["","","37 C# ","A3srweryytyrystyz3+BCCST~~}T~~YFG5G579656497494F84.BCCEE3CE,CE[CCEXBS}T~~}T~~","List, nested."," A List can have elements of List type. This is a jagged list, similar in syntax to a jagged array. We can develop multidimensional Lists. We use an easily-developed and expandable data structure.","Example."," The List generic type in C# provides an underlying and internal array where it stores its elements. But it always specifies a one-dimensional and zero-based array in its internal structure. ","List ","list","Note: ","When you create a List whose element type is another List, the first List will contain an internal array of List references.","And: ","The List objects these references point to are separate. They will contain one-dimensional arrays.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.7 (2017)\n\n","C# program that uses nested Lists","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {","\n //\n // Add rows and columns to the List.\n //\n ","List<List<int>>"," list = new List<List<int>>();\n var rand = new Random();\n for (int i = 0; i < 10; i++)\n {","\n //\n // Put some integers in the inner lists.\n //\n ","List<int>"," sublist = new List<int>();\n int top = rand.Next(1, 15);\n for (int v = 0; v < top; v++)\n {\n sublist.","Add","(rand.Next(1, 5));\n }","\n //\n // Add the sublist to the top-level List reference.\n //\n ","list.","Add","(sublist);\n }","\n //\n // Display the List.\n //\n ","Display(list);\n }\n\n static void Display(","List<List<int>>"," list)\n {","\n //\n // Display everything in the List.\n //\n ","Console.WriteLine(","\"Elements:\"",");\n foreach (var sublist in list)\n {\n foreach (var value in sublist)\n {\n Console.Write(value);\n Console.Write(' ');\n }\n Console.WriteLine();\n }","\n //\n // Display element at 3, 3.\n //\n ","if (list.","Count"," > 3 &&\n list[3].","Count"," > 3)\n {\n Console.WriteLine(","\"Element at 3, 3:\"",");\n Console.WriteLine(list[3][3]);\n }","\n //\n // Display total count.\n //\n ","int count = 0;\n foreach (var sublist in list)\n {\n count += sublist.","Count",";\n }\n Console.WriteLine(","\"Count:\"",");\n Console.WriteLine(count);\n }\n}\n\n","Output","\n\n","Elements:","\n4 2 4 1\n2 1 3\n2 4 2 4 3 3 1\n4 2 4 1 2 1 2\n1 3 4 4\n3 2 4 2 1 2 4\n4 3 1 4 3 4 4 3\n2 1 4 1 2 4 1\n3 2 2\n1 3 1 4 1 4 2 2 3 2 1 2\n","Element at 3, 3:","\n1\n","Count:","\n62","In this example,"," the List type signature used has confusing syntax because it must specify nested type parameters. You can sometimes simplify this syntax by using the implicit typing provided by the var-keyword. ","Var ","var","So: ","The Main method first creates a List instance. It then populates it with ten new List instances as its elements.","And: ","Those latter List instances are initialized with a random number of random integers.","Random ","random","Int ","int","The Display method"," receives a parameter of type List<List<int>>. In the method signature, you must type out the entire type exactly. Keep in mind that nested List types with specific inner type parameters are