Dot Net Perlsc# multipleTop 37 C# Example Pages

["+rwe.std.3*3CST~~}T~~YF779559F.B.BBCaBCP46455FZCCCP777747474F555XS}T~~}T~~","Multiple return values."," Methods return only one value. This value can be an object with multiple fields. Many options are available for returning multiple values from a method.","If you need"," to return multiple values, you can use out parameters or return a type instance containing all the values. We benchmark and compare methods that return multiple values.","An example."," There are 2 ways of returning multiple values using output parameters. We can use formal parameters modified by the out keyword. ","Or: ","We can allocate a KeyValuePair instance to store the result values. A Tuple (or ValueTuple) can also be used.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.7 (2017)\n\n","C# program that uses multiple return values","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void ","GetTwoNumbers","(out int number1, out int number2)\n {\n number1 = (int)Math.Pow(2, 2);\n number2 = (int)Math.Pow(3, 2);\n }\n\n static KeyValuePair<int, int> ","GetTwoNumbers","()\n {\n return new KeyValuePair<int, int>((int)Math.Pow(2, 2),\n (int)Math.Pow(3, 2));\n }\n\n static void Main()\n {","\n // Use out parameters for multiple return values.\n ","int value1;\n int value2;\n ","GetTwoNumbers","(","out"," value1, ","out"," value2);\n Console.WriteLine(value1);\n Console.WriteLine(value2);","\n\n // Use struct for multiple return values.\n ","var pair = ","GetTwoNumbers","();\n Console.WriteLine(pair.Key);\n Console.WriteLine(pair.Value);\n }\n}\n\n","Output","\n\n4\n9\n4\n9","Notes, above program."," The first version of the GetTwoNumbers method uses 2 output parameters. This version assigns the storage locations passed in by the out parameters in the method body. ","Out ","out","KeyValuePair."," The program also describes an alternate GetTwoNumbers method. This version returns a KeyValuePair generic struct instance instead of using output parameters. ","KeyValuePair ","keyvaluepair","Struct ","struct","Then: ","The two numbers are specified as the key and value of the struct. And this struct is returned.","ValueTuple