Dot Net Perlsc# listTop 37 C# Example Pages

[").ywty.3cBCEST~~}T~~YF84G57595FcCEXS}T~~}T~~","Exists"," returns whether a List element is present. You could use a loop and an if-statement. But the Exists method may be clearer in some program contexts. We invoke this method with a lambda expression.","Example."," We examine the Exists method on List. This is an instance method that returns true or false depending on whether any element matches the Predicate parameter. The Predicate is a method that returns true or false when passed each element. ","Predicate ","predicate","Lambda: ","We use Exists to search for an element based on a lambda. The lambda matches the signature for a Predicate.","Lambdas ","lambda","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.7 (2017)\n\n","C# program that uses Exists method on List","\n\nusing System;\nusing System.Collections.Generic;\n\nclass Program\n{\n static void Main()\n {\n List<int> list = new List<int>();\n list.Add(","7",");\n list.Add(","11",");\n list.Add(","13",");","\n\n // See if any elements with values greater than 10 exist.\n ","bool"," exists = list.","Exists","(element ","=>"," element > 10);\n Console.WriteLine(exists);","\n\n // Check for numbers less than 7.\n ","exists = list.","Exists","(element ","=>"," element < 7);\n Console.WriteLine(exists);\n }\n}\n\n","Output","\n\nTrue\nFalse","The example"," for Exists above tests first to see if any element in the List exists that has a value greater than 10, which returns true. Then it tests for values less than 7, which returns false. ","Tip: ","You can also see the Find method in a separate article. It can be used in many program contexts.","Find ","list-find","Summary."," In this example, we looked at the Exists instance method on the List type in the C# language and .NET Framework. As a quick way to determine if an element exists, the Exists method is useful in many programs. ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAHsAxQMAIgABEQECEQH/xACb?ABBQEBAQ)))?AQIDBAYFBwgQ?ECBAMDBQgLCg0F)?IBAwAEBRIGESETIjEHFDJBURUjM1JhcXKRFiRCU1WBkpOiwdE0Q2KCg5ShstLhFyUmNUVGVHN0sbPC4kSjtNPxEQACAgEDAwMDAwMF))AQIRAxIhMQRBYRMiUTJxgUJSoQUjwWKRseHw/9oADAM?AEBAgEAPwD3+CEzhty9sLQD4IiQiz4w7Jzxv0QUA+E61iAnD13k9URtOm6ZgJJcOSwun7CWXIIhsf8AfU9UNsmffk+TCUKWIIqWTnuXx+T++G7Gof2gfkwunygLTpoILDk4JHDqTs7KSzrr0wJACb26ifpyiyy3VHWG3AmwtMBIe956ZelBSrkDpLnnCKq23RzSl63/AG1r5tU+tYjOSrxio90G/mk+tIKA6SzAKVueenUsPvjhdy8QZ7lRZz8rCfuhCkMT/CjHzC/UcIKdh6Z2ZM6+EcQItRgq+5XqQ1KPzc809tJptlmxtRVHSQrSXtTdWOgi4qIULukz0kHwSfsQ1zjfwGnbwa2GOuI02TnipGXVMWZfzkx8ykZuaxFii823JlkdkSgYo.31Yc6kKoSfY9P6oIx1FrVamUDnTjRD5so1zRqYJD01JXFqvAjTTpj4IIIBAggggAiu0gXhEF65ce2I1N73J/oh0moglZYEh2oj15L+hUibOOS+kzmLoPJtG89LNFQsuO8nZE8sUy6wJm6l+ZcB00VU7V7IiWVSk4pPZWK40rtEj/GOXSJza1yqSufgRY+kEWpsJqxbXkROvc/fGIw9MTE5juvNys2g7BuWI91CA9wBt4+fhDFlayNUx2labs9MgjhvTs6zNCzm0Zki+MKIi8Eyz8@3afadfB1lCFkQLvdxEW0VeA+TKB9TiX1WCxTdbc7nZbz3/SWJOqOXT5p+aByYbUTbcJNmKioqOQiKjnqi66/HF9Ccs30S7yLnEsJqUdW42UWm0+UZ/GZq1h6pu59Bgj+THYoru3o1Oez8JLMn/2xjgY6V32KVrQd2SeJSzXNLQUl0t8kTYVn3G8PYeafZIG3qdLd/zzHabNoAb853ZosMjNapLzQunZGkVd5PMsEU5x2aZIXWmkcb0C3PeVTIBT4k1zgmFqVrfNwauIxQ7lJUEclz6kh7mlezf2Qlccbl2DKIm+cWptBG78FVy/S@fM+8pl1b/ANqQupeRDE8qDuxkKB+FW5MPPuvRtURI8+5XHHe5VALZLu12TtHNMyWx/SN2jkxkvtZz5Tev04ik/wC49v4HV7V92QzzrEow5NTC2tNJcX7I9akvBETjHktT7qM1CqNvybv3TtLx3wbB+13eIesGz1y649UNuZmXxemZMrWSQpcFUCtXPwi72V2XDsjMVpyrSNaeskFelZkhdEwNNqog022djXFbSyz8kVc8f9JLiKdMqkmLqC06m6nl0RO3RI9DpjwPyouASFr259SRkGJqZNbC@ogyTfEEIVRU8+sa2ktq1KINhBrn3zQu./o+BM3a+S9BBBFwhCCCCACiie6VdNUhrnDPqifZKSceuKVQGaaBCaFHeNw8FRE60hubhiw5RG47FmQX2qPpOfrlFF+lTr7K7N4GjJPLp5onpkrOU6RblXiB8wU7nc1G68yPPLIvG7Yr4Izjk1Si/pHz0uOzV2LPyzb4rtFL0LiQV8455R57RXRlOU3EEuza1dTpY7RRE6243s8/OAF7UuLn4N/wDxjy+luP1LlNrrvNzlpgaUFoXIq3C8yFwllwVPJEeWXuyc/SOhHj7m4mDNh8pm7acSIi6v/iRDSaqwVdInXWwHYd8N000K7ROOWfk7M4gHDuL3myEpyXtNV3TVVXstuFv6oipWDsRU+ozE7MFKPNvtbK0HDHorcPSZ86cYgjiy6o5IQl+4mjKHujKS4Nzz6TFREnhG4rB6syz4JFKexFTKc+rM66rIZD39UVWsyVdCPVB4dcZF2q1fnq0uYpLj91xc6bcFwLMyESPdzRVUfVHSkZWtOS4yXc8JRgSXaP7a4zH8ActL1zTNeCROusyyl7IfwMeCMY+6W/ZWjjY6xlSzw/V5KUVZnnEo8yEw2hE33xsg6eVvHTjGywignhKhadKnSnH+4CPMcW0+qv0uqXS33HJvc7tMLQ70bmXS3lFOOUek4Idvwbh8rV/m6U7PeQTtiTo5ynrlP9wnUY4wcdG+3zZoYQoajn4JeqGE6ufQLiicFy49sWyuTZQZQnVwhquLl0C9SfbABheVgf4kpTnvdYkf1ijdx55yvzQtYWl3tQ2VRkz3k8UyjWliSg23d05W3PpbZvLPz3RH6sIv3SX5HaJNbJuvg6kefT9Scq+IpZyYpTstLyO3ap1QM0uKYc3CMEBeiItGiovGNM5imhtvty/P2O+qoie1CzMRv6V2XZ64501iDD90oBTcs5vkF21b3eG90vw4i6jLH0/qHY4S1HdkhImwO23Tq4aaR0xjnSdRkHmw2Ey0YZblhiSL5sljoAYmO4qF8ecSYVBQWl38jZXe46CCCJBoQQQQAMDhDS6aJl2/VCqpCi2pFKanJprwckbvoqkO5AuANiW+rzQh8Izk3iuelP6uVJ7+5Bs/98cSb5S32CVDwlXfzT/lDJSUf+hUmzVzKvX3tlu5dDLisYXD7afwsz5CSFdQx/8AJEfXuxmKlypTJzBOSFMq3HouMENuWdw7nYscXB2PpKjY1m6xVpOcHnUkUvsQZInRPbC9ns9CttHjFDAsjytzi1F/LsnmoqG0k34Po8B0h/VHm48t2CfvvPWvTljif+GrAH9td+YOL6cez4INL+DdMScswZPNNoLjiJefoxMQpGBa5Z+T74SIPTZP7Isjyu8nvwyPzTv7EKkktqSB33s7WJ5QPYlW5VkE3qfNiPlUmTzzVeKquqrEGAC/kRh7/AS/+mMcOs8p2A5ujVGXYrLe1elnm2x2b3SNsrfvcc/BHKTgen4To1Onqy1LzcrKNMvsuC4lpgPoQgHqEEZMOU3ADn9YZL8Zy39aJk5RcCZp/KKn/nDf2wohpoSMy5yi4ID+npIt4R3XhLiSD7mJPZ9gv4ekvnhgCmZflwH+Qzn+Ll/84r1mVeanZGVlBDaNgpNSrV1gA2t5e5LLykXSXqipyt4swtWMETkpTKxJzc3tWDCXaeEnCtdG60UXPhqvkjmyOM8N0ik/zpLzdTfT2xM7UXXC+kWg8EHhHO/qEHNwpN88L7F3o56Iydq+En5IsYPTDsuJ8xC955LTdteISNU0tttBOu7NeEeU1KnhKku8JuiRi6yKLc3Yg75LllaV2kaOsYycmF9ozIWGauHcty8E0yNeGWkZp6pTTjz723yOZDZP2KiIYbu7l2bqQ3pcWSMfcLnyRlUdvwfU0vhHClrToUeVaIBS3ZtoC5LloqhxTNOuNHLiyLQgwgi2CIIiCI;iJpomkeZ07GhzMhKvPTTDd7YXM3D4vnzja4WqIVORffBwHLH1b72u74Nsv8AdE2Dq1PKsSxuOz5IcnTyjD1HJNX/AMncgggi6VwggggASCFggAqzQps1LLTMV+kmsNNgHAtMeqJJsVKXc0zXLq8msORNE7coKTfHag7bGLq2FJht5mYo045K2ku2azuuuVOgRcOtIzOHqc9T+Vtluac2z7lCN03M1uu5yrXr3cvNHp0+6jDV/HVEjz6WQ2uWGRNzK6YozweTdmCc0irGEYdRUVVr8EuqUse/b/c3dTp0xMzUvNMZd5Fy4CJRuuRLerq14xUkKfMtVIXZoktcZLvNqdISH3XX0o0MVv8Aqw9A/wDMIdPpsfqrMrUtS2v/?CzS0entVV5+RHJCSd8JLNH6TYfZGKrtEpk/WHJRqSkwJmWaMr2Gyz2hu6ju+5s/TG/jFVRpmUxYs9tC77I2TI5XC130dkReKJb3HTSDq03jSXz+RMLqTfjYy+IcF4f7hzuxkWGX2Zdw23gabQtwFLXdiXktoFBn8FUuZnKdLTT7gu3m6yBl4dwekvmjtYgzKmTrYZb8u6PrBYqcjRoWAqZupuLMDx1X2w6WcV8V2t/1d/sPk9my9UsJYTnnGaf3Nlpdx1xW2yaaASS1Nq51eKGXxx038G4VsDZ0SQ3Ey+5mizThrcMUp2VB+uuzzW1EZdA2T457PbAq7XLqXS1F7dYu1LEjElKbYmzcctUrG8iz06lzSG48qis3qv9X1D5wv0/T323XwzDyGDsP81aGYpMm45aKncw2q3ZJmmdvbHTTAuDzbVzuJJiaL70iJ9GL9ONXJOWdJFuJps95MlRVFOKRLNTistru3dXkij62Sn72SuO6SR5pyi4bw7T8MvzdPpjErMg6za60he6NB8bLVI9KkuTPA5yzZPUOWK4BXgXZ6Ued8pEyb2GZ25ct9krfywR7hTXRekZcx97D9VNIvdC3OMdct7l/gh6j22lxsZkuSzk/wBf4hl/pftQgck/J58BM8fGc/ajZRWlnE5xMs+IQ/SFI6DajKK/c6/NWV1bT8bmVLkh5OT/AKCb+df/APbGiw9hqiYVknKfQZXmkq66swbd7jnfCEQu78Rr0QHThHUh0PECCCCEAIIIIACG3JDojPhCoCGZeAWytdEfriI5+SFfuloVXgimKfXFedytXRYw9cdaBC3C9SfbCZLittxY03ubh+ekiH7oZL8oC/XGE2rbnKvQjuQy5hONkQqhD1mP1xgKlUJUDXwnyf3xxu7Uuy4jjTzrTg9EwuEviIVzimpT9TXRPpjpas+qI5xIg1trVd+WduHNct1xrXLh7qPnJvGE030KtOB+Vf8A2onaxnPC6jzdZmNqKLaZOu5onXqXbEks117HymMjjq/cuGj6WjjTUoz3QLgPOmXdtw18E3+rpHiC4/xEZXBXHergQZaJ+EkM9m2J9qj/AHXMnRRRuyZXdVdU6GUJkzKSSUXaae4scbXdcG+xZRnqdTT7lzT2xFs23GTK60bSW68lzyThlHI5MHJj2FSTd6tsd/bPJeNz5l8XZGaLG2KHcxdqG0z7WmderqbitSq5U6NTwpdPIQk2yIwbNsTyUlUukSXcV7Yo5sUpR9j0+7UWcc0klJJ0qPoNtQbZFq1LBTK2MbVHKe5tpfmwyzre06K5CS57vXp28I89XGWIDGwnht9DLNOxclhnsjqbmd4tH1LmJ5+tDRYdleWcYxpf+/A3HGMW2277UeoNMj3PlH2s95lvgmmVia+SKk+qc3LTe0t9aRk5TGdUl2m2WgG1sUDeVeiPRROiuidqrEpYpm3ktclWvxVJPrWK0+mn+kkjON7sy+N5d7uLNXqp+DW78qMe/U5xoJGXtyyJoC+ikeKVh3uvT3pExVnbW76b2VpifDNPFjreyuaa2DbDZ7JqXFnwpZq4KKO08XLLLRR+OLGD1cUI1FOW4zKoZJfVSpHru1vS4S465pFMn2qfLzlSdzJ0Uu2d2V5ZJswHP3RLupHk81iStTsg5TidsadVLzFN9RT3F2mSeaOY2xM5J353qXplxTVF49SpFiEpuUZzX8/JC4RVpStP4+D6BG61Lk4p6ofHhXOq18Jzn5y9+3HpXJ+9OPUZ/nsw7MuJMnabxk4Vuzb3czXPLPOLkZ6tqIXGu5q4IimpqWkpdyanHm5eXa3nX3iQAH0jPREjn+ySiW96m0f/AMOBv/6InDqGnVgjmy9fpczf302LMvutl2VVfKCTQNXp5RzSCFA6UNKHQLCAUZlrdWMhW6ftBLSNyYaRzJyS2orpD/qVCcM8MrVKK4t2MhNSB66R7nVqF0t2MZUKBqu7EEoNEikjy5yWPsiAmS7I281RCzXdjmuUkvFho7YyytL2QxW/JGgdpy+LHPel1DqhAOdZBvdq+tYmIdYS1IAEbcez8IXyl+2OhLvTHvznyy+2KQAmcdKVBM0hQOrIJPTD8vLtPqLkw80wBOuELYk8YtXOFkWQipZkuS6RscQYUq2Fm5Qp6ptPuzbhNty7KlfaIKZO981UUXIV04qmsZAmFckZhtsVNxxowbAUzIjIVERHrVVXREj2jH1GqNaxBQJaSZOxxqcbdnNkbjDHgXB2xB0btmojmqZrD4xsY5HlqnOZeGL9H2R1cLSTFYxBK0yrTDzctMg6LXN7BIpgURwBIrCVB2YuLplqieZWVGUKnT83TXjF1yTd2JOgKgJbon0VUsul2rHRwRLlM4vpuzUfaiPzj1y5d6FtZb13zIQqjG+wOTrkjxHJyNLr8xSqQsxs5IW25opg0O98wGYub1zy2bo56JrwSK6uPiyvfRb1EdsaJa2hKgq4XBMgTeXzRfxu0Upi+ovbRpxuf2My1siuILGGpUhd0S0rmFVMlXSOW2804TDUySDLOvsNzREtveDdAHri9ymzuzXqhdKvhBbrlnpFWwnR6XIyzUphxa1tD2c9N7b24217p4XC74ZdgAo+TKL+F+4vdOo+x6UGSkW22WZhkZcpP2zm44V7DgNHdszDeIY50hUcLUyeZCmYoNmnSzaXyDj3OZd3QvBzEztS84NnpkmiZx26JPy1bqc7WJDPmYNtyW2IVAnjbUniK0kusDaogqvFVLqh/AwuYhk5iepuylh2jrM1JTezzTf5pNszZAN6iNxC0uWaomcc9uq1JyRxG88JSz0jfzVotmRNe1G3x8HcJbx+WNJGeYlqiwE+w7TudHPOulMPuPgDboH3ttPdEKCyIgu6nDr60ArDQ6pWAafrDjLDrbQNAcuZPbXjm65e0wjZFn0RuRO2CO7SZaalKezLzjm0eC73SnaN5EDd57x7MMgu4llnBC6n2Ci7BBBDRQhtqdkOggAqvygOp0Y4k5QVdztb/wAo0sEO1AefTOFnyVfa5/JWOW/hGa19qufIL7I9VghAs8SnMIzmS+1Hfmy+yMrU8OTbWd0u58gk+qPpeCGtWLZ8fTckbJLcKivmyiiQR9nwwmWT6bYl8SQ30xdfg+Mx4xdlz4R9buUumO+FkmD/A.RX9jeHfgiS/NmoT0/IurwfNUnNOtOMvMuK08w42+y6KCtrjRi62W+hD0hRclRUjTrjHFkx4SszP4qNN/6TYR7X7FsM/A0j+bNQexfDnwVK/itBDkmu41tfB4MvPJt43nSN550r3XXFUjIl8YonSguTaDtmBct6N4oWWfZose5phqgjrzBofRT7ImGiUoOjLD6y+2HV5CzxeUwq9luNIHoplHclMJvabqx6gNPkw+8onr+2JRYZ8RIctPkS2eftYR4aRr8O