["-5bX+4WW*-1W5]adds elements to ListList, foreach-loopfor-loopcounts Listcopies array to ListforeachIndexOfjoins Listconverts Keysinserts into ListReversegets ranges from Listvar with List","aA5AsEBsfAAfAfCBDAfXBWC| 788ZZ- 784G7VC 7G754V~BC~ 7555796VC 684766V 6G7564VC 74946VYBZCCWIBZWW-~C 68894V~ 689VBCB 64649466VBZBZCZ~ 5889VYZYZ 58G4G8G57VBZWBZ 7G56ZZZZZZZX","List."," Fossils from the past are in layers of rock. As time passes, new layers of rock are added. In a sense the fossil record is a list.","In a computer program,"," a List can be added to. New records (like layers of rock) can be appended to the end. In C# a list is initialized. It adjusts its size as needed. ","Initialize List ","initialize-list","First example."," Here we have a C# List of ints. We add 4 prime numbers to our List. The values are stored in the order added\u20142, 3, 5 and then 7. ","There are other ways to create, and add elements to, Lists\u2014this is not the simplest.","Note 2: ","The angle brackets are part of the declaration type. They are not conditional (less or more than) operators.","Note, int."," The above example adds a primitive type (int) to a List collection. But a List can also hold reference types and object instances. Non-int types work just as well. ","Add ","list-add","AddRange."," For adding many elements at once\u2014adding an array to a List\u2014we use the AddRange method. This can simplify code that combines collections. ","AddRange ","list-addrange","Foreach-loop."," This is the best loop when no index is needed. We use the \"foreach\" keyword and declare a variable (like \"prime\" here) that is assigned to each element as we pass over it. ","For-loop."," Sometimes we want to access indexes of a List as we loop over its elements. A for-loop is ideal here. We print each element index with a string interpolation expression. ","Arrays use Length. But Lists use Count. To loop backwards, start with list.Count - 1, and decrement to >= 0.","Count, clear."," To get the number of elements, access the Count property. This is fast\u2014just avoid the Count extension method. Count, on the List type, is equal to Length on arrays. ","Clear: ","Here we use the Clear method, along with the Count property, to erase all the elements in a List.","Clear ","list-clear","Info: ","Before Clear is called, this List has 3 elements. After Clear is called, it has 0 elements.","Null: ","We can assign the List to null instead of calling Clear, with similar performance.","Copy array."," Here we create a List with elements from an array. We use the List constructor and pass it the array. List receives this parameter and fills its values from it. ","Caution: ","The array element type must match the List element type or compilation will fail.","Test elements."," We test each element for a certain value. This example shows a foreach-loop, which tests to see if 3 is in a list of primes. ","IndexOf."," This determines the element index of a certain value in the List collection. It searches for the first position (from the start) of the value. ","IndexOf has two overloads. It works in the same way as string's IndexOf. It searches by value and returns the location.","Contains, Exists, Find."," These methods all provide searching. They vary in arguments accepted. With Predicates, we influence what elements match. ","Contains ","list-contains","Exists ","list-exists","Find ","list-find","Capacity."," We can use the Capacity property on List, or pass an integer to the constructor (which sets an initial capacity) to improve allocation performance. ","Capacity ","capacity","Setting a capacity sometimes improves performance by nearly two times for adding elements.","However: ","Adding elements, and resizing List, is not usually a performance bottleneck in programs that access data.","TrimExcess."," This method's usage is limited. It reduces the memory used by lists with large capacities. And as MSDN states, TrimExcess often does nothing. ","It is unclear how TrimExcess feels about its status. I wouldn't want to upset its feelings.","The TrimExcess method does nothing if the list is at more than 90 percent of capacity.","TrimExcess: MSDN ","https://msdn.microsoft.com/en-us/library/ms132207.aspx","BinarySearch."," This implements (fittingly) the binary search algorithm. Binary search uses guesses to find the correct element faster than linear searching. ","BinarySearch ","binarysearch","ForEach."," This is a method. Sometimes we may not want to write a traditional foreach-loop. Here ForEach is useful. It accepts an Action. ","Warning: ","Be cautious with Predicates and Actions. These objects can decrease the readability of code.","TrueForAll."," This method accepts a Predicate. If the Predicate returns true for each element in the List, TrueForAll() will also return true. ","TrueForAll() checks the entire list\u2014unless an element doesn't match (it has an early exit condition).","Join string list."," Next we use string.Join on a List of strings. This is helpful when we need to turn several strings into one comma-delimited string. ","ToArray: ","It requires the ToArray instance method on List. This ToArray is not an extension method.","The biggest advantage of Join here is that no trailing comma is present on the resulting string.","Keys in Dictionary."," We