example."," We can use a ValueTuple to return multiple values from a method. Consider this program. We must ensure the ValueTuple package is included before using it. ","Tuple: ValueTuple ","tuple","Performance: ","The ValueTuple has excellent performance. When available, this type should be used\u2014it is used in a similar way to Tuple.","C# program that uses ValueTuple","\n\nusing System;\n\nclass Program\n{\n static ","(int, int)"," GetTwoNumbers()\n {","\n // Return 2 numbers in a ValueTuple.\n ","return ","(10, 20)",";\n }\n\n static void Main()\n {\n var result = GetTwoNumbers();\n Console.WriteLine(result.","Item1",");\n Console.WriteLine(result.","Item2",");\n }\n}\n\n","Output","\n\n10\n20","Performance."," The first implementation, which uses out parameters, was found to be somewhat slower than the second, which uses the KeyValuePair. ","Note: ","Inlining might account for why out parameters were slower. The compiler might not inline a method that uses out parameters.","Tip: ","The KeyValuePair is allocated on the stack, so it ends up being faster. The Tuple, meanwhile, is allocated on the heap.","Warning: ","This benchmark is based on a 32-bit Windows installation. It gives different results for a 64-bit version.","C# program that benchmarks multiple return values","\n\nusing System;\nusing System.Collections.Generic;\nusing System.Diagnostics;\n\nclass Program\n{\n static void ","GetTwoNumbersA","(out int number1, out int number2)\n {\n number1 = 1;\n number2 = 2;\n }\n\n static KeyValuePair<int, int> ","GetTwoNumbersB","()\n {\n return new KeyValuePair<int, int>(1, 2);\n }\n\n static Tuple<int, int> ","GetTwoNumbersC","()\n {\n return new Tuple<int, int>(1, 2);\n }\n\n static void Main()\n {\n const int max = 100000000;\n var s1 = Stopwatch.StartNew();\n for (int i = 0; i < max; i++)\n {\n int a;\n int b;\n ","GetTwoNumbersA","(out a, out b);\n if (","a + b != 3",")\n {\n throw new Exception();\n }\n }\n s1.Stop();\n var s2 = Stopwatch.StartNew();\n for (int i = 0; i < max; i++)\n {\n var pair = ","GetTwoNumbersB","();\n int a = pair.Key;\n int b = pair.Value;\n if (","a + b != 3",")\n {\n throw new Exception();\n }\n }\n s2.Stop();\n var s3 = Stopwatch.StartNew();\n for (int i = 0; i < max; i++)\n {\n var tuple = ","GetTwoNumbersC","();\n int a = tuple.Item1;\n int b = tuple.Item2;\n if (","a + b != 3",")\n {\n throw new Exception();\n }\n }\n s3.Stop();\n Console.WriteLine(((double)(s1.Elapsed.TotalMilliseconds * 1000000) /\n max).ToString(\"0.00 ns\"));\n Console.WriteLine(((double)(s2.Elapsed.TotalMilliseconds * 1000000) /\n max).ToString(\"0.00 ns\"));\n Console.WriteLine(((double)(s3.Elapsed.TotalMilliseconds * 1000000) /\n max).ToString(\"0.00 ns\"));\n Console.Read();\n }\n}\n\n","Results","\n\n","1.64 ns",", out\n","0.32 ns",", KeyValuePair\n","5.40 ns",", Tuple","A summary."," Multiple values can be returned from a method invocation. We used out to pass parameters by deference. With KeyValuePair and Tuple we returned multiple values in a container. ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","url()","url()","url()"]

%iVBORw0KGgo)NSUhEUg?AL4)+CAM?ACiGlF3)MFBMVEX:/9uzu6E0u+v5fhCyvH95eX6yMj5+vvT7ffl9vz+8fGwyd371tbUydO22evm6/F782eg?ACZklEQVR4Xu3a646rIBQF4O4Ld+x5/7c9FZOxNbhC65jsTlx/LfKJiBS8mU+IIg9Adg4AzNJJVdlV7339Lnujt7D3X8fnJv/z/It/8S/+xb/4Fz/FMANy/jJ+iPJTjrhMc7Hq8tgl/+RfnhNWS1yTW3YqfwqtfJpa4raCLSuyblMmP8fld5qrLGVWmK5Zztf1R8XB9yOS9sJLhTWb5qc+ftV4Z5ePi9JSZw1W+aI4i99nW/xRvdLCryb5cbSArwb5CbDB82uFT69Q4vII73T/cB4/Scu95QlFpeX+FNfSALIzzEcCzX8C/7NJQ+ghexfmlxjjS0+PjtniExIyGDxN8BPsHxE8vCb4grsHg8MW+IQfzmicr/jNGsBxA3zQuuDuWOLjaSWb5kt3ZME/yIb4qHHt83mYf/Ev/sUP3zRw2h73D7227E8ajM95AO/XZpzxxBkn6Bywc43zk57HJ9i8AVzdKD/QiXyBQAF9a5TPepBPgJ/AYgI8uI3s1Cd6lK/ortM+MdAbq7TSN4qO8/F/cAeq7fkTuDI4hq29NbAe5uPeE/QltDCrSwKWyMd6oYukn/KjAn9qgNxf3OdSCtPbGxSv1PIIqSI+Tm+L0IVbjMLK2bnaWWE+sr8lCgL4o6cjZgLr+8d2V/Bp6H1+PL67gt9Y480/cZePwwP8IT+Nbe2GXb3/hJ/G+NiPX7f4fq/iAvn4dJh/fFca+2nyiI/9mA++Cdh+1BCGKkzUv/g74IMExnz8Rcb6DruNJkh3uBbAh0nS0VPZ@VhXvcXp/Y5zEDDb8+hSyWlVeLeKw5MSjyr6oxqDfAfWolmXhwEpDU)ASUVORK5CYII=%iVBORw0KGgo)NSUhEUg?AL4?ABaBAM?AD0j/E6)GFBMVEX::yQmNChfJfX1+QkJC4uLjV1dXq6uomAbS5?ABZ0lEQVR4Xu3aMWvDMBAF4GuJpbX9C/0FgXfZDYoze5DTVUNMVi3N72+tUI9FB30Qt3qz+TDo/DiB5dUSWfL8Zsj2/RepzdO3L9X5Zb/5zW/+cVyA2LN89DIlCXuij/7v+s2/p/mP2D/N77B.9fHgewjUc+3Q0/1Df3TfM75sudz09+XpsfoN5+4vtPE9e9Na/fnscr3gCZmP3wAmom+dAEA9jRfdlzfBarfAZpJ+9s6PzzfFZ7oayL3zz/dP29r/9Tdxm3+HNbzrbyNG3w/B8Dgozf506LjOLL8okOE5us575j+KEL1h6vFv8fiAxqJ/hFLpsTy5RbZ93cXub6In/qN9qcbrgbfnQrQ7et9QN/rfZzKEmfyAT1X+zjki2k+SztDK/fbACiA0XK+c6yffx/Lyxjnx8X6+b9AE3F/Lo8afT8H8HwXg2E/tPabj1gyJJLvVp3l65CJ/ePPeSv7Z/Ob/1Pa/wmfEePG6VyNvUw)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgj;;IycnJycnJycnJycBCQgICQoJCwkJCw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAG4A8AMAIgABEQECEQH/xACO?ABBAMB))))AQIDBAUGBwgQ?EDAgQCBgYDCwgLAQ)I?QM.QUGEiETMQciIzJBURRCYXGRoVJygRUWM2JzgpKxwdHSCCQ3U1WTorQ0NTZDRHSjsrPT4vAR?ICAgIABAYDAQ))ABAhEDIRIxBEFRcRMyUmGRoYGS0eH/2gAMAw?AQECAQA/AO/oQh?hRHLvYVG5P5paEsmKUftUXELzTHdha5PZvF3WLrMbp4LhB2sn+FvtSqNiOSXmX6uvio49cxfVFt3f3LBT5hqjJ+AzRj8XWNqaqaqk4kxb/Jm9ihUsYJdkMsjfWkWpMRrZe/MXxsovSaj+sL4uo0WfyThl/cnjrqqN/wpfF1dDHawW7yxdn8kiSk/IVSa8zZKHHnM9NQ6zkdRDKLEJj8WWgM6tQVskTbE/wAUyWMfHLXzbN5Yh82SrTwxStu2gvkyuR4tWes/6kzgP+LH0ZsiFhoMY37ZtTfNllYpo5gGQH7yaPtMkQhCBQQhCABCEIAEIQgAQhCABCEIAEyQtreLpxE;5E/Vbe78mWg4tj1ZPWS+jTkFPfTHp22bx+1LGNjZSUVs3UyjBuu7LGVeMRwu8cI6z/G2Zv2rWaHEZtXak5+13u6yXHGVu6zt8UtNPexOUZR06fsMnqKitftpH0/RbZlE1GPm6uBo+i1/cl1DfkncmM4+uyk1H8E56MvBrq+VQDN1hUfpsH/AOdkvKQjjD6ig8Ml9Ig9+VvFOelqbX4b+5t3VpsUAX6oN73dSjWRyN4D7LouXoHHHXz79jHMJ7iUZfov+5KNK8r9347frVySsaNuq/z2VQq2TzTkpPpUMuK7t+xK2F1HqA3v1j+9I+EVt/wbW9ph+9QjUGnPWy/TLT9G72+CKyeq/D/0Xlj+l/2/4XYsMmt2rjH9up3+Gyr41NSYDhVXi9bL2FJEUmi4jxDZn4cMer15C6ot5qliObcLwCkarxeqGnhu4xBYpJZSZtwhiC5E/n4N4uy4rnPP1dnOsEGF6XBqWRyoaK/WJ9xGoqt7PK47MzPpDdmvzUOSUo9tX9ifFCE+ouvNs7PljNGCZqjIcOY46+CKOasoZBLXFr6vUPuyiJdXUPwZbfh0rCzwfo/uXlOgnKnqqeqAdR08scwixOOrhmMmnV+NpsvRNDiM2K4fRY3Su4R18IVYRXbUHE62h9OzuL7PZNxy5ab/ACOyw+G00rT9jdh5JyoUVX6REMnr+uKvpXoROwQhCBQQhCABCEIAEIQgAQhCANbzXLKNOwCb6S7w3tdaUtkzXPJx2i9Va2podFbI7kx8RuBssvFWtpbZYeMXJ1PpMErSYik10ZT0vdSNUMsOxldSsZJOIvIvzTPZUCMrqViK3JM3vyTkMex4RvbmrETae8+yp9qz8tlOAmTc0rEJZGC/eToowsqxxSXVmCKTSkvQtEzAPksTmLGMHy5RNW4zVDTDKx+jRblNOQN3YYwYifezOVtI33dXMVrqTA8NnxXE5xp6WASLURDqkIRcuDCJkOuQ+Qiy81ZmxuTMeP1+NGHD9Kk7GL1o4AZo4Y39rALarcyu6ZPJS12SY8XN70kZPOGbpM110EgQlS0NGJDS0xExnqkftJpCFu8WkWs2zM3vWDjPdVgtdSD3mVaTdl+EVFKK6RmqOUb9Zr7edrP4OugZbz5iGFUNDgd6UqSKpp4hrJncDgoylHjRaLaSYRJ9Mj91r8+a5zTAWyzuG0sc8wxy6rSWECjs7sbu2m4+LPfzTL4skcFNVJHoCGveEmmgNiEm7wuxCQ+fV2dvctsjnA/FcIwGsky/aglkOXDpmM4hsLPBJfraW1W0n4jfnv7+uQ1G/NO+MnRGvDOKd/wzYEqp0877albZ2spE7IpRaYqEISjQQhCABCEIAEIQgCliWG02I05RSg2uz6D8nXNZAeKQ4y5g7i/2OurrnWYaKSjxKbU3ZzO8kZeDs/7nUmNkOVdMp0ziLqwRMsTxutzT/SnUlEVl/WCeMkaxRSuljkK6KEMy0wWScQFj2cvNOZ3vzQGy0829lNHKw+Nljp6qkp;qKueOCEO/LKQgLeTXJ2u7+DNu/guU5h6QcarcQI8BrqrC8NEAGGKNximN7ajkn06nu5bM19mbzumylQ+EJSZ0zN2coMqU1Mfo8dbV1Euj0Mp+CYxaCMpiYQlPTfSLdW2/NabF02V0f4bAqYvydTMHzKM1zWeSSeWSonkKWeV3OWaQnOQyf1jMrkT+9VSF7qJzbLCwRre3+DM5rzTiGbsSbFMSGKIoomp6angYuHFGLkXrkRaicn1E77+xtlgN0/S6a6YyVKlSHgykF2uoRunNe6ayRGaoJzAwOMtJi7EPsdltuD0kdX1p6gBKa+jS/aCYlqvp2ZvZ8lo1KT3bez+xbfg0waNHDYiL1yctm27o3ZmdnbmopljFs2uChohBhiMuJbtCsxC5tzK9u6XhuupU3gubUD9mI2a29tt931LTMdxDOfRzmmHCMHxg66OvYamnpJgYo+3lkiCHRKRae56pCosacpNJ00SZ58IrVpnpam8FkA5LWMmV+L4pl+jrseovufih8UKqk0kOkopTiZxE/AxBibd9n5uyyv3wYJHirYHJXwx4ppGT0IzYJSEu7oEu9f8VWISKGR2ZVCRKpF;BCEJwAhCEACEIQALUM+zxw01Lq7+ovhZlt65z0ltL6VQlfsuGTezVq/dZOh8wzJ8pqvH1PzUsZNfmsNLVDC3NU5cbKFnIWbz6zva35tlK5UQKJtrOPmnjIC0Y86RxAfYEUul+H1uo526rFfSTDfna6rH0hc?IsN16b8f8AnGkX224XZG7db6TOk5i8Jeh0N6hUq/HMPw6CpqKypCIKTh8cb9oJTNqiDh94ikFrizeF35M65NV9IWZ6qXXBNFh8dtPBpY2t9ZzqOKer7beTLX5aiarqCqamQpqiR+0nlJzkL6xld015B8cL83R0fO+aMNrcPiw3DKuOsI52lqThctIcAez7wiz6yku1n9V1oJGxXTJChGGPQ5cW3a8nF3+kL3+SranUcm2yeEVGNL9k5F7VGUjJj3soiumkg4pN0y73SWTmZIBKKdIWsykEBjEnfswvpFnfuju72b3qwcEZNH6NFIPZNxRIuK7mzlqMXAW6r7bO23zdfRyjOSGRuuD6S8bbprJIq9C0j8ltGEO+oVgKSnfU3m7s3xey6u+T8OpYzkoeKR2fSEh3bbfbSzOocs0q0W/DYpStppV5Pt+w/D37Ni1N8d9/FYnpIwTGKzPWAYzS0Us+HwNSQzVEQuYgQVUsha9PdbSTdZ2stqpII/R4w0cErNqIRYS5cn2W108z3ZRY58ZEufCpwW/ubRTm2y4J0i/06ZZ/L4T/AJpdvo5dmWn9IvRrNm6pocwYFWNh+YsM0+jzGz6JOGXFi1ELXEgPcSs/u8p8ejG5o0zW8KzbmOPp1qsr/dCU8FqJ5tdDJYwHRRFOPD1t2fXC/Vdl26SQIozlk6oAzkZeTMy4NkPo+6QYek0M2ZuiHsONJPW64e3OSA6UOGEH1/oty813DFP9W1n5CX/sdPbpr2RCOoMSw/FaYKzDKqKspj7s0BjIH6QXVpeKsrS1mGYZjGZMKx18JxXCXpPR6MD0nVhPI@ukNXXaLqkTaSaz7r1X0c5onzhlDD8cqwYKuXXFVaG6vEiN4yIfYWnVbwunPQG1oWu4lnfLWDY9T5bxStalxGriCemGQS0HxJDhAWktpYnIH2dbCnchBUIQnAC0jpJpjlw6lqAb8FIQl+c3/yt3VavooK+mOlqAY4zbx/YlT2I1o8217yCxFvZlq+JVJcM2vvZ7e9dpx3o8qo3kkw4mqYiZ/5vJsVn5sz8nXKMx4GVIZAcJUksbdeE9Vit9d3dn+SVuxiVM01py1Pqd+e6jqJymsKKh4wJxuq7E10mh9MsRUVXLEU0URSAJjH1W31mz6bDzflu/htfmsjDhp0FQMmIkEQxC8ujiCUjn6kTADuWrVa/gzc1WhxWanhKKCUo9f0SdnZ7t1hdn6rvpZnfyVIqjd/F3e7u/N3fxdJaFqT7pIe7PZtXOzM6Y5KIpC801rppISsZXT9LoijdZGCjfyTWx0Y2VAg25KWKmcjbZZaLDys2yyNLhe7bJjmTRwts2LIlBQyNU6wE5weGYKgY3GWLqnEYBNfdtJXcdNn9tlrD4cxSySC5GJGRMcjWMmd36xNfm/juuh5amnpIww6Ux9Fs5047PpkN29b8fe7F4pmJYRSUxh6PG4amMi3d/W2H81lHLLcSxDw9Nt+ZquX8MYsTiM2/Adt4d4XbRz9q6PAb6G3WrUcDwVYyg3Vs4yfVLb9dlsMErbJqfIc48H6GSFhIfxlmqSmnnPsQcvO3gmYNgE9U4zVbPFB9H1i+zwZbzBTRwgwALALeqnQwNvY3L4yMY8at/ow1PTTwW4o/tWWh5KzpG3JGkfJTrHRQnl5+QijqYGqaeanvp4oFHq8tTON1MhK4ojOFYX/Jxw6M8QhxrE5J4S4X3MqaS0UoWeXjDNFIMoW3js7P58l1rKuWcPyhgdNgOGazp6bV2krtxDIyczItLC27v4Ms0hI4t9sDzr0zf0uZX/IUH+enXolaFn7oqwjPdTFiktZPh+LU0LQU9VDYg0gRyBrifnY5HfqkL+1W+j/L+bMt01bh+ZsX+7MXED7m1JERG0enrifEbUz38NRe9IAnSJn4Oj+kw/EJqJ62nq6h6eYAPQY9Rz1htZ+7ye3vS5T6U8nZxljo8NrHhxGRurQVQ8KZ9nLqd4Dewu76CdaP/KR/2awf/nn/APCaxfQzg9VXYvh+IYnhuHy09BQtNh2N0BBx+LpCD0asGmPTraKQmLix67j3n5userA9AIQhSCDDiE25LB43ljD8cpipcQpwniJvFusP1S5ss+hAHmbOPQjjGHSlVZcd6+lu/wDNzdmmD3eBt81pH3gZ0/sSq/QXs8gHyZQFRU30PmkoWzxt94Oc/wCxKr9BIWQ85B3sEq/7t17I+59L9H5upI6WCL1G96KDkeMY8i5xl7mCVn90SuwdG2dZbaMIk/OOIbfpGvY6a4D5MiheR5Jg6N85xu3Ewo/7yH/2LL02SMxRW4tAQ/nx/wAa9MSwe5UpcLKT1h+ainEsYskV2cKhydjNm1Un/Ui/jV6PLGKB/wAN/jj/AI11w8Ek/rB+aY+ByW74/NQvHMtxz4l6HM48ExIB/wBH/wAUf8SyNPQ4oYPDUwag09UtQPty0vZ78lvsWCETtqMfba9/1LJQ4VSRW6jF9bdEcEmE/GQSpb9jjk2V8yVRmUNCR6yf/eRb73+my6BlXKR0cEdVioN6c7X03YmD9jktwGMRbl9iep4YVEp5vFSyaSpDAjAPDdPQhSlYEIQgAQhCABCEIAEiVCQDH4tgmE47SvRYxRQ11Pf8FODHb8YdXJ/ay0nCuhvLeXsz0WZcvzVFD6K58Sh1vLDIJgUenUfaes3Mn5cl0ZCTiB:2Q==%iVBORw0KGgo)NSUhEUg?ANw?ACNCAM?ADrVuTh)YFBMVEX::4x9v2s9D85e761OP97fP++fvEwIH0msH+8/fe2HbRy3zq4XH71I6VlZWhoZq9vKWxsbHNzc3PzKXi4uKxr5Lx8fH28bD4+Pjd2anp5a3/+rP06HCa9NH/9Gj/9429Bui2?AD/0lEQVR4AdzYa4viMBTG8bwr1OE5J9dexul+/2+5GGZhbepYY8Rn+n9hQAj05wnWal5REkmXNYgzh8sBWWWB0RytUWxGOag5Xi7kJVjz3j5fkfq8+Ly8r5fidDowTubj4gZ8/grcMHnVGKOqn3aMI2bcJL8AN6ngqujnPTiv7Lghy4rED3dx0XPjBsWtxN/DYaLGTYIfkpsXn+EzZmLcoLiT/oTzGHhxg+Bucfv6ccGpfNLisq1Sl0cqkQlXYQO2BAM0v9DiIna2QZgvb3penMfupsIWIaqyH4f/+3qiP9eZ7RL2J+P1Vot/2dHsqhluPbntLB7Irv5iQKGjwgU8VLi50xLiLFA3ulEKNxsuAZWjc4WbDueAutGNWCd0OIvK0TkUseESUDk6yz85h8dL26cSyoazeDx34w6S2HCoKB8/3TCT4RJyFV8pglXWsOEcarLFp7L/t+VXERkOyYTSRoezqMoZVz4tHAUn643BHAeH4oGAESeoa7XP8ePq0yPjLCXOEkyOHecoce7IuIAmJUpcQovEUOKMoEGOFKdoUCLFhSZ3ORpc+3MZaHGuweBocO1Hl+hwQa3knrY5Q4ZLFq1S86bWuOW7s6BVcXmu9rjY0EaHQ6u6hQ/XoU39Qohb+oink+68EOJy54++P526rosxijwKi6ePJUeJKztfuP3pG5zJcgUSiTF23akvJsaB4+tvu3WX4zYMAwGYpH4wfmhP0Pufs6VKrdiFoZdULjadeXAUmA73A1aUiSOOOOKI+zK47zl4IcdwL+Rv4YgjjjjiiCOOOOKIIw45xBFHHHHE/Y84HuL.UccccQRRxxxxBH3ZIg7hWsKmJX3xBk874kreGNcBdBi/ZY4+ZK4CkANsCqe6/e6iwiA2tRgGHFfUYzKdNcXpuOZq/qzxeuqGeJ3vMG4oX010Jp7ncRFdG0vWBNBZOFmrfV1NxYpVcQQsfFQeqwhkns9gEORPpqZX25wF2Z0h4OIYqZJvWfnXkdxpY8P9av1OUGCph97Tr1Uun/0ddcfbNIwfqdrGqtteEaDS4pXyxX/Fb3kXj9O4uIsM7/o3FB+sdJFconG31zibtSG3PfR+Br5wMksKGvwpl7fzuJCMIbAr0xcTdNyMha9LsHnoqqGkZobIA3e1esxXORVnCKyx0Wex5UXcA1j2tcXcAf3nGTL7Z7b4nzdY71wt3vu/CEerTXmoQNKxt1Pyz3uusWtaZl7PXPOlfXlBpfPuS2uzCPMkRmXzrnc66E3FN3h0hvKHrcIQPkT19JJ/xwu3i2LGmBW6x1Oms7KPa6r+Y8UtU+49W6Zex3FSWvyL3MW91iII46450PcPsQRRxxxxBFHHHH.UccccT9BMmBXcwVjbcY)AElFTkSuQmCC%iVBORw0KGgo)NSUhEUg?AMk?ABhCAM?ABLV3W0)YFBMVEX+:/q:3j:zc:zy:7ojyrh7P3UiTj5:4d9+/3lB3ZNKX1nzP3Hbf1NL5Fvrnk8P7s7u3uwn3uftVy+vXx9PTr9f7d6v7m9ebp6em4f0hoaWm0/fnpyOvp5caVWYCLfXim?ACzUlEQVR4Xu3c2Y7iMBCG0S4vWdj3pbd5/7ccyK+O0zFIccUam0x9l0gldHDTEKnCW/ZJ1fCynEdVeNnM+w4zPFgymXd1GKGYHOZdPw4KCRaUct6DgKGGBgwoied/S4wBQw8NGFASz3uQy24xC2mxuxDhhM0dUuxXy5BW++LXvD7UYR10nwLINxxBlm8ig4i+4AiyfHXmP+vwPkHpHgnRBZBASnMqOBF?ilFO69rTpoIh9I5kt2M0w4SItovOe3b+QNLcsChdCVqwZIsVEMhUiuWZNXO17xUT0KkZrwUIbXkhfkxEoIEkDESUBRX0s6PkIACCSndAqwty9LagRINidIOMG8aKGnnmRKtnknK959Ky5HM/7TxJeuPpnESKJBlS9CcIQ.xTgTVPIliCGBI6IEDZIoTxJyKO2854gqsf9e8hFNgn9aliUBBZ7EZ4L4EhdHguJJLP994pqPkqzXsSWWIw.LRmS9bquo0tmLImDzBkSaBL/dfmQfCSWI3GQlJIep2RIHCSxpERciYPcSyp5j/kZH10iknI2AQkgLy1x73Y7e1UJLyfh5SSMJioRiUhEIhKRiEQkIhGJSEQiEhopobwlIhHJdHYkprG3MqFdolj7XTRyv4si7HdNZ+ducnuQ6XdTTYTd1PT7wgbjwfPaPX8eO9yAgALL0NzzJ96rh8Owx918+nsdvFcCBb8OSe8/8R38VzKHe4LMcXt1bY/mR7M5d9u0AKW7qUaS9j4tZK69tgbAc6/CAK77GUASBvHVa9tIzl5FI9F+kKSmHB9IjjfIyYcUpxuEtB9BkpiyfSC5H0rxQLK5SZT2U1lIHkAaiQ+BRD8qA0kVSVK9lmQjEpGIRCQieZnPE/mMl+9dk/gujJ5enxSe5On1CSD5UQCpTPHkmlH1HMq8ZVLVu45vFwROXUtxah+nrkVRle2vu3AezxDDePy/TZKkv3nHL1n0R/wt)AElFTkSuQmCC!