Dot Net Perlsc# listTop 37 C# Example Pages

["6rkws.tyry.ryyfyyhd.X0aCCST~~}T~~YF46464646464G59G56F+CCCEXCEP9FaBP9F.CCEEP847F.CEECEXS}T~~}T~~","Remove, List."," Remove eliminates elements. The target elements may be found at certain indexes\u2014they may have certain values. They may instead match a condition we specify.","Many methods."," The Remove method is effective for removing by value. But we may also use RemoveAt to remove an element at an index.","Remove example."," You can Remove based on the element value you want to remove (with Remove), or based on the index (with RemoveAt). This is not equivalent to assigning an element to null. ","Next: ","This example shows Remove and RemoveAt. It removes the element with the value \"bulldog\", which erases the fourth element.","Then: ","It removes the element with index 1, which is the second dog, \"otterhound\".","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.7 (2017)\n\n","C# program that uses Remove on List","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n List<string> dogs = new List<string>();\n dogs.Add(","\"maltese\"",");"," // Contains maltese\n ","dogs.Add(","\"otterhound\"",");"," // maltese, otterhound\n ","dogs.Add(","\"rottweiler\"",");"," // maltese, otterhound, rottweiler\n ","dogs.Add(","\"bulldog\"",");"," // ... rottweiler, bulldog\n ","dogs.Add(","\"whippet\"",");"," // .... rottweiler, bulldog, whippet\n\n ","dogs.Remove(","\"bulldog\"",");"," // Remove bulldog\n\n ","foreach"," (string dog in dogs)\n {\n Console.WriteLine(dog);\n }","\n // Contains: maltese, otterhound, rottweiler, whippet\n\n ","dogs.","RemoveAt","(1);"," // Remove second dog\n\n ","foreach"," (string dog in dogs)\n {\n Console.WriteLine(dog);\n }","\n // Contains: maltese, rottweiler, whippet\n ","}\n}\n\n","Output","\n\nmaltese\notterhound\nrottweiler\nwhippet\n\nmaltese\nrottweiler\nwhippet","Discussion."," Methods on List that remove certain elements require linear time. Therefore, it could be faster to assign null to elements you want to erase them, rather than removing them. ","Note: ","RemoveAt is faster than Remove. It doesn't need to iterate through the number of elements equal to index.","RemoveAll: ","You can use RemoveAll to remove all elements in the List that match a certain predicate expression.","Tip: ","It is often easiest to use the lambda expression syntax with the RemoveAll method, which can reduce line count.","RemoveAll ","removeall","RemoveRange."," This can remove elements in a certain series of indexes. One useful way to use this method is to remove the first or last several elements at once. ","Next: ","We remove all elements except the last two. The code is robust because it uses Math.Max to avoid negative parameters.","Math.Max ","math-max","C# program that uses RemoveRange method","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n List<int> list = new List<int>();\n list.Add(1);\n list.Add(2);\n list.Add(3);\n list.Add(4);\n list.Add(5);","\n\n // Remove all except last 2\n ","int remove = Math.Max(0, list.Count - 2);\n list.","RemoveRange","(0, remove);\n\n foreach (int i in list)\n {\n Console.Write(i);\n }\n }\n}\n\n","Output","\n\n45","RemoveRange, example 2."," Here we use RemoveRange to remove the first N elements in a List. We also use Math.Min here to avoid arguments that are too large and would raise an exception. ","Math.Min ","math-min","C# program that uses RemoveRange on first elements","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n List<int> list = new List<int>();\n list.Add(1);\n list.Add(2);\n list.Add(3);\n list.Add(4);\n list.Add(5);","\n\n // Remove first 2 elements\n ","int remove = Math.Min(list.Count, 2);\n list.","RemoveRange","(0, remove);\n\n foreach (int i in list)\n {\n Console.Write(i);\n }\n }\n}\n\n","Output","\n\n345","RemoveAt."," RemoveAt removes one element. How is this method on the List type implemented in the .NET Framework? It requires an index argument. ","Example: ","In this program we specify that a List be instantiated with three strings: \"dot\", \"net\" and \"perls\".","Next: ","We remove the string at index 1, which is the second string. The List now contains only two strings: \"dot\" and \"perls\".","Var ","var","String Literal ","string-literal","C# program that uses RemoveAt","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n var list = new List<string>();\n list.Add(","\"dot\"",");\n list.Add(","\"net\"",");\n list.Add(","\"perls\"",");\n\n list.","RemoveAt","(1);\n\n foreach (string element in list)\n Console.WriteLine(element);\n }\n}\n\n","Output","\n\ndot\nperls","Discussion."," When you call RemoveAt, all the element following the index you remove will be copied and shifted forward. This is not efficient. ","However: ","If you want to remove an element but eliminate copying, you could simply assign it to null or default(T).","Null ","null","Default ","default","Also: ","The Insert method on List suffers from a similar performance drawback. It causes excessive element copying.","Insert ","list-insert","A summary."," We used List type's Remove, RemoveAt, RemoveAll and RemoveRange methods. We found out how to remove the first and last elements, and reviewed algorithmic complexity. ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

%iVBORw0KG;)NSUhEUg?ANw)0CAM?ADWk6Zc)MFBMVEX::Mx4SzsI61tbX585nn5+b798D9+9/h23jR0dD4+PWYmJjq43b48X3y62/48Gv13fU9?AD0klEQVR4Xt3Z647iMAwF4Nzvad:bZcIzZr6hDrsFGnh/MxQ7C+pOgbUiIr7NO6WEKL63CAOkeGLcJgevgiHcZ/o8vUWs3+VDnGy7ptxe/hmXP9QXEppe3RsaYTr4kfiRg6UdF/TcF9+Cw517rtwNX02zlqLjFbh6FZwMYR/mkdD4BdFWBLqjkzLWsC5ku84s44Lbqf0p77oHnKn9cOQRysj6ENZfxyDi4xTKi/iqB8WF+VRLwwsu2assNe8VDcUGafsKo76YQkizql4bK5HvoI6ua6My/C4DML2QZyE20HiCP+LuiLOD9y2MqEEeR6lp5feX05/va6EK7WatrKBcdsXdX5p1Fs9OidP+XNcjNFrva/Y/Cb0BbhLjs5bYT8AB5FtWQt9yTg5EcvWJlyyjuvxma0eDq5pU41+XAoiLmHp1oSdzWwybAZmxUXcpvPz6U1PJhuzPcVBqWYAjEsBbLVBXaaLS7hGNog9FjE4tXUBp7EtI021fuDhTRg4AE66K3EHWQ2c2iY4kGjhGDrfUrwCrxFw0phQ2A6G4vOwHcjxHIdTXsOlnW0pOyQHk/BI/N3TMrPNciNphOEoluM8SJxHHLwH623ocHWOa8bQMw+ahNsDs45TGXDKnuL85IwKfW4TcWlwTROGoEKXXYvLpzj8axmL67ilr1D8JTiPOH+Gm5+rR5w7xVVhxs+wAbOUq3F1dnLqZdwG9+XruK4uxvn5c9Eu49zwEpgqxFsKNcpwicc5F96Cq3NcW3mguPwEBwO3mQwoFE+qi3EbZ1giS7iygsv8/TTHlbfh8FuR5X/iTs1wEXDsTtiONG3U23CaO+zy+OUQPMg+MByMhZait32Lb8CpyTDiBmL+ScLCDyHdtaSfjR8Rnlv4+3IJ7l4UcEbr4/AetD5KunNJM5xzLhIOjy4UPm/u5Qc3MyTWOOIKVWEDJjWFuB2DhRLhoKylz4yUrvXGDk7A1SnuoVOoAgnX4zIeHaYrEZfOv9DKC1XC5bhSF3Tx7w8hT3HmvNuyUKUXkpWcf42jo6tN2FIaZhAHfeM4lUVdj2y4uABX4Ac2tIk40sF14h1CVa7DwdFVvZ1sqIgbOrRhGdNmtBbVpTjUGdzWzSkl4+h63BMsozlv06aWN+GKrcRr+FUd4TD20PbwpRF9p4GOXrX9lEg3WbVeAQ6CixaXvKKQjnz3/pLWpmYl40hHySDDl5lbfl5e1KU4LIuxXsk40oEN4q1c5nqcKsCj/RRwdD00i8nAy0S7DIe8Y13LaGKKz3aENQvx5IMXvzM+3/uzGWQXx3tf1H+UP89hS+B5of7l)AElFTkSuQmCC$/9j/4?QSkZJRgABAQ?AQAB?D/2wBD?UFBQcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwf/wQARCACHALsDABE?RE?hEA/8QAXQAB?MBAQEB)))?ECAwQFBggQ?M?gICAQQCAw))ABAgMREiEEMVETQWGSBSKBsdERAQACAwE?wEBAQ))ABAgMREgQTIjIFFEL/2gAMAw?AQECAQA/AP2W)))DaIEbAbAciUs+QWRzCdFVpbDDJPKiyollGRtNbIaxdcLg)))AGyBlVmN8i+leRTsSmWFtllWV1pGsL0hz1kLNoZ/U7CWv1U17DgzOaraZZ5V782aY8/fsaaY870ItNFHo0v01DQ))?AFKrRS9+U6c9ZG/Rx3zLxDPkZbW0umai6Zoou30b0IceSzV0UctX0WbRDnrI0grkj6uZZ2n7KvDyX+zrVrJO/uWhzZqdVYfUaemS8vvmzu8fydPTZGnf5/Q9eLTRR69L9NA0))AFKpIpN+U6c2SzjzZGsQw2cu1lkXhCyNENZN4VMr6Oqi1HDZo6Ict70G0ObJXRLH1fl51UQ+dv+m+HM5f4CIdVatbXsmHF6sHX2qyimmWcFJtV7Hi+R6KPZ8voerNJoo9Wl+lwu?GwM3aQRtKpMG1wlFMjaXHdNs87JdrEMmYLIKi86NqIlK9l4Q2k3hWTIujqotRx3JZq5bnss3iXH5EPjtBw+2fq8ukHiyhAdeDJp/hhMOzJi+69Ew4PR5/sY6aDHHPL1vGzN9MpL1vPmeh/wAIejtcLmwM6paCJcOS2mSxmWS8hp9sI7duHMqRDWk9NKyL5Iu24clezy8kc2aKsxSqgLl0Lo2Q2k3orK9Lo6kOapLNYlzXJZtEseKaaYUz4+qvH8jE4p/AeFkpzZy6DFrOwtD2vE/vOmVbxTurW/Fae0i23Hk8lqtvHwtMba+fBatno8f9FHpaahoxyUFNuO8hLOZceTIGe3HVhm6MGRpNsO7y41bz037LaetTHVvgzNvTObNh6Z5MbqqWeffHarmUMhpPsvRCzuUzp0nhecqNUcNnW10dMSppkyy7G10F4cteyzczeMskp/cpM8vN9GHpyT/H9+zH56uaPK1nwUmZz6GkeV34cSxroj5m1MPLpTJ+RPDaUjpiVeGmiUgHLmDN52SiWO3DkoMmeOeT79FlsNOrNslJdL0S9/Bj5qw2HSvFaewrMdOmfLe9P0ZXw9MpwOubm/T7POyYLVc16Wq1a6K0xqOTk97Lt9NZo02rMOmaNdstNdo17VVqUW7TEsHC32V+Rp206S6OfNdlKhxJWLi6RohpMs2iiu3RJ0KJLoZ1WkFLzy4smb2S4753nZbTLaY/6KuKu3oHyVs3meE/kPZ8ONjT2yXrwhhK?G+GmqWiNM8kfV69vc/k5slHmxetbOLTTOTTp2vLLEt5ZozdEvo0hnKWBlSbKSlKTS0YXlEmjMTovCHRMnRjUltxOlRJIAZWugpejz8uJ96J24Mnns83NipfYtEvNzYclXCprkkXcuCMlsnLsqukir7zxY+cbLQdpoBxAniDbXDPe/sg5vRk5xsM/nUq0vSHD4T1/0rVyfV2YcruU2cOaOX0f8ALz2y4+rNp9mEPVltPs0VdEmsMpXZKEJGN0SroykEmxEDaYOj41Zl0HSzSS?DmqnszmWkQxpspMr6Z016aI7RfBWzK8M6bSN6XYYfJX5HnVL2zV68HFhbbacLa2+iNs75q1ZvjL+WNuLJ7XRjUX0NqU9bTNjWOHoQ4/f6LfG+dqW6/yXfEzHWR7XjxqEjhzfp9x/Kx8YXVMmMQ9SZbTJeGctJLqrEoX49GcwptHFlNG2swb/ABo220bKBI?AGFyZtHPRnLSGNIpK6JT9P0TE8ilYU3tG8ZGkZFJwvfo02tORpmfWkHm58ji+mw4lolpphMQ6vJbcaLQ5vb+XlTh3RMy8jDh6yPWmOkjhv8Ap9ng+uNqpGmi/EsquELzO+y2lJlfT2Z6QvMm0Qq00aI)?pS6IlMOWkYy2hm0QlGiq2zQF5aNKSpdx5HumbOC/wCleiVGsT2F05pLOL0MsWL+yKs/Pj+zt4nPMPfifqtoJAJmdsRBMumZSRtpjMrcRoTol)?ACGugOap7MdNoUaISqyEqgSk+yaIu87NTVM3h5t/0qrJVdvjhrC+Tthx5P0tjnsL4f06OJlL1KK6Krky2DbeZSLxCky0Lq))?BnU@YGUtWbRVKldItSF4YzkafZvppNHNnlt7QcGTBbpjMMsrHls9LBOpKqXpxVXfZZ5v/Tqwrsq6sLs10Q7lHKI0na6lASSg))?ADQGVSUldk5KLsrltF6LRLB42bNe1XDCdoWNg23UtSVcPqn6s5l7LPJijvxTpFXdho3Id))))AMCml8@RUr8ErKcZ+V+xKd2V4z8r9gtuxxn5X7A3ZZzOvaDmyfZWZn5X7Bl9XRK66Ibp.)))AH/9k=$/9j/2wBD?@.@.sLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwv/wQARCAB6AOYDACI?RE?hEA/8QAog?AgMBAQE)))?AUDBAYCAQcBAQEBAQE))))BAgMEE?CAQMBBAQJBgsGBQUB?ABAgMABBESBRMhIjEyQUIGFCMzUVJhYnJDU2NxgpIHFTRzgYORk6Ky0iQ2dKGxwmSztcHwJVSEw9HiEQEB?ECBQIGAw))?ARECAyExQVFhEvAyQlJxgcKiscH/2gAMAw?ARECEQA/APuNFFQmZBkZGR0iiyW8k1ecKXT38EQBZ8A5AODjh6arPta2XB18vYw6p/TUy3NunWa4Lis+duW2SoLZ7ARjP1E8tcna8ZxgN9R4GmVm20YeuqzI2wg7CfZmpF23HkAof21PVC7d6NHRSePasch5R/8An7auJdo46QD6M1cxm7epcoqvvx7K8NyvpFMp6NSzRVXxpPTXazq2eIpk9GpPRUYlQ9tSVUss5iiiiiCiiigKK+f7a/CNsjYW05tnXNntN5ot3zwwwGKUSIrAxF7mN3Xjp6vXSStvZ3IvbS2uljkiW5t4pxHMmmaMTRrII5UDHTImvSy6uvQws0Vn/CPwjtPBmyS8uoLueJpRCfFI0kaPUG8pJvJYlWPUNOrV13jqt4M+Ftj4UpcvaW17AlsYgXu4o41kMu94QvHNKrsm78r6muOhhqaKxvhL4c7G8GJo7e68YnuZF3u4tURmji+cleSWJOsnKurX9HSQ/hX8GfElud3fbwy7prPdQ+MJyat9+Ubjdfr9ev5OivptFLtpbTg2Xsy42jMsjw20BndIghlKgZwoZ0TV9qvnz/hZ2FGkbvs7bKJKCYne2tVWQL07t/HNL6fdoYr6lRXy2X8LOwoGCy7O2zE5UPpltrWMlfWw151WooYfUG6Kz88rLIzAjAJ4jop+/QaysxkErZGeY4PszWdTrt9S7acwzDqBXO8GteHHk6UPK9KPF5iSytvFPSYzpP6YzyU32jjTErFQDv.RnPU6AOb7tJRclWXBII4ZY6Tj0jPLL/PWXWJtOtTwXgOO7Hb9JF/TVQSPFgvjT6WyYHHsfrRVbN7aSENnd4IWS5TgsbHgN6O7q96oriJ4TrDpPG5B1xEMpB+ch6rfEtXAmXMikAiPj1WOoEe7IKjlhePjliO3WMx/fFG+tCjAERlQM7rqn2m3bmqBLlwSY5A0Y6NEm7J/VSUuke+OyxdY6VHe7v7aswbUIBdpDoxkMOIH11Xa5F25iSDSQBh2zbTv+a1ck/3qpvskx4dp3kTj5ORNzL+iHv/ABLWeJk1TwhMoKxHp6GflU49BavZNpzJhXk441cp4YNZyeILygHBOAQDgewkqNDe7XUNvcqAcoFPfYk4A7vuN71TNo0D7UmiAOrWpGcrnh9YphszaMk4mOrq7s49GddYt9TuqQTgk82pgdSDt3qaeZfeWnGyrV4JLpZJNbjcnl82Qd7xXFTNl4rww2aXygczHJ4Arx4/VV+3u3bAIwM4z6fqrKhDrGntxxwcZrQWhK4Vzn0j2+mty5ZsaQHgPqr2uU6o+quq6PNRRRRRHwD8I39/Njf4fZn/AFG5r7m+0LCK7jsnu7VLuVdcVo9xGtzLHz80duX3rr5OTmVe5JXyrwr8BfCfbvhE21La92ckUIt1sBO8yywxweUAZI7GRH/tTzyczTdf9XHZ2Z4IeGDeFOz9t7b2hs68NmkkRMBeOXcmG5WNVjTZ1rA2mW4Zuai+D/8ACT/crav/AMH/AKjZ1T/Bb/dG3/xV3/zqa+G2xNreEOxvxfs6e2g3txE10LouI5beLVIkYdLe4dW8YSCTl0dTznyclLwE8Htu+Ddpc2e0bqzntdUb2UdoXbcsxma6MjyWlu7b3MGnUz9T5P5QMV4e+CG0b3b3412Q8F1cS7nf2e+gFzFNbQ6Uljil87FuoI9UXX1/JyUkvfCi02vc2tr4abElglg6Lq2E9lcRRS/PWknPLH62mT8xB85tNpeAG17/AMLbzbUW0o7COTRJZzWzzeORTx20MHlYtykTRNokWVVuedHpLP8Ag18KNt7UW527te1mjASN5oTJJPuIzkRQxG2t4ItWW+B33m7kov2fZLuxtNqbOks5cyWtzAIm0P14mC9V/hr4f+Fawt9mWng3ZWwYQW0W0Yog7lmC5se+etX3uKJIYo4kGEjRI0HoVRpA+6K+TeGngT4U+FG1DKl9s4bPg/IIJ3kilhEsNuLnUYLF9eueLV5Seb9X5uiZ5tZtXwK2F4QzQ3d/FPJMtrFADHcPF5OPU3UX841FOdgwbXttlwRbXuILq/TeCWe3AETrvH3IUC3t+rFpVvIJRQNj21n5ULO5UgHURgHOfq973WrRUjliLu5YaRnrrxD/AJwdapXTbvNkNryywGBkKjJkUBhli3J1Seq3u1mrp7lwxYg5B1ZGGyO3HVVverebUiEcavIF04PlMao9PL325NX5z95SBzs6EaDJ44WVyFHGYL7oXLal97kqYy6sja3s9m7MpDiQDeJIOV8et3aeRT2F3MiRB0uZ8YS3j0xo30mpur8NKJ4t+Q0cYiR+KMel1HTqHVST3a9sLt9mTmRFSQODG8cqZVxn+b4aeKkM7+1EdybeWSJyuHJZN0RkdCvx1N9qobeDZoJbeC5PQtteJheHTpmTqN9+p0msbp5HCSwXDZbd8JrZOHTz+VVfhqaysnu2Lw2on08skkDx7n7UT6HX4dNIGUc5wY8LBEFGmG8Anhf8zc9z7VWBFAkSlGZnDgxw3chk3RPSbeXjpX1dTVAmxZ3hkFrIel9UOcxj3TbS86r8LV7Bs29CFSFUjG8GS0Qx60PXX4qXj4U2u3heAJIFMrJxfk3w/h0S1jL+C9jJUSZj7jRDdxv7uOsklaCd59MSpa6l1ad5Gd9B/WlQGyv5CXkKFZMqIziRXA6ArhtOr3WrGOORlLKJJJWMgC54ZXKyIT8ouO97tazZFrORMQcjEQzw08DLxB971aitdmRJKQ0bgjlbe4VUbpxrPMnu1civlt7i4glLQqu73atG4Lga8sNOVdfepccCGASRCCXQYPRjV/5qpnbhAwK6j6dXHjSEbQtNQG8yT0eTkx/JTWC7gJ4P09mh/wCmrMLWpRxgVKDSuK5jwOb/ACP9NMEcEcDW5XDVp6paKKKrmgdnDYB4HoqYZwM8T2mq0rqJACeIxmpd6hcKCDntBzRuzhMR7ISFyDjHTXkZYgknPoolICHJxnGP20QsCnA5weIony/lzI5DYBxjtoYyKBxzntHGuXeMuVbgRwJqMyBDhXyPZnFGpOE4LTEhCR04qEs4AJPT7KsA5APpqvO6ggEjIzkUZ088YelpAcZz28BRUykEAggj0iih6p2jqks1yYnfUm74nTI3mn+L1KdVnWnCyzJGGn4vqtmxq6eO718rLUa2+