07uZInL5ffVP6Ij/tjqIA9kOTSBtUG4sEEENAIIIIAP/9k=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKMA8AMAIgABEQECEQH/xABU?ACAwEBAQ)))?AQIDBAUGBx?AQQ?wYCBgkEAgM)?AECAxEEEiEFEyIxQVEyYRQjM3GBkQZCUnKCobHB8FNiwuEkkhWD0f/a?wD?AB?I?D8A+/g)))))))Al?sBCVRDHaCtRCFY6JCsQrQWYdErGQtADMFE7UZCyVjRRKhIZEaEhD?AQAJbvyFxa/ALAkAEadS3zA.C4r8hU6hWBICPFf87BTsoX5ASANaE3NXEMBgVqi5nO8uHl5g7PSUq/lzFYFgFaZ83kN+fTLyCwJKoiCo635U6aLpzEu8pNV69v9hYE1EQXecWv6dyKo62rrzX/AEJVHfkpMQneFSpVdp0SkIolg5+XoqltizeZU5Voha9ySMsqdNS1Sl+dO4Z07me3UJHOtPcS3ZD0nXkuprzISaZsxbG7mQVK1LmSI7QvQdlaKSGik1QmgyJIkR)?EADEFisB0SFZGxCsKJKBBziOcWYdJ3JrIl1X8VaFvNOS9k+dEFc2+loCPY5vl2UVi+KE0k5JWvWgV61aJ1RCOaPTkNFa7TShh8UHvE0Tr0BzsqX8BcOZO9UgK5tLpoi9QAWZbTtV+ZBZNE0UlbLTlZFVjrpQvgJV/uRCKyeX8orV+n86knK2yDqJtRDO9zqXiTqDnaFSy89OtfkN7tDK56dEpENEcaGCedU5LRc6ZNSO/Mj5ksr3ydkN.p2MTsW6+Z0knTUuikXX3nMZMhtw7tFKZokRq6GnC4pyyIir3NySIWtXQytVC9vIxLodqNyu59i1CSEEJoSQkowAQxAJQsqc4SqSTUlmIZyp8hQ6ZLKlf0LUZpZrzoRWQz5yKyoXpCpz3YtE6l0knIhvE7mWedOHXuU+@3L2YfhMUuPp50MyXzJIqHP3y2hNsq0t9QWBa5kWY1qry5nQa5L/IsYiNMTXraFqKtKUPjVDfFiEd0XSzVlS83UMiVV3rfQi1dCNOyKnNenLn8yo1KqVyVeak1Yn8/nkRViUn+hrnu+nwIKklc1/LzGnvIu+4pBU1+BB3Im5HX/OxU7w9S1iGSZefPqUyKYZXZepskMEyaqb4kQ4uKXVTnYvFvhejaSlQzptF32UHj2LnT3fuplbEp0WMZkS0OBNLMkrkRdLN8e0P7Pz/0dXAY9j0fwr0/c4LItOR0MAz2nw/cpmjjVprwmInSRvx6eR3m42LzNEeNh8/kcRSyFVzIYH4WNUvU7cW0p2qicK+9D0hJCJJDAh6FSQgEpIRB5nkcXP5GSVxU9S6NCmWQyPl1JTO5nOlxMWdONOfcraWPWmu8kU6bpCCzJ3ML8YzupT6X5HebCp4Z+Lbfi+Rpxk3s9e/7FDZTm7SxUtxa/a/YzMle/wCspqZh+BF95zpccm+ciIq8v0O+2VL569aL2SnKwXJ3w/c3NKZGIiqhrhlVzUd3OjFJyNbHHNis2RGOVh1cLKqLRtY4tM7S9vJDnvSlO5C60JAowIl6lTkKnUaKIPaSa4okjtDI9idjM+FvY35SGRDUyWupzZsLmXkcTF4VmdOHp/8AShMIz7P6nfdCzsL0aP7Jpbi6REtTnv2YquVyI3U4e4Z2NGEibx6dv3OkuEi7E4sHHrz6A7FNy9Rx7Nkz/V6/oYVjZ2JRxttNDo+hM7qNMA2/GvyKvSWL3NKbNnRfCnzQ2UTQSDQxodxQMG09qQbMYx0zXO3l5ctdK5nQPL/TFPVYb/2f4ictDYluoqf9KZsQ5Y8FhFe74vWu9MQ5c+3NpzK/RzMnja1nh+9paBg24hmwZ/Qc3pHpLd7u7z7vJw+HXxG3Ese9+JbX/K/8fHv283LIi8V+dUUl/uOG/EYubLnV7s/g5rddiKMma5m8Y5vEiaoqdToxxvYmx2ParX3IuXktK/TQpxFelR+39sntfD4vqjb4hSJ6t/3V/Qucx7fE1flQI115aX3dTfi63U+RVd6xM+b6v3U8yreN9E9Ir1nsf9/I9Ij1VEWua0fO3RI1ytvkmb4ItKcfabvY/i/xM8UhLazvY/i/xMUcpujbcf8AO5xsQ9W4hy9NP0Q9FgV5/A6kTTkbJXO13w/c7kLTn4jRyod3A8UTF7lrGGiMixpexpgkedqCLkWNNDOSFLS9phep2YEpEJgA9CKIaCIqJiCgKshDIpf1EFqRWNFKMgspfoGUeYhukKMpZG3noT0JNC70G2NGrYITQEGNEJqoxgBIiBwPpNDvY4Px/wCJ3zBtKJJWs+P7EZPCTj8aHjcG/EbOxDcRDf8Aey1TN5OK8TK70j0nCsdhn1xObI5zlVV1VXO1O+/Ap2MsuB8ig0ZTz0smIfLv3yvdL/UVy5k9xF2IxMj2b2Z78rky5nLovlqdGfCc9DA6Fc7dOqEmeJvvK5fZv+6v6G3ey8XG7j8eq6+/uLO/LkzLku8t6e+h7p/YtjwWJk8Ea/JVPUKrU1tEPmqNkctNRzl8tTh7Zd7D8f8Aic1kh6rHfRvHYtYuFG5c3iVE518RwfQ7L7aZPwoq/noWMxUDWJcifDX9CiTZuMkkdlgf01dwpy8xfR5qyRy/h/c6OPRHTYLCuerGSyOfLxKxckbF0zNVFq6NmA2XDgGubEquzV4vK+VIaZMFhsQrfSIWS5PDvGo6r7ZkOZi5myPdkXS+p6LZeEfBHG2VOJqOutdVuvkcHCyOlXD4OWd/oU82IeyRz1a58EVZGby81Xa8+RNzXO2DPJvJPbvbs9+8feR8iRRL4rcmul2eglweFxDGx4iFkrGeFr2o5ErslF24ie1sb42uY1UytyoqIrfCteXQ5r/eegjVFqkrW1DCYWLCx7qLNl58b3P/ADerlOTtzE4mHHYWWGRzYsCz0nEsaq8bHysi4vc3Mp32poJ2Gw8iv3kTH7xu7kzNRczNeB18056Fa6mpiUlnl1lxWIi2VFTpt8yfGTRundBwvcm79YzWm7zl5HR2rhWbjZkPrYpZZ4ocrJ5fB7SXizcXC1UzKdWTZuzp8m/wkMm7ajI88bHZW/Zbpy8i90ML1jc6Nrt0vqtE4dMtt7aDRpJXCggjw8TYYs2Rv2nOev8A2equ/M89tf0nGbUnwuGjnl3OGZu9zKsLY5pXOyyScbNMreynpSLYo2vfI1jWvkrO+kRXZeWbvQ1ToRRaWzzOKZi5tpx4SlxXouFibP8A8l+G9bI72nq/EtM5FG1XTS7TmhjfJHHmw2DhxLZntbDK9N5mcxq8a8SJqenk2fgJpvSZcLDJPaetdG3Pw8uKr0JuwmFfmzwRuzuSR/A3ie2uLlzTuJWks5zoJVk25jM0nq4IoYmx5vrvzSOXLfOspz9qq6PabJ8TeJwL3RwRRwzujkhlv+mxW57U7rtnbPfP6U/CwuxFo7fbtuf/ALVdpQ27PwDMQuKbhom4j+tkbnvquarDKGYuJUAySIQVQoYAMQ)ijE/V+JdZBVTty5EXapRJui2ZkjXsRdg1f0NmYZHI0s3juhzXbHY/xu/ITdh4Fqpmar/jX6UdMB5GpyIq9y6KZm4TDR+CJvy1J5E7FpEFVy6qqr7yDY2NSmtRvuSjPI3kV5fI0vRNCumjR9FT8PmVaQqy+Q0aWaEqaNZL6iTDKnQg1pY1BoidiSELstbHlGhJBISGiE1G?SIgABY?BYW?AW?A0EMAGAhjE)QcUSvyV3NClckbXpxfMg5FrQm1UshG8rlxKsfkanvLUYjEKZYY5HZnWnu6kVzdyxMubVNDQx6PajjzeL+lbsLiE9U12Gvi55+fiTp8KO+1UaiNTROhzpNgbOmxKYmRrvFm3V8HftfwsFVdKEiIl2nuOuMWo9SZAg4jlLFAVDRSvKPKTodBQZiOUaEqHQ6I2IdDoB0KxASAKCyIiYBQWQ1DUmAUFkdQokAUFioBgMQ))CoYABW4zvTU1UQcwg5CxrqM6FzQSMnQmoNzrHQ6GBMrFQUMYUFioKGAx))))))))))AIYABEYwEMQwAYg))))))))))?AD/9k=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKQA5gMAIgABEQECEQH/xAB8?ACAwEBAQ)))?AgEDBAUGBx?AQMDAgMFBAYFDQE)?AECAwQREgUhEzFRBiIyYYFBQnGhBxQjYpGxFSYns+EzQ0RSU3J0gpKitMHi8BEB?M?gEEAgMB))?ECEQMSMSEiQVFhgTJzgpH/2gAMAw?AQECAQA/APv4EEADXAUmwAXC5C3K8wCwjJCriCcRARrRkgXQz8QnMnBrRcm5TkNcMGrQK7jXIwaYofUJfFn8BKubhsRt/Ht6FNOxZV6NBLSkruo6PUlGNanIlWp6gEoqElN1avwLUXYAk))Au))C3Ec4lSmVxJdX5fZ5mZ1SWROSeF0d+9/9ZTj1b54XK17HfhdF+AYJl1qeqSV6xeVzFWVzaaZ8VvD5+RGkU9RxHVU7VY22MbXc1v7bHj9d1yOTUKh8Tu5li3zxRG39Q+RM+j0jtYj6fMT9MxdF+R4GTWd/EDNW38