unique. ","Tip: ","The Display method uses the foreach-loop syntax to loop over the inner contents of each List.","Foreach ","foreach","Next,"," the Display method also shows how to access a specific element such as one at indexes {3, 3} in the 2-dimensional List type. You must be careful to check the Count property on each List separately. ","Finally: ","The example counts all the elements together and displays that figure with Console.WriteLine.","Console.WriteLine ","console","Discussion."," A nested List type is relatively fast. It internally uses zero-based arrays, and the List type itself is fast. But adding another layer of abstraction and creating a nested class may be desirable. ","Note: ","This can help reduce the amount of complexity and syntax confusion at the calling sites.","Tip: ","Another option is to encapsulate the List<List<T>> into a separate class. This could be better for real-world programs.","Class ","class","Summary."," We used a nested List that is essentially a jagged or 2D List data type with the generic List class. The code here is not ideal but is fine for prototyping or experimental work. ","Jagged Arrays ","jagged-array","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAHsAxQMAIgABEQECEQH/xACb?ABBQEBAQ)))?AQIDBAYFBwgQ?ECBAMDBQgLCg0F)?IBAwAEBRIGESETIjEHFDJBURUjM1JhcXKRFiRCU1WBkpOiwdE0Q2KCg5ShstLhFyUmNUVGVHN0sbPC4kSjtNPxEQACAgEDAwMDAwMF))AQIRAxIhMQRBYRMiUTJxgUJSoQUjwWKRseHw/9oADAM?AEBAgEAPwD3+CEzhty9sLQD4IiQiz4w7Jzxv0QUA+E61iAnD13k9URtOm6ZgJJcOSwun7CWXIIhsf8AfU9UNsmffk+TCUKWIIqWTnuXx+T++G7Gof2gfkwunygLTpoILDk4JHDqTs7KSzrr0wJACb26ifpyiyy3VHWG3AmwtMBIe956ZelBSrkDpLnnCKq23RzSl63/AG1r5tU+tYjOSrxio90G/mk+tIKA6SzAKVueenUsPvjhdy8QZ7lRZz8rCfuhCkMT/CjHzC/UcIKdh6Z2ZM6+EcQItRgq+5XqQ1KPzc809tJptlmxtRVHSQrSXtTdWOgi4qIULukz0kHwSfsQ1zjfwGnbwa2GOuI02TnipGXVMWZfzkx8ykZuaxFii823JlkdkSgYo.31Yc6kKoSfY9P6oIx1FrVamUDnTjRD5so1zRqYJD01JXFqvAjTTpj4IIIBAggggAiu0gXhEF65ce2I1N73J/oh0moglZYEh2oj15L+hUibOOS+kzmLoPJtG89LNFQsuO8nZE8sUy6wJm6l+ZcB00VU7V7IiWVSk4pPZWK40rtEj/GOXSJza1yqSufgRY+kEWpsJqxbXkROvc/fGIw9MTE5juvNys2g7BuWI91CA9wBt4+fhDFlayNUx2labs9MgjhvTs6zNCzm0Zki+MKIi8Eyz8@3afadfB1lCFkQLvdxEW0VeA+TKB9TiX1WCxTdbc7nZbz3/SWJOqOXT5p+aByYbUTbcJNmKioqOQiKjnqi66/HF9Ccs30S7yLnEsJqUdW42UWm0+UZ/GZq1h6pu59Bgj+THYoru3o1Oez8JLMn/2xjgY6V32KVrQd2SeJSzXNLQUl0t8kTYVn3G8PYeafZIG3qdLd/zzHabNoAb853ZosMjNapLzQunZGkVd5PMsEU5x2aZIXWmkcb0C3PeVTIBT4k1zgmFqVrfNwauIxQ7lJUEclz6kh7mlezf2Qlccbl2DKIm+cWptBG78FVy/S@fM+8pl1b/ANqQupeRDE8qDuxkKB+FW5MPPuvRtURI8+5XHHe5VALZLu12TtHNMyWx/SN2jkxkvtZz5Tev04ik/wC49v4HV7V92QzzrEow5NTC2tNJcX7I9akvBETjHktT7qM1CqNvybv3TtLx3wbB+13eIesGz1y649UNuZmXxemZMrWSQpcFUCtXPwi72V2XDsjMVpyrSNaeskFelZkhdEwNNqog022djXFbSyz8kVc8f9JLiKdMqkmLqC06m6nl0RO3RI9DpjwPyouASFr259SRkGJqZNbC@ogyTfEEIVRU8+sa2ktq1KINhBrn3zQu./o+BM3a+S9BBBFwhCCCCACiie6VdNUhrnDPqifZKSceuKVQGaaBCaFHeNw8FRE60hubhiw5RG47FmQX2qPpOfrlFF+lTr7K7N4GjJPLp5onpkrOU6RblXiB8wU7nc1G68yPPLIvG7Yr4Izjk1Si/pHz0uOzV2LPyzb4rtFL0LiQV8455R57RXRlOU3EEuza1dTpY7RRE6243s8/OAF7UuLn4N/wDxjy+luP1LlNrrvNzlpgaUFoXIq3C8yFwllwVPJEeWXuyc/SOhHj7m4mDNh8pm7acSIi6v/iRDSaqwVdInXWwHYd8N000K7ROOWfk7M4gHDuL3myEpyXtNV3TVVXstuFv6oipWDsRU+ozE7MFKPNvtbK0HDHorcPSZ86cYgjiy6o5IQl+4mjKHujKS4Nzz6TFREnhG4rB6syz4JFKexFTKc+rM66rIZD39UVWsyVdCPVB4dcZF2q1fnq0uYpLj91xc6bcFwLMyESPdzRVUfVHSkZWtOS4yXc8JRgSXaP7a4zH8ActL1zTNeCROusyyl7IfwMeCMY+6W/ZWjjY6xlSzw/V5KUVZnnEo8yEw2hE33xsg6eVvHTjGywignhKhadKnSnH+4CPMcW0+qv0uqXS33HJvc7tMLQ70bmXS3lFOOUek4Idvwbh8rV/m6U7PeQTtiTo5ynrlP9wnUY4wcdG+3zZoYQoajn4JeqGE6ufQLiicFy49sWyuTZQZQnVwhquLl0C9SfbABheVgf4kpTnvdYkf1ijdx55yvzQtYWl3tQ2VRkz3k8UyjWliSg23d05W3PpbZvLPz3RH6sIv3SX5HaJNbJuvg6kefT9Scq+IpZyYpTstLyO3ap1QM0uKYc3CMEBeiItGiovGNM5imhtvty/P2O+qoie1CzMRv6V2XZ64501iDD90oBTcs5vkF21b3eG90vw4i6jLH0/qHY4S1HdkhImwO23Tq4aaR0xjnSdRkHmw2Ey0YZblhiSL5sljoAYmO4qF8ecSYVBQWl38jZXe46CCCJBoQQQQAMDhDS6aJl2/VCqpCi2pFKanJprwckbvoqkO5AuANiW+rzQh8Izk3iuelP6uVJ7+5Bs/98cSb5S32CVDwlXfzT/lDJSUf+hUmzVzKvX3tlu5dDLisYXD7afwsz5CSFdQx/8AJEfXuxmKlypTJzBOSFMq3HouMENuWdw7nYscXB2PpKjY1m6xVpOcHnUkUvsQZInRPbC9ns9CttHjFDAsjytzi1F/LsnmoqG0k34Po8B0h/VHm48t2CfvvPWvTljif+GrAH9td+YOL6cez4INL+DdMScswZPNNoLjiJefoxMQpGBa5Z+T74SIPTZP7Isjyu8nvwyPzTv7EKkktqSB33s7WJ5QPYlW5VkE3qfNiPlUmTzzVeKquqrEGAC/kRh7/AS/+mMcOs8p2A5ujVGXYrLe1elnm2x2b3SNsrfvcc/BHKTgen4To1Onqy1LzcrKNMvsuC4lpgPoQgHqEEZMOU3ADn9YZL8Zy39aJk5RcCZp/KKn/nDf2wohpoSMy5yi4ID+npIt4R3XhLiSD7mJPZ9gv4ekvnhgCmZflwH+Qzn+Ll/84r1mVeanZGVlBDaNgpNSrV1gA2t5e5LLykXSXqipyt4swtWMETkpTKxJzc3tWDCXaeEnCtdG60UXPhqvkjmyOM8N0ik/zpLzdTfT2xM7UXXC+kWg8EHhHO/qEHNwpN88L7F3o56Iydq+En5IsYPTDsuJ8xC955LTdteISNU0tttBOu7NeEeU1KnhKku8JuiRi6yKLc3Yg75LllaV2kaOsYycmF9ozIWGauHcty8E0yNeGWkZp6pTTjz723yOZDZP2KiIYbu7l2bqQ3pcWSMfcLnyRlUdvwfU0vhHClrToUeVaIBS3ZtoC5LloqhxTNOuNHLiyLQgwgi2CIIiCI;iJpomkeZ07GhzMhKvPTTDd7YXM3D4vnzja4WqIVORffBwHLH1b72u74Nsv8AdE2Dq1PKsSxuOz5IcnTyjD1HJNX/AMncgggi6VwggggASCFggAqzQps1LLTMV+kmsNNgHAtMeqJJsVKXc0zXLq8msORNE7coKTfHag7bGLq2FJht5mYo045K2ku2azuuuVOgRcOtIzOHqc9T+Vtluac2z7lCN03M1uu5yrXr3cvNHp0+6jDV/HVEjz6WQ2uWGRNzK6YozweTdmCc0irGEYdRUVVr8EuqUse/b/c3dTp0xMzUvNMZd5Fy4CJRuuRLerq14xUkKfMtVIXZoktcZLvNqdISH3XX0o0MVv8Aqw9A/wDMIdPpsfqrMrUtS2v/?CzS0entVV5+RHJCSd8JLNH6TYfZGKrtEpk/WHJRqSkwJmWaMr2Gyz2hu6ju+5s/TG/jFVRpmUxYs9tC77I2TI5XC130dkReKJb3HTSDq03jSXz+RMLqTfjYy+IcF4f7hzuxkWGX2Zdw23gabQtwFLXdiXktoFBn8FUuZnKdLTT7gu3m6yBl4dwekvmjtYgzKmTrYZb8u6PrBYqcjRoWAqZupuLMDx1X2w6WcV8V2t/1d/sPk9my9UsJYTnnGaf3Nlpdx1xW2yaaASS1Nq51eKGXxx038G4VsDZ0SQ3Ey+5mizThrcMUp2VB+uuzzW1EZdA2T457PbAq7XLqXS1F7dYu1LEjElKbYmzcctUrG8iz06lzSG48qis3qv9X1D5wv0/T323XwzDyGDsP81aGYpMm45aKncw2q3ZJmmdvbHTTAuDzbVzuJJiaL70iJ9GL9ONXJOWdJFuJps95MlRVFOKRLNTistru3dXkij62Sn72SuO6SR5pyi4bw7T8MvzdPpjErMg6za60he6NB8bLVI9KkuTPA5yzZPUOWK4BXgXZ6Ued8pEyb2GZ25ct9krfywR7hTXRekZcx97D9VNIvdC3OMdct7l/gh6j22lxsZkuSzk/wBf4hl/pftQgck/J58BM8fGc/ajZRWlnE5xMs+IQ/SFI6DajKK/c6/NWV1bT8bmVLkh5OT/AKCb+df/APbGiw9hqiYVknKfQZXmkq66swbd7jnfCEQu78Rr0QHThHUh0PECCCCEAIIIIACG3JDojPhCoCGZeAWytdEfriI5+SFfuloVXgimKfXFedytXRYw9cdaBC3C9SfbCZLittxY03ubh+ekiH7oZL8oC/XGE2rbnKvQjuQy5hONkQqhD1mP1xgKlUJUDXwnyf3xxu7Uuy4jjTzrTg9EwuEviIVzimpT9TXRPpjpas+qI5xIg1trVd+WduHNct1xrXLh7qPnJvGE030KtOB+Vf8A2onaxnPC6jzdZmNqKLaZOu5onXqXbEks117HymMjjq/cuGj6WjjTUoz3QLgPOmXdtw18E3+rpHiC4/xEZXBXHergQZaJ+EkM9m2J9qj/AHXMnRRRuyZXdVdU6GUJkzKSSUXaae4scbXdcG+xZRnqdTT7lzT2xFs23GTK60bSW68lzyThlHI5MHJj2FSTd6tsd/bPJeNz5l8XZGaLG2KHcxdqG0z7WmderqbitSq5U6NTwpdPIQk2yIwbNsTyUlUukSXcV7Yo5sUpR9j0+7UWcc0klJJ0qPoNtQbZFq1LBTK2MbVHKe5tpfmwyzre06K5CS57vXp28I89XGWIDGwnht9DLNOxclhnsjqbmd4tH1LmJ5+tDRYdleWcYxpf+/A3HGMW2277UeoNMj3PlH2s95lvgmmVia+SKk+qc3LTe0t9aRk5TGdUl2m2WgG1sUDeVeiPRROiuidqrEpYpm3ktclWvxVJPrWK0+mn+kkjON7sy+N5d7uLNXqp+DW78qMe/U5xoJGXtyyJoC+ikeKVh3uvT3pExVnbW76b2VpifDNPFjreyuaa2DbDZ7JqXFnwpZq4KKO08XLLLRR+OLGD1cUI1FOW4zKoZJfVSpHru1vS4S465pFMn2qfLzlSdzJ0Uu2d2V5ZJswHP3RLupHk81iStTsg5TidsadVLzFN9RT3F2mSeaOY2xM5J353qXplxTVF49SpFiEpuUZzX8/JC4RVpStP4+D6BG61Lk4p6ofHhXOq18Jzn5y9+3HpXJ+9OPUZ/nsw7MuJMnabxk4Vuzb3czXPLPOLkZ6tqIXGu5q4IimpqWkpdyanHm5eXa3nX3iQAH0jPREjn+ySiW96m0f/AMOBv/6InDqGnVgjmy9fpczf302LMvutl2VVfKCTQNXp5RzSCFA6UNKHQLCAUZlrdWMhW6ftBLSNyYaRzJyS2orpD/qVCcM8MrVKK4t2MhNSB66R7nVqF0t2MZUKBqu7EEoNEikjy5yWPsiAmS7I281RCzXdjmuUkvFho7YyytL2QxW/JGgdpy+LHPel1DqhAOdZBvdq+tYmIdYS1IAEbcez8IXyl+2OhLvTHvznyy+2KQAmcdKVBM0hQOrIJPTD8vLtPqLkw80wBOuELYk8YtXOFkWQipZkuS6RscQYUq2Fm5Qp6ptPuzbhNty7KlfaIKZO981UUXIV04qmsZAmFckZhtsVNxxowbAUzIjIVERHrVVXREj2jH1GqNaxBQJaSZOxxqcbdnNkbjDHgXB2xB0btmojmqZrD4xsY5HlqnOZeGL9H2R1cLSTFYxBK0yrTDzctMg6LXN7BIpgURwBIrCVB2YuLplqieZWVGUKnT83TXjF1yTd2JOgKgJbon0VUsul2rHRwRLlM4vpuzUfaiPzj1y5d6FtZb13zIQqjG+wOTrkjxHJyNLr8xSqQsxs5IW25opg0O98wGYub1zy2bo56JrwSK6uPiyvfRb1EdsaJa2hKgq4XBMgTeXzRfxu0Upi+ovbRpxuf2My1siuILGGpUhd0S0rmFVMlXSOW2804TDUySDLOvsNzREtveDdAHri9ymzuzXqhdKvhBbrlnpFWwnR6XIyzUphxa1tD2c9N7b24217p4XC74ZdgAo+TKL+F+4vdOo+x6UGSkW22WZhkZcpP2zm44V7DgNHdszDeIY50hUcLUyeZCmYoNmnSzaXyDj3OZd3QvBzEztS84NnpkmiZx26JPy1bqc7WJDPmYNtyW2IVAnjbUniK0kusDaogqvFVLqh/AwuYhk5iepuylh2jrM1JTezzTf5pNszZAN6iNxC0uWaomcc9uq1JyRxG88JSz0jfzVotmRNe1G3x8HcJbx+WNJGeYlqiwE+w7TudHPOulMPuPgDboH3ttPdEKCyIgu6nDr60ArDQ6pWAafrDjLDrbQNAcuZPbXjm65e0wjZFn0RuRO2CO7SZaalKezLzjm0eC73SnaN5EDd57x7MMgu4llnBC6n2Ci7BBBDRQhtqdkOggAqvygOp0Y4k5QVdztb/wAo0sEO1AefTOFnyVfa5/JWOW/hGa19qufIL7I9VghAs8SnMIzmS+1Hfmy+yMrU8OTbWd0u58gk+qPpeCGtWLZ8fTckbJLcKivmyiiQR9nwwmWT6bYl8SQ30xdfg+Mx4xdlz4R9buUumO+FkmD/A.RX9jeHfgiS/NmoT0/IurwfNUnNOtOMvMuK08w42+y6KCtrjRi62W+hD0hRclRUjTrjHFkx4SszP4qNN/6TYR7X7FsM/A0j+bNQexfDnwVK/itBDkmu41tfB4MvPJt43nSN550r3XXFUjIl8YonSguTaDtmBct6N4oWWfZose5phqgjrzBofRT7ImGiUoOjLD6y+2HV5CzxeUwq9luNIHoplHclMJvabqx6gNPkw+8onr+2JRYZ8RIctPkS2eftYR4aRr8O07uZInL5ffVP6Ij/tjqIA9kOTSBtUG4sEEENAIIIIAP/9k=%iVBORw0KG;)NSUhEUg?AJY?ABoCAM)kR/m5)GFBMVEX:/9fnOnZ5fmFse3q8Pupx/LE2PY6i+Z4iByf?AC+0lEQVR4Xs3azY7DMAgEYP55/zfeY7VK23GGJg73Wp8MNlaK3B1hVZWZVRbyhIhK1/4X6mmbRf0pvHaILF37e2jems+XCEbeJKrUPhNaWwoJh28R4dDYUEhbXIEAvGs/q/WZrPZnsrqeyerYypqnMczM4i5W27m3iHrahKWemenT7bJU0OvXWZ6v7S7lqytST/X6OJOYIl8T5qBFzFhizJ0aKP81YmGXARRw8Sypk1ms9UN8ZKmvssTPnMVwsqVGe1ZIANZiGsFWnT4t6yzx5QaUROuiWQVr9+jHkVOW6NLioX0qxiwHLErVNWUVYFGq9ikrwNqUqnXKEsCiVN1jliIWo+qYshywvJmwKSu/s7KpqGtZ9dGcZWHl97NSJOCHHdvBkoK9pe5m1fvdUFs4ynYt69h4PFYWiOtY8e7152sLyHWsd+3c1xZQuew61Td0XVzAr2P58bhpLHav/FFPREubfirkAhVPshbbWmh3rbZ6leveW4ds5/KJyTGriE828OcyZuXoO6WBqqRZPvlMGQpuFpoFckioumgWLq2iVS40C+cQq0xRc+BZ/D+LBlPCs4ou+MLJ51mKCp5X8Sx+sxLkfsZSsrIcqGasJDfLQQZnLOP6TgDVkBVcvYeC1TkWfv8Fo1KTAQunootShQxYOBWdjMpDRiz8PYRS.7MKv2tKmXOslR2BELPFKNlLLIKTLkAla+qrFxfyQEsHM6o7P18z+9YLozqKGJZTOEmULm+PBSLuqULqESHf/ZS92EAFWDBAS6y+esXFWaF0ieQKPeSVRaFMgFRWMWz+AeJ;MLWdxOMSl0GbHmY7mFVTyLH2LWheZp1XNWKzDB690OXXDM8rTpAF0eRCOWegWE4HpXMFIOWNysPu5jDkSI9RKFcAF2hGV5Vggf1T9nKRTh0J+y1Mvum2PFLFDau1igtO9mgdjC8ngCC5y2Xaz5aZuz0LW9n8Vf2zxrvwizcCHtZ6nnBhF+kWwM/CLZz9LtIvAi2RXgRbKdZSHPiz+CLM1kMu7KU)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ALQ)xCAM?ABEbnNr)flBMVEX::n:rD8efE8uii0MZ3pZvH9evq:q+7OLL+e/K+O7N+/HQ/vT9:7e:jY:ZEcmjG9OrP/fPM+vD6:7b:fx:zR:Xh:j3:3F8+mCsKbI9uzV:a149mNu7GXxbvu:tsmpBSgHZfjYPO/PL0:zk:mr2c/J9+3Ac952?AFiUlEQVR4Xs3Z13bjIBAGYEC1917cW97/BVcIIzwQTnLWym7mLol1+IJ/GAmhLcvemeZgWYM5l+va6KXKGrfNNbgmczlOjb4q/DB1gDJGO4uX8qkIufo/OkVwzcOpanHHALvhnMp1svYz30ZRfU/ywh+z3iCsDC+Y2vutnBH2KjhwQL5PU4v62moKr0HheQ1HdTkhyE55WUgpcwUo6KTPRr/Ip9iJKPlxSfVlos6Jm8D7sAV6vtwLmrhDyJUF+cA5ZRIWvp0ZBvGe5IBejJCYHxVtrQBbRheZ/eFdmxjfZjJmH9Sjo7qdrhBNL5/aUkFjU/xQxmHgjyu6TAhh6GGFuQp6BZyRXL09ekFY3Wk87XP6BRrdaD4kdJEndwVtX15+iOj3M4eKoeuRcLQ+Ai/RGWRzndFBp/YYAbMWXeIqLHwZXeEIooVGRSeEF5R9P9IVi+SyCk/pN9DO85sWaL8IFfQ+1aJzItAvob7Isr0+0g2baBqOQ/oNdHSMGxkdhLED0KdTqqJZpn2fALQIdS7JLvpI++M8ZkUnOpeElmWdVTSi6DAPMg2aF0SXFV+IoEAIdhCG9cEp2dqvl69D1PnAO4rrmhZA13XHd3gn8b6Lpru7raDBcjtA2U4f6fuy9mmi8WsvyfUrIgKb/DfQA0XzfVJBI117MfWbYTWno4mdEqGHMF/wF8v4++iTaVNBFwbeKKH9pIYtRNdakFzByNMxCLSLtkGf9zxkHe/9vPq8/mJG4UIGINYZaDMEIdwCfTbxKrgtrX9F90m5CtzPs2uDQUvQWtgm24ERd2+gAVlU7X3QiTZkMgj1oI10dIOR5iMKWYo2QDOyQPtzop9oTlbCe5Fai+B0DmgtSzs8gg9Z76MvcqM4jnbGzGOnn5McthbBud0j0Fr4OrSE7H20hWQ0NS9oD8nlfpZLDDg1JfIqM9palnV4WWWPn0BnPBwqGn3WXnYg0scYg9biKZuH+wNoZ5lnDdoCl8ljouXOshKcivfDH0dTM0RrgOo/wu7hBSegaPluCf0MmmjR7ifzJUV6uopQ9zM6rDB96vhhNCFaNBSysqVIN0HLNfU84H9GwywMukiHRbMO+UvQptJe9nKki4Jrwl+C3oH2AlrL4Rlpb21K4y9BY9he4C/4Ax5mmNL4JWjxRH2Qpx6vz/8Tw9yNX7J7oIO4EI54QutJS/AckZ9ZlOBhC/979E7KpqVGOusZxhOnQ6Aj/ns0lgZXIz2jnQXDzuFmdPS/0egERrA/iXRvJNRSz+jlLq8Fm4wqO+jRzftoOMSgRLrkh4cBz2M2zmgMH373Eiw/a9FdvxF6B9rL/jXS0XJMm/XGuGCIYSwHeUc4nSelyWrRHtkIjUF7uYBtez0GpO1lJGRGzyPeYHDTXEq0Fp2QrdDo9OLEcCO7s0gb5I5Qyc9pw4gCXA3tkWrRMdkOfXhJxA5+5w4/D28QunN0wgiCdsbADNDAvCF6B462QX+8sUgvlyb8hUnLDIOwWSAbGnRCtkRjMYYJI42iZ6QJSZLxifaPPAfKAaRrpSo6YorC2BQND/Rhb27geatB88EUCIPD6NPB3IutG3RV7OCqyPqN0XvABXfXlXTeOqMLcZmmzgIjbgUYut8KDRcPbBj4I5PQ2YQQnGr1tFaL9hP+zuVtdA684ACmHCW00bdg1al1ziH62DYc3XcrGpdvokVHUfuFlxkSugO5Us02erxiouPaofoaxet7xO5d9F6NNK+GpUOoP2DHlutkQ4x4JWf4NcXwN7a3d9EPNdK8WhkdSo0J1oBBs7wszxFhQdFBuWDYnWITH99F52qkeXUyOpYufY2I5Uobfzqno52Whx+HrRGKZi/13kC/X/hxsKw5F5Zp8wvcuTADdMeqmZq4XjVzRX8N+AOuHBJq4NDiuw)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANo?AB6CAM?ADu370H)YFBMVEX::S5urp7ezj7Ozd6uvV5+rZ6ery8e3:v7Y5+nW6Or+9fD:fz:PpU3Mpw5daH6Nyx7eX/+fSk6+KW6eC/8OXh8+r49O5D1bvu8O3L8OjW8un/+/dCzr1C0rpBx75qyt4h?AHsUlEQVR4XuzZa3LrKBAF4F5BN2+9kpn973KsFtIZB5mKC67LuuXzy6Fs4BOosRW6JQqPFwxLpHq+ZLxs5KtKk/HCkZosjpdObFi0Cy/beO3w30sbP7Re+dA+tA/tQ/vQPrQPzY8IyzvRxBjDDW+faYZsIv9GtERE5vm3Q0ZkISPy/Wlib9FBeX31cAQOcbIdaJBNDCfgHWlmBeve8Cs9PaJZIupAQ2eO76VO/gjNaf8vo0khWTB0P1pQcbgB3MtoU+4LYYembjSrtKjGF9F8OY6O7rg7LRENuh/d+kIjcSCiYZaNcYv+nTSgsXVEbj6mZBaHj+09TWuTI9CGzCzs9g47acdttHV+sg7od7t3lONP+jtofvWi1vFSPjiLhBgsUDq9MYafNSA10xYiK0STybRASKjQJsqx+RZCLEofaGjzBU3XUmBYFMAttEhkPdGyEpWGe5rnfCXtLSslWc1BIxqs1/123LXJ+qhLLjhPgjFhAM3pKEUiLgj6lxZa0hXTG04yDRVj9YTHZUR3Iuery24/IOV4tYKWH2VEio1W7lOcsq20bSsNur95mxAfnviYNvC+D802lwHTcvvG5h80r32WYf08Yh0lbqdFUoPR8WVlGs3qSY9p4f+znjFlyXvJ5kUDDR2VOZteMy3PJdMMIXWaAe2+elPR9Ava9Edoo55o7TTTQku9aVslnrfNdNBcOhKfoIUWmutO0yGNtbLRgtLSiDy1IXGv8bO0rYwgLF1ocNpczZ+mRSKaVgWKJcpIwJF9fuXKQyESJe5M02o+n9GWGi0c38t42Iolir840LiYBq6HLc61zjTtddHtIMFjqDxzc07T45CscJj2n2O8iiZhrzIyqIShpC2KP2Kbv42YkqaDaykZCBdOcpsjekALhJDH/DQTaFj/2ontFWB70mJ+DqMBDdM8p2E2mBI6omRAk2I5TqvL1JfmdoodMmNA5z63uUe00aQdMubwrJ+wd+PMJ8vGDl60NNAqEeODMUWbMTJWwiYEw/f95AZE3O5EFjiKQnWRp8flAy0cF2jZ6+wwvh3tny3VJyUTV9dR8O3mTWiQ1Xj4bQeZvXOhzL4RDbBzHTDxBIriRoMZ35H2nQNdacOO9FkGeUpW4HkbGmQ1nSQGxce3:8aZP9qCl0lV6EprK67Pq3UXZ9W012dVtddnVbXXZ1W112LhtrfoLskra67Pg084Jpp8mLa9+91v/FJhRZfRcPce+oiVSIvpnXVCdXyJS+lMfMIXKNOvqieKPwamso0o9radCzxv+7sYMlRGAYC6AbLCjJw4UJRlf:znVLozW7DszsxQH6NIcceNXC2J5fH844D8+O0uPxiBy653NZns+1C8TxsZeYmCiEbsWvh3mep3Hs+xpwMtqCmE0kxuvqatrGRsScgIs5V9PVtPUPrQs5RCxJmNV4oFsr3flo6MBet7VDgCOCUaLWdw1dTSMUAByyIl1A1MgxirDs67pKdx6aEBRozoPBhAxGYmYi0tE81g2n0PVbWmIKyBa3ujXb0E35KtQ6PpnOaVabBraKZrOJEhkV7+poo3tBdwYabIyorciC0yDLVJ/JY936eV3vNCRqbLBUpu8abP6HLi0kbjvWPU03qa49sH8VmvEe0ddzk5GKILP+1JZizv/p2tMmp5VEsSczGZj2iVOa2YgROdDJh3WgzUtH7KqCgwiyHKWR0mDTCjMYQLdZice6aQKuLW0N+og1LoeYjRbMZsHionAUZwpmx1U6tK2619R/aImscUQsMP5N0+IswIkwAGCqZ0eH7maMZevaYKtxObZkakX20vlUIrAhASHG4iKS4k53ubr5NbaTYY2E7f2SEKMtmSEU2ld1bkNKg0zeXqVD6csAW8PahueK59r9FEcdOG8HNqWpsWhh82MCUk0mUZd7m/q2tgUPtq/zfYrhbCaBgtBi3wTDozcRln+HPPGXrW9rw6Me6GJMSeRL5zWBlOO0YG6l2WQ6ygPbMEPWzDa+Mq7W1T7jqcDbUpu1uD3b6ZqZqskOK2prapsyLldX62oecFRsm+XSZIEEtLcnIKFuGUBrieunaf6pLglvl0vYlFZKs+uIeiOdMJGvxrSMQ3U/1SkuKMbK8y0KPNYPbPyONo+/mgc6dPej905I42cdpzknktVWvWxOO4OOv/silAPQlsaA2nAihbbMEwCn0aW3OMT2mAgKLEPIVpv+gjkVmi2RH9SNte5or4IQKY2MJkaTGP0mrKKdXxcTEwKiarY0Bk2/A9sPG2wn0M3QPTFvB5OZBKEykfGQBsBldIhz/DK62pmciea611ZHuzp47P1SZaHRX7QRtLPo+qJbTSfvdDHZ/srPr8pMrLRY0U6owzdsT2fDJ1H82khs41LTTqkbDnSAbGjECcqcaiCvp9O1MlpV2p+vJ1LRrqfDrgqgHMhAsy3X2WnIG119j8UMc1lQLkFDvj8CxWRco4WKdnGdn37w2klFu7iuXEOnmnb97rJNJFbftbvoYnWldR9d46No+4uV1IrW/mLFabDdQpcKjRrR2l89CHXr4AN5I12MiRtcsTa/eiDwiIL/9/BGOr+nxKt2cVp9sbIiz6XFq9b+gJcD2QjafXQTdMitZKU75G4y2MBDTHZDHow3z2+JRIM+/Jm0sw)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AJY?ACrC)AChjjpN?ADfElEQVR4Xu3cIXLrMBAGYOOcIVwXeCcw7gWMcoBl4WKFPoJOIFbmAxgEFIkKBTQzIp7xjJCJnqW1K02K2mmUnff2J2pK/HWzScdey00glPFNvZ5PL3+OB1KsJudJNeliTUixymPXZ13eVB8bRRxIscpD1Gf5yd2uV2vMOynW+x5mxTDrcPzzcjr36m0kxcqpzcKatB28Kj2SYuXUZ2GjdOfXtVFIsXKewjLWXq+3afYVWBXCLGYxi1nM4rPqelm8n+dpcu5GivXxmf+bxaxBa7D0WLDSDbO2QIs0AqzyrDrm5yyvdS/9b7FyvsUaFYDUbgWoVavXVTe4fic356Zpnr1ffsYatFS6XVlYDts2KWIIwcQfXPBifenD76cxblfY4BQA6L00otmDqs/XwoUg17VPxRoedYpht6pJREgs1f2nNdYKtIo4FYKLvihtH3fhFVfM9vf7eHgBAGJjjamLcIWtqyLRVGB1XVz6rVitTy2PrD4101bXzY3CR7PGVAQ8lMSqIWtfjRm1jpj8LtsHs3DBntk6yZWspkgXAT6xdB1WuGPes/I7pxNL+OezAKTW2hibyorpn8vCr9WcfiWlgtmaLLEfsGx5FQHeDAaL1eIHpB4LFXL/j/PZSi20cdFYrAG/JYaKLBXXDsTORsEWjcXasK2vx3IZsXnN7hLSBGgBxvRbU7Xlg9oMYmcFpyVIPdy3eDVWlxSjBJBDMKF+MgtA6gTwgUIa9FBLQ4