qpdwmR1ZJMOwfNpMc29wDozhP5WWk82z7LJ3YW1nU69xKdMWfoJl50+z+7pldw3b7trTQY4y7TWE48r3fMSatUUi/cqriG7DRylrnA8rbzoBdwjPYnVlVfnVpl1heCmsjQdbgqIt2GkLD1j1ZY/VljbXSO8sHfXJpMcYPnM6ub1fcb85oetgYd7bhEG/suGOlbu2+H4Pv1TnL20LyOxvLc9a6VPKR/RX9r349PyqrrSisih3CkmBpIwQTLkrcW7H0S9bT7snJTu1kDuNSnXkNJc27mG50/TRpyyrp7y17ODE8bW0Y5o9SRFxJCYT19xIcLLE3zEnU+TqjaI8rFoisZBJjhiLrg98W8zeak+gk5KchuIrmC7j1qyziPOLiB/7Qnxcvd9WvQEnjDyHx2DsuYSY7iL86Ebm0/+R1lbVgj+NZlt+fdSXESaW/N31l/98dSm7WO7Kb5dnXsudzLGd5Y3vqe7q091ueiNEl3uIi/C4t8nE9vH5uP/AIuHral+dVagRkkuCsMccLuu93bvqhul+chk/wDHrM3+0NoRXEbpmw2mgHNn/wBOvofpO59ludKgSbxuWR1S6gk1GW5sYiG3bf8AvdmSer60VTgNFKNYLySMCjlC3ytsPpU6s8HvVXlSJ1NtO6Fhz2068wBI4GM/Nt3ou5VdJ/G3jiRzHf7o+KXjYaPaMfqyx6dGruyr+7qrLjcHybRrkq0WR/ZLxTzr+Yn+5WdXZpHEzhmjYAOvAgjikg7ftU6gwcH2cAOArPLOJCsvEyY3cwY5bEfBG/206tZV4YIrMGghOMU9t24CkEZ4A02t5Bgca3GdU4G/ZXtQ.Y6a71ituF0vDDGxJIyT0nJ/qoEMakEDBHQcn+quwwr2iZveuXRXADDIHEdI/0oSNEzpGM9PEn/AFruiiZvJGY@LEZJ6c5rwQRA5C8R0ZJNS0UXN7iomhjYkkZJ6Tk/wBVS0UTOOTlVCDCjA9FFdUUBWau4ppH0x5OGcmOQYbBPTDL/trS0jllCOdRaSIuQJEB1RtnoJ9WpXTb6klzDEgjkkM86RlwZFLi4tWOjpQczx+tXbmO4C6ysMy/k18gAU+7n3u9E1G1Ip97AItUdxpl3FyXG6k6nkLmLvq9Jjc3u6Mm7ghSFzHtawUGXd/8Rbaur85UdTcO73JUgQXaLk9O5uo+1lz1mr2JUkeSe3kEVxjy8HDdzY+cRvW7stJorYSFrWa5uLqC48rs6/3nlIvot4veTu13ELjR4xhfxlsw7u41J+V2n+7WnMvv0V5dx2e5aW3Qva69N3BGC3isvzsXqe8v6yoPEZ8lIgWaRN4OjTcxL0SKe7OlaYOiTx3IwYLxESQYxwI5G9Xt0tVWaIqxtEk8tBi4sSzhdcWeeAe6vm/gpgKY7d55I31AT6D2eTuo1+Sn+kr1LKzhVpIId7BIT+MNn43kkLY87EnXT7NW5UtgUlWQRRXMoUOof+y3vRp+2/K1EkdzNOLqxj3O1LQiO4jlG7W5gz0e/G/WilrOO4ptZ+M2n4tlk12lxzbLvGI851o4ZdXyifxpVOKG716p8/jLZ3JJGuVjuIvd3fycvdpnNa73LTyFdmXzaWhTMclhffPRv+d63qPVSC0Fo0jyF32jspwssnnPHbFu82pvU/jStDydLJ4RPwitZXDHSDvbG46N7EdXKuvllqYIXefeRRwXFvEPGpHHk723bVokiTVp1e82vRT1EtI5Ru4w1ptGMv8ARb7HHPq71aoxPc22qNY7eWWzO73ksnRbNzRnOl3bR1fsVAlmhDvHPBDuIgiOJ5TjXEwxndFdb+r3KjRxFKRGcoeZDjGsdulO7V6dRKxw2/3bCRZ2QrbxiTzkcKHr6aWykhA6tlAxSS4OASD0LHjlrCtNFcLoXgegDhx44q2l2gIGSMnA4dJpPAhMUaqCoYcAfk4/afnGq8icAce7GPS3p+zWgzF8gJBcAg4IPDjU6XanBDA56MGkbwHVpB4k4J+ri5r0REgggjPMPZEv9VVMRpEuQe2raSg9tZaJ2AzkjHEj/SmkEpOMGkrN0w9BrqoImNT1tw1TFFFFFEFFFFAUUUUBSaQCKaSMgbubLD4u/j+anPZScpG4DMATHKeJ7DnSempXTb6kd6Ga4itJLhEBDyxAgb2SOPRxjk7rIxpXc3GD40kbSXFo27vYY0J8Yt+3IOFZtPlIqebZEKS2D4LEXJTyY5tMqezu9Wq8sTeNoN2/lYpIyXwM+pH1vV1d2o6zkTWyOxntYOS1kj8fsNZ8z9GqdXkl7vv1289yILPaqyKGQiC+GgAPDI+hzgqfNPzVxYRXcUcO80Q+J3clrIq5aVIZvN8/U09WmkWzopYto2LnjrLpJ7so1pye69FSWVtDE9zYSyNInnrf2Qz/ACf2HqR1DbPMuB41s6TUkjnm8kejX1mV4qpwNI67Mu9XO2bOf0ODqw2PWV0poQN9dwE6keMSE?nJDK4/wAqeffhHk8Yl8ah4abq28ZQKnysY/m6teTT+T2fe6hnkinPrxSjq/vdNU7UNKuy5GLF8vGzZOCuh13f+VEUaJs68RBlI7m4RQ2W0DedHH66WiZ4oHF/asvLdIZY0kORvMcdP2grVTNyhlsLtY0IuYjs+5DDjGy6sH7LBlplOESWx4cSSvtzu/bWWcPup4zwWPayNyg/KOrVPHv6f2VegilktbyxeYmTZsgeCTHLusbyL+mrQ8UnSC5lYhbq23ckYJXeEDOMJztpryJwL3a4ydHisTH7j8KiUSxQWaxJHwthmSVyoi1cB73NSircEyxarkrZ2kcUaRxjz83HKKU7itjzXXpdfM5hieQKpLDxa2XrFvpPs1bQxPtAmMi8uZBuvGJPya20jjuR1d58P7yq8729sQImNzcuxje4ODHExOOY91fdWs4U8tIS6ohOWKo8zejh0CncUPFXx27uFf8AVqpbMjDwBFOUVc3EzcMnHEL8VO1QMpdiQNI0qOG6jHZ8T96tSM2l5gBc54g9J6OUen4qmeEAjOMN5w9gXuRj4qnUo41ntbV+gcEWu3RAjN08c4PbJ2fcqpkolQq4XpJGoj3uwfZWrFuhBFD9GocSOIJ7fb9qrMBBwQMZx+2ovQziHCrFRR8QfZUtbjhq5iiiijIooooCiiigKRyorPcrhRx1D9I/qp5SKUIHuXJ6cKOOOgeipXTb6otpqWtoOPy8J1dBHOtQTBvH7Vd584/SB0I3R+2odqBZfErbPPr3uOPVg0/7itQmWB5bi5cAJZxlCCMAyniSP4VqOsV7hozHt.up1X1uoBfGDGYgcjVUllcxHaW0CzBeWFQM5B0o2SMctV4LJNAiZwZblzfTlQOSPPJHVlN3BbyXHDNw4RfJ9PcjoF6EPY2aqGdfHi0YVCTgSPx445aZwndXt9IY3JFqkpQAKMDX0e9U6GCF0ReEdmmWOsY3rD+mljbSjePs320Zd18EOP5dFMe/wCKurPfrBsrUMb+4EgTWdQBDv0fD1qs4liTbGACjXQ3Q+kZEyv3q5WdBPNICBFs+LRGc8Elxz/w6a8iQ67OOWQ+VZ7qQZ85w1dHqq1L/fv9QymiuJprRV3aGMGRtWW7mn/vSF9nSNDK+/YG42nHkIg4BXVeBb6qanaEUYvbhH1rbruuXJIbGo931jVJZS8tlATJ5NDey8h4s3Rw/TTrn39SFd/baJ9r4klI8XiTOsjJx0MVwuqu3iiZlUW0l5pit1Ees4QqNT7zeOFVa5nuTPs8eSkIvdp8WUcTFC+T3tXVjrQi0RjIQZIiRpL5Qtk8RjUp6q1FZ25hTMb3O6t4RjRbW505OG15l4M/wxrUcxdreJURbG1KSNrkQBnVT8nH3Gbu6ud60JsLbVGyrJPMvHeSOG0d087LpT9XVaSwSe5Lgs5jBCsxQwQ6e2FCnNJ7zUDiwQiGCNEKoI0aOFjxAI89ce83dipm.ApJIBIY9sjeiobSJI4EVXduULJO2N7Lw6er1vhq1pAyASOGAPU+r3mqsWqQOC4Y8Ack9GDXOsyalxgDGFPYPb7zVYeEZABYAdA4dP3aiWBVPS3E4JJH9NFVRxYAnAB4+jhU0LEOy9nSMej2VMYEJOCeJznh0+zlrkQoHyCfR0:wA1FyZwHh+yp6gg?OPZU9bjhq+KiiiijIooooCiiigPTWZwZRPrYqPGZEUqBxAOONaX01n0AIYYH5VJ/zGqV12+pdc2kD3aTvIxFtHIg1SEAbzQzkkfBSUwb6C2iyG8eut66bw+UhUtJzfw1pbtV0XHAdD9nuLWfhAEuzsAcI5MY4dysujsRRCK7mAIeWTxaMsScKp0eTJark1uTfbPt4xiGBHmkG.dIVUyB71KiSbSIEnHjWcE8M7zppvCzeO3hyci2AHHo4VVUAifiy+nKod/cXDdHd16P+1TtbRG72eCpBjt5GUqMcdCqN57tWIFUbHtuAwZIsjHTmRat3I/t6f4fh99ac@ZQPxZcgMNUs8udQ5XJfhn1amhmll2xGjKypb279g7Qo1LirF8B+LoOA4yxZ4fTLUyfl859Fqf9Wp2Unl0/iudU@kvL7Sv7z+LkSrayNi8uOfqi1ttA9UafV9ei1AMezMgdeU9Hbh6ZRAfi+PgPP56O3eNTvPwhHMiIbSEySBLeDymQQqTSdJGF85p1VpXB4cA5zq5+HW6nd9Wq1wqlXJAJMnHI9lMpRx6OxKf7RUd4wCHkZio4RRDA4D0Cl7SEqpc?LkQg4AHY0x/wBtNJgFgcrw4dI4GlbAaI+A82W/T6aixooGyiEdOBjhhRw7tTE6eg5Y/wCXtPvVFCALdSOBITP7K6xwqsOs5GSOI6R7KjBBOTxHRwH+ldjt+o1F6KDzPEj00DicV6Ov+ivE6f01FXoDyn9FT1Xg7311YrUcdXxUUUUVWRRRRQFFFFB:9k=%iVBORw0KG;)NSUhEUg?AIw?AB4BAM?ADS7QcC)GFBMVEX::0qHKhmbLDvs74yKT4xaH4yqr2tYUVUWgb)fUlEQVR42u3XsQmAMBgF4V9x?OCfVxAdAEdQtwg1il0fsHS8IpIsLob4OvPnKy1V7WXWb+J9pQZZpG3zkRNyowmmmBgYGBgYGBgYGBgYGA+Mn0QHTl3V+o1iYieKifLYq4gilnMYqIVBgYGBgYGBgYGBgYG5gfm3ESx0GvePshxrr29cII)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ANI?ABFCAM)IJEiL)GFBMVEUAru+g2Pf:/8xt/BpxvPS6/vp9f0TtPCISbH1?ADCklEQVR4Xu2bwY7CMAxEPWM7/P8fr9baaNSG0lIQK6q8U2vhxk9ODD1gJBE3uwS3AEkjwy5EkCajqzgZ7GLAwi5G2M2uxceEJpPJZDKZTCYTzzCBsH8kAMCeA0OOJykNkLDP4iZAMu05UjkyYnMZveyEX3QJf9iVJN6npIC6FNTtWfSI/aeRfLsSpCAnup0nyF4nPqwkAwwV5ctKrS9G4qNKPtT/+nEK9t44/0EJ2mUiFTyr1EoEdSGlQGYi+t0vpRSFS6k+CZgwh5K1FJCJRkrJ7zYk7kQdiCeUUIskCSlFY8EWmiJCpy89WaRLiEruoLEjJfRNLxTesxRjdpB0r4ueB4p4rJTrQj0poHXuKG0UGsOcapXnh5WcJEDSajnNQWQJ+LaSUBG5Dsooc6EUW3W2laqziMNKlqVElFJ/ZLoavjkeCrhBn0OPRbm11VdeSknjZXfnPa0EsjUyuhLU5bp8rFQRnfqm5HIKXayVsmeLjfZBzT2mFCyslLSUtvUjJSwqVV810BRbKSkslBirOuHHvyb+Th/qLvtSUewqtVWl6rB6V7EYlRReo4TnycWaySqRgntKeU/JTNGm2FElzYfzSlFr9p7FaSVdKMozSvmykpPE+5TaQqmbfXbjWWoy6XCKUxtPUXxUqWmBrqTSTyvFYuItYu3cxItM2DE4KLk2zxmloLwxDnFQOUpaUwnjC8dZpdh+gMrZVjL2ZL2gVreaV4aUtCHF+GD1lvQTStCrE5kIiwio41nh3yjivpKqBiA5/IWS42+8ODLDWeC8Uq0lIGPFNpU82VFMAbnrYO3+HlJ393GSGJUMg1KRO0qDU7oVUJ5yNDfExhnzPKwUoxJWr3HMUAL2lAq0ITNaTxveanPndUmxtBeJACL8bvRQri9DgNIetcm1HYdp+w3kOMmgkHBW8BsInbhHX0Ge39EkGeRDI0DD4YucfLgTLOD2VU7QTRkNSgj7JkAogMHIIsK+DSwEZPR+JpPJZDKZTG7XEwq7GG6wi4Er/n+J7VJO0Wgk4Vf5L6CD5A+G4BPe8Jfzjg)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AP)B5CAM)wNFyw)YFBMVEX::Fvbzd3d03NjahnJuCf39dW1r19PQNDAzk5OT+7Orr6urw7+7/+vj/+Pb+6OX/8e7z4+D+5eL/9fL+39r+4t5tz/b:fym4vn:v605vqX3fmJ2Pj:v3D6/v/+/owObap?AIJElEQVR4XuzTCw6DIBBFUXfBV7v/XVaJ6RTrC05eLYFyFzDJGYbJL37Lp@q6rplLSf3D/YCDv8DtgPcaflFD3B/+d7BAzzAsWGNy0Ng8aaalOKK4NgwFNcF2OkqgLVzK2jVATBgElW3SjvYHsDuvuppc7B4o/tRhJYBexLMx2N5cP3URHNWQ2ACK8W9kErISbx298ZmsXNeCRwg2FytCnXG5d5LYENUTYvBHoDhseAIPqOlwXHtMJHve0tAvxWUewVsD2AlltcrsEirB4cXGHAN6na5MUosBvtz8JGqioHjsJYHIymffgncjj69GMxjeXpRy4PjFsEl4Dz28R4Ei1fApmraF31SV0erjcQwFIbvDcmYTLItJUzf/y1LHXMG9ciSJUzp/kALXaro83i6MBpgeFVwZDB6+91YezkDGd4g+DPc72o7kguAQe3a0Ug+4DF/2VFgLTib+IKmwU8JFgdo948DX2/BcwUWEVh4bTC0+?rBUzrZOWMZS03BMMrwbgpsEbBCtCkz1n1ra7tS+tyFgA3pUq9/mwM5piLH1nRq+VshOg/JQPcElIzD+zDe0Oqj2V1806DCRsE44PdJI474YZ2/06QdfA7gwWXhuppYOf489krAa6ADwl+vjoPk6yLwCiH9bWdDO8kmLAhsNjBKWZlLKMJ/AFw90owvHvjXtNg2ozet2hYxzaHwDhRgNJgvyBWr1YSB8Cdq3srlwJzaWtLGyi8Y/BFA1dQ1VQwFklkKL2dLPAxAItPAzUGVndZVuXYTDfaBO8g12VgtBhbSnl9AzkE7l5FW0YFwXk4UWVyrvAy+NkTj/ekktYB0yqT+UhAuXqiGXw08DuD8XgBBiwPZnu+YpcAw6twNy0DvBrujw2D8Xybt@KWBO8ieMpM8WU28b7dHJ5kYUX4OYlMLzgUh54UFmRM7y+ogesg+FtMfemZIFXy2eGxsD8+jLWB99amx8gESvWwXeQAd6DYLy/wJLXBaPzsFJvBkvF4UswxPDaYHir9IoeMg3slQV747JgeZ/J6oIft/nmwO4YE3wYYL7QjPXBajZ7cFEU7AMZYngdMF/oIffes8HTdh0sM6elwPyA4WVpHowCYH/OEHxMgjeASeuAxb9Ddzfl2rl5Ugxv3gyYbjROF9owmMv/KRgMujEY3iwY3jyYi4DNCbjROXBZC/azwfYv3l3w8dfA+TGPHsDwVnhnwPX/B+8K+Ku9O2xtHAfiMN7RaCR5ne6R5Q4TwOT7f8vVjNXJuX+jjXFCc7f7QEvftT+mKsaW1bfRGtaF/2TDp8bWqZVr028EztpcwW+/T3/A/7v+gCcH59NLAcKzJ3wSyS80CeHwZHBO/EriVDg8FxyZX0hMpaj4iWBKbOKX8Zr4eWBKSRT8Ml7mCs5PAF8qeBhj9UZmppe4tIylFKkfMdzZgI1wHW0ZeIhSvcTMcQgxhS8GC1frsoZDZNoB7nsdPIdUvTkyp5ESs5xWGwDw6d1f/tAOgscM/f7ZiKqXKSqakn65cePL71D+2Hyi5Hti2j7NyZrn6aK9XVRMSo3CmorfYcuDmz1UYwDvdBNLqN4kFb0Sw3MG1BrX2vDODVzFMghbSc3pY8Yakvvu437iKGVJXNx7SuNc9N62nVfvDTxnSqwRqbrQO4iBfNjugwLx31SsRKzq+KOvba24Pl/31oy7gGcDy2jeQL7Rsrt7Zk/7Bm9QJvPG6EbshgUuzndWr4FNzBKmxXutwdY0IIP7gB0i5riwO1zYJ7HimtfB5nWwicMcIzMn9SoYxICGHgincxTzNhyhda3F+aLXwU3M6h3q/BtYyWZGNMD7/UK+Nfqzct0bWICqrbHOXdry1hw8U/M2cSAlgxnnfdyOqVG9zUiliCtxtGvu5/XrXgc3sS7hcQHXTlxcDGSUP55exbHZzqmoGLA4XfMi+OJeAzfxNBFNlnqJi4n75OP6jnjlLRw2vR/YxjXv1bjejGATm7WBlVtMDO96HGj/8N2bKHR2ZKoW/jp7F/dacJRCnsi+hX4KnfcrniHHzov3DFrwOhe8AF6NOJo0UeaKtr/Xbgb18+GBwYvcO70AnpWchZcVE9uv9L438g7IN2cvRb3jhy18pq60yK0m9yK4iVPhMRZlJ8UCGdQP1GPyL+8psoubFL0TeAHsXs3ENMVSI38NG80I73dAzN9u+g8xaHte4wLY5m/kTFlC9cqkLVblKnoFRzoud8zHc6/YjVRKE7vUtfqz4VkRKy6ATWxkKVronS3wfncPGz4VLazmCku340Wwi3PyAWtBzaAG+GF7/xUmKtb5++mT92r1uQh2sovJvWz2KzBdfXzq2Np7Mi+Xwt+Jw3rZWsBVbw/sZBeLg9u0vSvWP9zg4OyrL0r1Uios75FTAG1/ughGcpZ8A6/EyO4C99o3wYHVeyrMlIU5Daht4XARjGLPZFRqN3+P3teD/O5ULJXNTOplQmzfi2JEe7F6WcKhk3Is1N49+2vFjsSKZcmhWQGMFxro3hY3clawVPAYWNBz3I5wC8HXEK7CmmRcuq1Lj4tgHHJ;hi5lDQHLi5+gvwm65TcO22Fl5FOv5ccS4tTqQmcbXVYjrNHtk9z8QIUL5v7XCdjKhaKzcwc5lXTIwM6;dkXrRabrVcvpMcC2cFU/UF90LTk3Lt0iAZsMCF6e4UB5EK3nV+3RecJOc+GO9us61jrvTjxxY+CIr1sPvFOuBkdld/JR2wNeDuaFscnQ/uI/qjYLhbZdz9oZjzgXPLH7n+HeltWI+TJVx216Ef6fA/E/gJyP7lPifWJuU)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ALs?ABECAM?ADuirSU)MFBMVEX::V7/mWn6Gi3/N6enrg4eG75/a3uLjy+v3Iycnp9vuc0eOYxtaQtMD4+Pj5/f5J+Z7p?AC2UlEQVR4XtXZ646rIBSAUfaF