Q0Fl9CZqsPRfkaGahF5ng4NS5bnVp65NtycJ2l7BlVH5lzZm9TzsFWnU3xVHmHURZ180HRyGBkpoa8U/Zl1GdjJ2Nc73bp+Kmuhc11OjmrzVTn6vEr2Mnb7ndd8F5C6VVJHeCRdnLdt+vQjDa7dwuV5E5ICSTuRqpuPC7Jnqc6on4snd8Ldv4m2mTCFL8+a+pCWgBbk3AJC5FyLgDEXIuFwBgIu?wE?VXM1Q7ZPU0uMdVyT1GJbw58lXJTv4ka978/iLJ2sZA37anycn9V1kX5Gas5KeX1J67jEi2OzJ9InCrY+JTNZRXxl3V0m/v32TbpYzdutDgq9Of2p0eVjo8OLUNavckZ/as+91T2/Hn8/1KRdzhVWs6kyik0xtXK2he7J9LmvDXfmrb257i59Gi2+Tv1Jb8yyLUVvzPMrUb8y6KoW6b7kol7al1Dludul1DlueAp6xG2ycnqp2aWt2TcaCS+g01fy3OvTVfLc8FS1ybZOT8T0FFV5W35jYSZexhn5G6OQ89SzctzrQv5EdU93Ru17Va5Lt5WOfLRuiVcO8z2dU+JrY4syFw8WZI552J4lt0XcZ0ssid510/BDQrWX3alyURjd0RCMN2ZcXNttbpc3QT8RPvJz8xHWem/opnVrmO25+xSDdnRyJuURyK5qdR8iMTq25FxLhcEnuTcruSikBYijIVoo6Ak3sAgACtxkqk2T1NZmqE2T1Hjyrt4cKsbsp5jUmLvse5XTH1UeeaN59Tlah2Yq+FJK2WPFjVc7dyLZE/uqNsfavrbzj5XqUS7nlK+F1ndbKfUNe7Ny0elwarxWPiqFY1sdlRyZsc/4e6YdO+jeu7QadFqVNVwxMlV6YSI73HKz3U8gnBG74/L5QrUsiX3tyETxK6290+R6CbQqpus/oR2LKv6ylHd18Uer+Fe9r438jXrHYzU9D1um0GpfBLV1aRrE6FzuH9s9Y2o5XsYvPnsGI7S4LFWyfFDqU712PTN+ijtg3+ixLbpNH/wBqYK3s1rOiyNj1SkfT5eB2zmfDNiuaq+pMZ8SidjzEwaleubPU9Hpqrv0ucWjplumx6bT6Zdth4hVMuxQt7rOu1zvQpuhzaOn5bHYhj5EyiNaI+RZcVrdhhD6m5GRCi3J6o7rMiboVXJQiamjkXI4bIpRxOQs1WRdfkGRVkMii4aLLLjIpWg6EYeJWIOgiDoKYw?JIZ5+SGgpl9g8KreFcrV/Rr223/8AR5athe1FdZfmnM9dm6KkV7LZfxOLqVdPUQOge1uOy8lv+Y1N2fT5V8mZGzk9XO7Us/VPT2/fi/dPKaOrl0v6P210PjppmSfhWNyb/m5G7tGz9WqJv34/3bzBPH+zqaP7yf8AKaTnp/sTb3W/rcDtdpUbO22i6zTd6m1Salma/wBmbHxt+bcV9R+28P7RNGf/AIP/AJB2NIhXXOzmnM3dVaLWw+sbZE+WDv8AaU9q4P130yTypv3zhqx7uvzETBLW9nePFrVmP35Z/pEr9Xpdep46CuqKaL6oxzo4ZXxtV3Fl72LFte1jp0EtR2j7E1jNUXjVFKr8JnImX2TUla742u34FHbml4+twbf0Zn7yQ62gUq0vZqtzTuzcTH/Qkf5kTERx1n59ExaZ5uSvxkvFUen8tj0NHR8ti+mok22OtBTeRMyWtdLT0+yG9kew0cRowFmx4opwDEvxEc0IkWqzuQrUuchU5CyGe5bkoooEzBIPcnIQLkYfutRw6KUIWNFmp63XtLWlTS5pXZoodEHQVEHQRd?kCEkUql5IWKpW9R4VWlnkldwlismPz5nJqWczqyIYZ28y2kM3JM/8crUquoqKKOhfGmESpi6y37rVb18zlT6jV/oh+i8Jv1dyp37Oz8aS9bc/I708fM50sJdWsfXzv7ZuS9omZ7T6x1/X05WhanVaDLM+GJJWztRHsdf3V7q/maKvUpdS1Wn1SWBGOg4f2bVX+bcr+ntuX8FL8i6OIea12bdfWYzVMcl8inb2xOxGfLrrrdDWObJUaax8lvE/F6p7dsm8i2eufWRtgZGkMO3c625Jy5GKGNNtjfExDPatY8R4/Lbx8nJb+VvPn0iEQwptsbY4yI2oXtKpaama0sQhBxVmEsVuaWuFXkTBbQzvaUuQ0uKXFtZZr1U2FVC2wqpuPqrqQmwytGx2DUdVbb3HW9@azcdzdkIk1ayVqy+f4FzZJfe+aDQN7vqX4o5qlNmrjhMb0enn0LUM8Kd40IIvhIABCVKmWomdG7utyW2Xoa1MD3pxpu45yWwTFL26liiyxVRzUd5XMT3I5z2W8