fibZ66k2DhXRFNGTrXtZg12XzrCgkWdK04NmVIsJBSkTXZfEWYBOvrG0OChRRm+Zu9DFr1a8t0JFiql3B6KUOChZRnsZjFLGYdRdsBBRZej083L9@oSRYZZiF/UKClW92sw4BJFhlKrKwGiRYB7EN1i7WI4?6y7MOoHsFQlWdzqvFD1czIfnC0nM+pUwi1nMYhazmMWsyRLbKYyjBZ75zHbEGSGhmc9KITrzYdZczJRJsHBcyTOfxafd5BZ3kxNgIaUIDVbmMItZzGJWOVp4AQIsfLgAjhaMQygJVpmKrFQNIMHKe3bsj?SrDLMwhkhCdbXmTIJVpmaLGOsvZJgIeXmprzVjMcFzGIWs5jFLGYxi1nM4gkZb9ZaFu89PnqIBAspH0VIsJDyj7GYxSxmMYtZzGIW7vEgwfq6x4MEq0xFFj42jQQLKd77ZQnfz1/v0W3UeqR3rw)BJRU5Er@ggg==$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAL?yAMAIgABEQECEQH/xABq?E?gMBAQE)))?QMCBAUGBwgQ?EDAgMDBwUK.@)?ABAgMEEQUSIRMiMQYUMkFRYZEHI1JxoRUzYoGCkrHB0dIkNUJTcqOksvEWFyWiw9Ph4/A0Q1Rjg4SzwuL/2gAMAw?AQAC?A/APv4)ABTKu8XGu9d5fWDJnEEoQSgMzNDJDFDJAYKZ?GI)IAJBBi92WwCJczBgj1MgTYkBAC)))Aaxe9d1SgGbCSUMSUBkWIZNK0UsbwBgpk?Yg?EEEqVve1vScndrYAyuVSu3kG1j9NPFCl70zrqDONq34dRe1xmims15nnBllNlvAkxb0UMgVK)?AQRcEki5grivad4Jy3LJOiVFU0i3bqYI53aoLWsNgkou7tUZndqgZTYuWt6KGjnd2qbiO0QGD0sWEFecjOClXWLQV5tCMxNjFXoZqaNa7zjW9iGzmXtPP19RJzuTK9bItrIq9SBUshs0TdrKqJplaq/Ub9zPMcXby/nHeKkpPL6bvFSDorTL2odzMZNdqhw0qJfTd4qbVBJJLVxMzu434r1JcFb6dWtVyqmiKvgeiQkh.c0)?xUwuZGjiEjo4N1Va5zkTjZe36gWRtzORvapsZjVzmgySb8475ynOifU/npPnL9oN6Ol6W8mljvOXfLGmhQMkzOzuc7TtVTqNaShVKiMXLe9iDlY1ygwTk+2F2M1fNec59j5uSTNs8ub3prrdJOJ17HzXysw7aDCtP8AiP7IKa7nLbQ6j/KfyDjXfxj9lqv7ofzu+T+/44/Zar+5Pz9iFPvLoch8WvAxVStVVeJ+yXS68Rndbh7fsuc+Sbzi69n0G0jzRrqqSFGbO29e6ql+FuHiQyNHqt76G6l7Jr1IYuXKialSVDLJxKp6uNmXRev/AFxFJUulmjar7qt9PkqJYkaxVRLWtqbGY8zI/PI9/pOX6TqVOIxRU0stnbjHO6uz1nlvdul9CTwb946ciKlkU6GDU73pLI1qu1Runip0wc33apfQk8G/eHu3S+hJ4N+8VnX5tN6CnTOlgjfwpz+pjF9qoea926X0JPBv3j0vJipjqoZ542u6SM3kTszdq+kDWrIpI6d7nNVE0TxPQoSYoZA4I)ABgpzMUX3pnrOopx8Rdmqkb6LU9oNimS8idyKpVE0ogh4aG3CTTsSyA289kd8Rs00W7w6zayiNu6hYSaL36qa1Qnmn/AKK/QfO+X7M9Dh3/AHH0sPo0/vb/AFL9B5fFIKCsiZFX0vOGw5tn5xzLZregvcFJYxz2ZWprmRT8/YmxMynCe3ePuNbgfJS67TBv2qf7xy34DyLv+IP2yo+8YOLW0FUvCO/ym/ae3rMcpaWukpZkfmZl3rJl6KO7b9Z3kdofNq2qfXVclW9qNdIqbvUmiNt4IXy4lX1F9tUSOT0cyo35rbIaNVTumyIioiNv7bHRbhWjFauVyom0ut97u9p9AdM29syX7LmrUybTLkXt+o8G1VultF6lQ246+tjVMk7+5HLmTwddCyjpI4JGyq5znNva1rcLFkmDPezK2Vuva231qd7FpFZh8utlflanzkVfYeXO/hU8+J1TYaxGyxR3l3mt10ya6W/KOnW0NFPQ1XN6eNkkaO3msa3eYmbTQ6Er0e66dhdRKlA3m0iZnOfmc5q7qZt1OPqPGnd5MM/CZpvQYjPnL/8AJqYNCyXEoGSsR7N/dcl0Xcd1HtaKmo4nPijgYxzkR26xESycCIukW4tVpHE+Gy3e1PVx/wAC2KQ3I3ocyS0UzmdX2pc6t42W3U3ltwQvkTgeYV1y5rixDXWzVQuYuhrr2lZmADE?AGKopzZ8OqJZ3y5mWcvat7Iluw6gBnHI5iqreyxz46Gb0m+K/YTFRTM62+K/Yb4Bksz9eBgjVt1E5V7jIE3KiiSF72ObdOCpqcmowWqmvlfH4u+6d0EFkcr4+jb4z5ri1G+kqH00qtzst0b21RHdnecOVmp6nlOv9LVHyP/ABtPMzdZCnqaRFdDG9eLmtVfjQ1iUMHO1Mc+pGU2tENlpcxprxG/CwlEGex3uTVPuzzd6M8P4odejdRTJNzVc2Zyum6Wrnde929x4zFZZ6LBaqeklfBUyLFBDNE5WvbmdtHK1zfgRqnxnOwWTlDTYxhrMUxOpqaWtYmaGWolkZkqEdC3O2RbXau93EnArp0Soei3W+XVF4ev/SHpsLpVgxhkf5t0jf6rj10Dt50VurN4/wADx2LRVVNg2JS0kslPUtijSOaJyskavOIc2VzFul23Q8ej+WMGGpjTMaqnQ84Wl2UlRLI7Pk2uscmZmWxLVsU4pPtJUb8FEv4qfUZkft35uOZf8Dsq/VvwlynB5OVMmKYbh2IztTbTNTbaJZXxyOic5LaJmVlz4RRVnLvFfdDmfKOuj9zaOXEZtrW1DUdFArczWbzt7f0TRC+WRFRmnUcxOs/SkirnT1GzH0UPlfkf5V4rylw/EabGZlqarDZIstS5EzOjnR+VrsvSVuyXVe05vlg5QYzT43gPJ/AsQnoaidrpJebTPhz7eRsMO02XFPNu8StyorUB