60Xf/22PR+xkpBurHW3x+9mIWaGkhKJOadBaq1vmkf9n78cfkB/ZG9K/hfeN9gKQf+c/audGOwGa1w03stvK7m9kx8pub2TnKrwMqq2+eN6RjLsEzsz64vWeiQjOdQ8z/AK7ruyRzsUPvsAP2aF0cOKR5uDMpXLcTqVj+yrT0niOHXnT7qe4Kk9Jdhlv+RFGWoJr7ELSnIt2OY1Fnom6tssNKSX6nbnOHsCdaleG6CP2AEQUzrVDZYcmJ2g9vGsHIjrNrn9KpUglJz9uFwz6UL1gEN+9tuc0F8+xc2nf77tfSWxY7WxamnO5fKndjOKPUZW/0g5T79iNE+gCwip/mb0AjtoNKIku5fuyh9aBXAy7sisxz636t/Mt7GHOba92RHyyh9K4ww5hzp1tpzmzuWQSTUWsPiuFHXYqwd/siHjcjlSKuGm3zy8vnWEv4Vv2ErbtJfm7+aKdIy3FG9h1Y8US9m8fuA6LI+VHsVe7sswSv6pPu2axnEz/dmW5kQ3Qu31AbuvNQbspvbKvXEfsB/DszU579cyn7Gqw3Aw7tpc0tvF927f1CEuuV7syMeOLs0e39kBTSfLbXu0WHyUqPfNdR3aZYA0txUofwV1kl13H7ax/8IlrGKg6u23XU1yVSlrr0+2soWknM27+v5BrO+9LdrFU2rQzLtso1nYB75/XQ8z5S/YSTnFV3HHg4ozM/E27nLivaq7r0Z7FC5NwC3vjsgI7sheLOEa8MbEd2ZOMz63DR+jIToQiXbbLE5/hSntByHbK0gDZLp+38rwLOIDP2pGo1mOmVe7lMT2TAWN+XcjRnmr75uCwcYMcMyIzYs7x9duDRf4Jc6LSt+ztQEmF1e1tr/Zx886/C7shuaDkoCN7gNaKkXMd2cf2TMpBP3ZJY4JqN5pe7GbmwEoOajsQ7N/MzZuMMQBu18NUmocEda/G1fXtP47JaK+yvhpR)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL4?ABBCAM?ABYbu5j)MFBMVEX:/+1wv+jqv9siv/p6:W3f8zZv9gb:19v9NK/8zAP999:S:8z:8zzP+z6P/0gInF?ABg0lEQVR4XtXXy1ICURAD0H7c96D+/9/KQqkhlEKD0iTrWZzKYtJXbou2s+jvn1Q55f2mfAMOb6Ec5D6+c/ObcvOdm98qN9+5+a1w842b3wo33/6Dv2H22g3zCL+PKF/uSKDsGL8pN9+5+U25+c7Nb5Wb74R8h+ki41eYLja+Qf1k/AL1k/HF4XIg4ytMFxl/X7/z8aF+Ov6A6bqR:FTnswXa2B96LmyPZtfoH4yvsDlwMaHy4GLj/Xz8RXqJ+PD5UDGh+ni448O08XEh+lSrtUVnC6qm+ey/krGx+li4+N0sfHh7Cfj43Sx8bF+Mj5OFxkf67c8frF+jJUovzRIBr/4+kovMb5YPr/OdcrUGL9k8FG/Tw3xxbP55/o1R4hfk/m6IBbii+fyJ/JnjK+5/HWRGuJLfzG+xvh6lX89f8m3GH90ar7Ya/FrkF8y+XNhRpAvlsi3+H8fUxP5A+svYb54Hl8Uy4/zNZEvCvo4XzyRLzrhXg7zNZMvw/o6ptsQpvDnE+wJyVGQ5SG7)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANM)8CAM?ADLy3+8)GFBMVEX::++Of/8crj4t+/vr2SkZFWVFT/67CB/ywx?AEFklEQVR4XtWbYZOzIBCDN9nF/v9:I6FzBVKGaXyOs0XW5H1ntsYRr2zWiAfWSRgJ4W/6TOzK9k1Ah+NiPWzpWbyJVB49EQsni2xZVpBJHHxbCFdzsTHQPhmNifPj0VNkrBwtpBaYVWTJEwhSafSRcIyJOmr2ZxxCZY5T+IUkoQJlyz0noQpJGnYpG+YVvjncUw4bxHYeqgp30ocEK1isqolYIcRc1DMwtyieE1OEB8awEP2IQCwJSJxQ58Mbx7hMSZDhxsiIjwivM9kXMtkfKtzNLvQsQsKUmxZ3p+5mMnYlsG5PGbbAtLTtiUH0rbBelrNZBif0cZQbDlJPDsEANsWY/OBa5hsikkE73vwNJ6NmEy5ZLcw8XiPxbTtMgPiIxMz0e1MY7VMYfCPIWFQInLX6wKwhgnfeIFi2mBIuU0jgaJiFm68nAaeykGe9B;7V/MLDKpwd0dZu47E9yZ5buQd9tzWIpIKTaV2WUe4eZaLlT62I0aTreYalQqTNmJmW0Tmz9JYc9tgGVWRPFt5OFdvklblHKZ0ENMKt0RICKJEzcvhAtqR8LriVPeSql8DuA5SYoyLKTklikqQheKSg/89h3Sg0QIyuzPINUv2i0VGLW0dCijNQwo3VW5lPNHKFDpShcgQZNICCqs+WG82UYZB+o2yrL5a1RXpYZDh6hko++R+IdEQBbx94iIik3MsGI2seGlbRBibbN+RIyZMJH/JOEOWKhR3YjQFi2DjhdyFARvhu0VRZzz3hsjlesClkOgExFdj/UtKeu9O9deKqjFl2YEH5KQQo3qR4S26d2CUVu2spe2YhpGhF300Jz0nGJUNn+MCFT9EAP0XeiVvZqVaBwRNn07IyQx7QgOECV027xqGMUiBmQ2DeeNHYmIMzdpB3zXMhkAZXUbEW+M6TUSgCoikDejiLCKsxKLTrpPSG2fTBCK6BKDUPea/ijhgTrhq6trS1qQxaRDxfRB4DfvAUikUl9nfLLsO/WhjgrkHXkUQLWKJS3d6TkuWVaookqe+DmPI+lZxBaRCpLO7FqEm8hG/LEmALIoCk0ZhqDUkr9DdKqheObBUSvC8m81JVkklXTam4U2k4HneE5BENlHOrw4K+RZf2HSISVfx8JR813x2IckpPE9obv39hZPX/QmnN0unRQbnayQtshmv4bpbEYOqmSaiUaHluVrmDDwHSstfO+u1aGJCGKOaYDUjC1lcmihq2piJiPYQfr/TEp4f7fzuAM45DzYDUzeRcrC2bN0kO5gMo+UAh8K4vOlf84x65nO1CN59BZqcMy9TJx/d/44o7kX9yuRaL/DhMdkm36fCXYX0zIo2m1Mq6Bo9zEtgqLdx7QozmG/yGTgqEk/xzSmotm9TCv+ZP5nmSSg+teGH9U/EvuFGjU3drs)ASUVORK5CYII=!