vpzOfe3ZnCHN7NPUkDgHS4Zp4o0qUqLKtc6UzbTQZ8O3ppa5x/wBoTrTfKWNaST8BB8AOQF1fPgkggVKhz7vxR1crzPNftc06MaeZ5ftpNOrGnPnx91+j9nT7/wCLsx4pefDHVL39XXjHJzjGsNbbTJM+q4RJsM02GrqOKUlSiUFQyaymhrj51P0bLf8Aq6pCYNMwkWtZCRTBKkCTAJBppBzeW8lBvJ8t+1Stc1x6nafXRjTXx+P4+hdNvZ14wjo1p0TMSyuhyEXRYDQak2KhopxbOqVCMziirSKTXR4v9gx8jskS52khVCpAhcIjB?kGm/Sabk8v1TEed5c/IaZc8x2hrK6sY5/wdaSt85IWtOBPSpGiwHCpxTOxSohSoiz5UouHDVIoutJD4i1tmWWUM9O3HLOorl01hIVISTAMEAC4g02fBWBzbnSU5NY7fo1REx8hbbOYVVK1mSHT9YY6mwHKiwKibDUixSmdiouUuKPo4odVMmnrXOTQ2zkmbbMSy62lpM7FdSnhg?AGkiI2O4OGxuAaZjlB9XIS5VSDg6ODg6Vg4aLkKT6mrqblR9Z3JxU0XqpXsPRQ9lzJo9mkyEdayJQsJXAk4klShJk?aSBBnqGaLkzLgA4lSuAdPlA6ngPqbCOJuTUn1UablR9HqZ+x+p9L2V6jpeyvUJtXwJ6qAjIjkIjAMEZECBUAqAXACsBiQGchAcAKz4A6XArqeGfS4Z9L1A6cyYP1MunwF0+AdPgISESpARgDh?GCBAUBIAMFYRiAHAR8?MgCsBlwz6OAdHAOnwEYAM?wRkQ)?IABIBGZghPsGYIwARlTIqDIAwBAD)ABgg)?A:2Q==!