FrmmBcoW9d0/AzW+2m/y/kW1ZuXwzVC97G11XcxuRHX2svmdCdF4qYpdbcuRlxVznOVPIuox8ssqs3LGNQfElG7oWSoiV0RsjMzDQwovDdxWamKZ6rUHQSMpqePjVL08PsTzUtapzllbR6w6WdcY6hiNZJ7EVLbfIp6tVbtSahW0qt+vwNbE5f5SNb4/Nx1UclkW905opydUrKb6m+PNr3yJZjbovqbqNrmUsLH+JrG/kKt7L3KIqqD15Ep4UDBqtVW4j+RaVv5DQqsragK3cdgyt3G0kVLhsS1uxc1uwI3cXss6KWM3He3ZB2N3Ge3ZBexuiIU7vqXIgkXhLF5KLMrawqjTvIaCmPxFwpg?CVV06laMYy+KeJbr8SbLulve/wCwcnfT4KOqmFPDazLFPEt1+JndEjXOdvd1r+hql8PxUpt3V9SyrPyVZpI0yy9vIzPjTJXdeZsc3ZPRSmRm6bF1GPloyYkYl+BGBbrN1kMRS5txWtLsSu0tHHEmaEkMU7FjmYj2jNaWNKmmusjNIoGtcnC8Se1VVU+F1LdPp6ila+GWRJImqnB6ontRTU1CxBF1YK5pKJsPYmwqzFSoK5uxaqEYkxJeqtrR8BsR0QiZTWqGtJVg6ITYXVsQra1bkvathwITipGv8ycXloAlDW7DAB.?AJYVWp0HIsMSVatTYrcxNy9UFxJ0lq6zOjQqdGbMRFYWRdTfi1iWIXhG3h+RHC8hu6meBmSMswLkj8hsCJuevDirAwLFNUahNFx5ImRtZjgtuaHXwOc7T4qnUJ3VESujxZg5ckS9t7KL2WxxiRstPLRQ8V78nuzyXdyWvuJDNOyve58irBxXQ4exqql2/PY1T0+E1C2Ji8OJy9VRqY2TcrSlkkjrm4q1zpFfFta6ttiqeqCTK2KoWpnZDXyZd6GS0ftsmxL5a2lYyomkZLDdvE7uKojvai3KU4n1CukkY6NZHI7vIqdCyqqIaumZR07uJJIrPCi7IllW5Gmx07EYlliLAMLYZEJsAamIBIAQk)?QEg?k?AEEEgCEWIsMFiQWxGI9gsGoxWjSbDWJsGjqSxNhrBYAWxNibEgnEASBAQFk6EgAQFiQAIsBIAk?AE?AgEg)Ak))?AbBs))))))))?Ag?Ak)?Af:Z%iVBORw0KG;)NSUhEUg?AMk?ABhCAM?ABLV3W0)YFBMVEX+:/q:3j:zc:zy:7ojyrh7P3UiTj5:4d9+/3lB3ZNKX1nzP3Hbf1NL5Fvrnk8P7s7u3uwn3uftVy+vXx9PTr9f7d6v7m9ebp6em4f0hoaWm0/fnpyOvp5caVWYCLfXim?ACzUlEQVR4Xu3c2Y7iMBCG0S4vWdj3pbd5/7ccyK+O0zFIccUam0x9l0gldHDTEKnCW/ZJ1fCynEdVeNnM+w4zPFgymXd1GKGYHOZdPw4KCRaUct6DgKGGBgwoied/S4wBQw8NGFASz3uQy24xC2mxuxDhhM0dUuxXy5BW++LXvD7UYR10nwLINxxBlm8ig4i+4AiyfHXmP+vwPkHpHgnRBZBASnMqOBF?ilFO69rTpoIh9I5kt2M0w4SItovOe3b+QNLcsChdCVqwZIsVEMhUiuWZNXO17xUT0KkZrwUIbXkhfkxEoIEkDESUBRX0s6PkIACCSndAqwty9LagRINidIOMG8aKGnnmRKtnknK959Ky5HM/7TxJeuPpnESKJBlS9CcIQEExTgTVPIliCGBI6IEDZIoTxJyKO2854gqsf9e8hFNgn9aliUBBZ7EZ4L4EhdHguJJLP994pqPkqzXsSWWIwEELRmS9bquo0tmLImDzBkSaBL/dfmQfCSWI3GQlJIep2RIHCSxpERciYPcSyp5j/kZH10iknI2AQkgLy1x73Y7e1UJLyfh5SSMJioRiUhEIhKRiEQkIhGJSEQiEhopobwlIhHJdHYkprG3MqFdolj7XTRyv4si7HdNZ+ducnuQ6XdTTYTd1PT7wgbjwfPaPX8eO9yAgALL0NzzJ96rh8Owx918+nsdvFcCBb8OSe8/8R38VzKHe4LMcXt1bY/mR7M5d9u0AKW7qUaS9j4tZK69tgbAc6/CAK77GUASBvHVa9tIzl5FI9F+kKSmHB9IjjfIyYcUpxuEtB9BkpiyfSC5H0rxQLK5SZT2U1lIHkAaiQ+BRD8qA0kVSVK9lmQjEpGIR.ieZnPE/mMl+9dk/gujJ5enxSe5On1CSD5UQCpTPHkmlH1HMq8ZVLVu45vFwROXUtxah+nrkVRle2vu3AezxDDePy/TZKkv3nHL1n0R/wt)AElFTkSuQmCC!