9pJPkXkmxvGPd3GMAxzEJ66ohauXbzSTZX00myk2e11Tp/HY9ZyorcTwnE6eqgqH8znRPNX3Noz8n1O09pWSexB57CMUnxTEJHMe7m+rsnUjbpl+NQAeh))?AB4LlNT1L8WqHMie9rsnRRXf7tp5efM1Va5F776KfRMTvz2X5P7qGm9jHtVr2o79JLobHN7tRyO4oinTgxzYsbG+FHIxEbdHWXd04WU+dPU8HF5RVv+Lf1/8AlH3GfB8PmT/Z2/J3f3bH5ZpWaoUPareJlNjKzZebZo7Xzo5Gre/C3HvPpNJy5WRU/o/9d/lns+TmKri6S+Y2Oyy/lZ+lm+C30T5Jh0S3Q+rcgaSaZlXs25suy60T0+0xuZQV0znoksm7re6N7Du4zDtKekpvhPmd7GN/9i+XC8RYtK6stmgY2Kn6F2tiXRvm+zN1noaWKpiRG2ez1XRDpwNdbiviSa1S3M9z8yaqc7EqXnFBV6e/MY79ZG88pUcn05klX/zFiyW4bqOvc+ioxb5rqWx5sq6rx7Qa0q5lzKt7IiHPwqKHmNFzduSJsceRnZp/E/PKcnXYmzE8kmz9z6OSuy5c2fZvjY5nd07314H6Yyiy9qmS62Kj5d5Ekov5N1jYI8lW2sdzt1+nuN2Tu5ES6HzrlxPjPKDyty03J9iTYlRSRQ4cy8ej6SPbv9/XZ7r2vXe06j9LmRC8LA/OXI+sxnAfKdDHyk8xidVUOjxH3uzpK1udvvHm950jXbuh9p5etj/kzU1D+lTvifH+k6RsX7r1PSggHj/J29lRhNRVfl7dYs36DGOt/XB7)))?HDxFn4XJ8n91DVyHUq4/Pv77fQhrbI3Wv3Gp3Ia0qcTU2R+SqJnA/YOzLVpWdqmhW1MUSs2irvX4IRTZ7vytvwvrY/MWGw8ND6/wCTiPcrv+j/AGh75KKP4XsJWBsStyqvWa0VVE96IxVVVvxSxuXfbVLfHctiNlqJ2FUaaGw02s1yLk5U7CcqAkki5AJ)))))?BrTM31KFjN1yalLmljXFMiGtkLiHNJOVjDXOWHKirbPwS/oiksiyXW3D6yTGROj8ZndO0KiXQ1qONyStVUVOPFO42XqioupkzgXIYNLDrohgSADM))))))EKYKWGNiUUwclynKY5S+xqtapjJKjLXS97laRXUtyGTWhquLCEe13Ata2wRDIAyMg)))))))ACLFKIXmGTvKZmudl07QRYzMdTIiNFRUuliVJABeQ)))?Af/2Q==%iVBORw0KG;)NSUhEUg?AMc?ABNCAM)l8IBK)MFBMVEX::39/f1:39/fj9/ehYXEYPFRCFiXXx8vHv+uTg9O2usp/Jzb7a38jm/vr3+NRRjjAJ?AE9klEQVR4Xu3ZC67bIBAFUIa/f8n+d9sZwFd2wAmOKqWufBU3Y3iWOJmSVjz1r+bOnTt37ty5Yy6+eFMqlJdEbHNVimmk+1kiEjYeMTmoMJqDu3qu/sF65HjMHKdDEVNIyVuGxHWISoHRFK7zDJ4wuzncwIGfJoVQRIhWAEZK1S/Bo9TtMEA1HabfgdCLY63690lE4FDUdBDEW312EFjNRRNobQcWvOJs7TAd7cDKChm9McBtIduyZGMklAimYUPfCohMSWEYmzT79DiU6XIkAMqdI9tKWS+ZqOnQWsOBjgzWDvInp+87GLucAcTpc5CKxw5TOQq7OBFdHPt+2NUxMEPS05K6430O4VHlyEYS+YujAKGDAzwwRFBiS3oYykSEOhxlMVK1HVnXcqjKgZCGIjueHC5PSaiWHDsU1KpyZGPDgUZt5FrvHLowJKyAo5aoHslnBx07YKQXR+OrXa8OiuPIhUDszmFPOUgCSqSNA8Oq5aDaAaN556CsEIcQtB4lzLIIHP0Q7ASCA5um5cCiTO3AXlNwwE+S7ISDGXBgWx85bIcjEu37URYLW8OhagceazlyIdGZsQTvJxfYEUKYJr6snaW0z8BZrOWxMNtF7gQyS5EcU3DOhUVxxcXCV3Eg4L2OwWZWXOP/V0Lbbn;8L2bkxzOe375kR3ez5Pz0zAsQdY1p1U+n/LurCw1OzxnEcjkfXDesYPHXAw+JAc1vnmrMTjMR4fpcjBjnMXxmFjDmGUYBnHMaeVPjjgSbcoO6WDaHwxnARdCis7H7MDnqBBA1jE4FN4qR/GoLkfw3od5HB/F4bIjuIlfbkqO4LgMxTH52Xkn/TCpH5M4GCEV0to/hhj/16NLxsmL5JEcw+CKYxZJcXAh/SkOXi/bo0C8Z9GsJDPX6gdZGUsI4+y8537M0g/nxuRYZOVwsMEt2bF4F9a/WD61Jjech37pkB0afHKMzjvOkPY5v+QKzODWLC5f1j6DD5E755a8z6WMv+uHhiMx3PTgzAKR7TFLL2TlQb6vJhHlnkg7vJdLGhJy7cpG9790aAbwJi8ZWZHzbMSu2R06RIX81LHPKcfvUzGu6dD/rQO5Hb1npqrzzPT4DrcHiFECxwEDkPMa2p6ZZgbO26h1nkj1uajZ3mopRsnO?fn0DG8njWeY0io1xGB6ncgvQ511hF32doIxYvYoG7PfXYMbQcgVM7qqM9RL3k7iqLnXBSutUwMpNthiyO1mM7uDmFTj4OKA2XjzBQOXTMAGQ4cxm4+qS92uZScLkdU5tihtZQNx6PHsR5ik8HmOLk/YNg5us5F6zn9xoEcOChD0OvOmIjQKYc6cEQ4tN45HscOCwYgaEc3hCoIHH3nifWZqeZr4xiRAwgYKZvFfCmhzw6qHfVccsQuR9IMOwedbwd+IVIoleNwreaNQ+vypt84bJLImwQMyRftwCP4EOAgTH86F8Vc5dBwALMuG4CiAuM7x/7MdDdMsB2fizbn4OAUxqYvWgCVI8Kh1NeOeqNXY8fnovWcM?RRZagIxoMTipihAO79bTj/W+MVdOh3jj0B4f4kiPG5MhotONrx/ooNf+hf3WoIwdwqunQO4cxQ0ocSgNoZXzjODwzxdi30R9i2lH/XM4p4DDXhgBxsY60HchlIG3G9SEKiktJ9gYgriZhINaO4lIWKdXFc+fOnTt37ty58wcQ3pU+ehgpZQ)BJRU5Er@ggg==!