use the List constructor to get a List of keys from a Dictionary. This is a simple way to iterate over Dictionary keys (or store them elsewhere). ","Keys: ","The Keys property returns an enumerable collection of keys. But a List of these elements is more usable.","Insert."," This is a useful but slow method. The string here is inserted at index 1. This makes it the second element. If you Insert often, consider Queue and LinkedList. ","Insert ","list-insert","A Queue may allow simpler usage of the collection in our code. This may be easier to understand.","Queue ","queue","InsertRange."," This method inserts many elements at once. Please be aware it can impact performance in a negative way. Successive elements must be copied. ","InsertRange ","insertrange","Remove."," We present examples for Remove, RemoveAt, RemoveAll and RemoveRange. In general Remove operates the same way as Insert. It too hinders performance. ","Remove, RemoveAt ","list-remove","RemoveAll ","removeall","Sort"," orders the elements in the List. For strings it orders alphabetically. For integers (or other numbers) it orders from lowest to highest. ","Sort ","sort-list","Sort acts upon elements depending on type. It is possible to provide a custom method.","Reverse."," With this method no sorting occurs\u2014the original order is intact but inverted. The strings contained in the List are left unchanged. ","Array.Reverse ","array-reverse","Internally: ","This method invokes the Array.Reverse method. Many list methods are implemented with Array methods.","Conversion"," of data types is a challenge. We can convert a List to an array of the same type using the instance method ToArray. There are examples of these conversions. ","List to Array ","convert-list-array","CopyTo ","list-copyto","Convert list to string."," Some string methods are used with lists. We use Concat and Join. Sometimes StringBuilder is also useful. This is a common requirement. ","Convert List, String ","convert-list-string","Concat ","string-concat","Join: string.Join ","string-join","GetRange."," This returns a range of elements in a List. This is similar to the Take and Skip methods from LINQ. It has different syntax. The result List can be used like any other List. ","LINQ ","linq","DataGridView."," We can use the List type with a DataGridView. But sometimes it is better to convert the List to a DataTable. For a List of string arrays, this will work better. ","Convert List, DataTable ","convert-list-datatable","Equality."," Sometimes we need to test two Lists for equality, even when their elements are unordered. We can sort and then compare, or use a custom List equality method. ","List Element Equality ","list-equals","Structs."," When using List, we can improve performance and reduce memory usage with structs instead of classes. A List of structs is allocated in contiguous memory, unlike a List of classes. ","However: ","Using structs will actually decrease performance when they are used as parameters in methods such as those on the List type.","Structs ","struct","Var keyword."," This shortens lines of code, which sometimes improves readability. Var has no effect on performance, only readability for programmers. ","Var ","var","GetEnumerator."," Programs are built upon many abstractions. With List, even loops can be abstracted (into an Enumerator). We use the same methods to loop over a List or an array. ","GetEnumerator ","getenumerator","Combine lists."," With Concat, a method from the System.Linq namespace, we can add one list to another. Only a single method call is required. ","Concat, List ","concat","Remove duplicates."," With Distinct() we can remove duplicates from a List. Other algorithms, that use Dictionary, can be used to scan for and erase duplicates. ","Dedupe List ","remove-duplicates-list","Serialize list."," A List can be read from, and written to, a file. This is list serialization. The \"Serializable\" attribute is useful here. ","Serialize List ","serialize-list","Nested list."," With nesting, we create jagged lists. We can simulate 2D lists with lists of lists. This is powerful and often useful. ","Nested List ","nested-list","Null."," The List is a reference type\u2014it is allocated on the managed heap. And it can be null. We often must check for null lists to avoid NullReferenceExceptions. ","Null List ","null-list","Static."," With a static list, we form a global store of elements. A public, static list can be accessed throughout a program with no object instances. ","Static List ","static-list","List is a constructed,"," parametric type. It is powerful and performs well. It provides flexible allocation and growth, making it easier to use than arrays.","List's syntax"," is at first confusing. But we become used to it. In most programs lacking strict memory or performance constraints, List is ideal."]

HUFXQFFU FUJUAF{FHU%H{FHHQUoQ<Uz> UnUyUqUo<Uz>();FHHUn.UvQ2Q);FHHUn.UvQ3Q);FHHUn.UvQ5Q);FHHUn.UvQ7Q);FH}F}QFFU FUJUAF{FHU%H{FHHQUoQ<Uz> UnUyUqUo<Uz>();FHHUn.UvQ2Q);FHHUn.UvQ3Q);FHHUn.UvQ7Q);QFFHHU{UWthrough Uo with U@.FHHQU@Q (UiprimeUpUn)FHH{FHHHUQ.U'prime);FHH}FH}F}FFQFF2F3F7QFFUDUQ;FU FUJUAF{FHU%H{FHHQUoQ<Uz> UnUyUqUo<Uz>(UqUz[]{ 2, 3, 7 });QFHHU{UWwith Uwand use UP UzerpolationUjU[ Uhs.FHHQU|Q (UiiUy0; i < Un.QU]Q; i++)FHH{FHHHU'Q$X{i}Uy{Un[i]}XQ);FHH}FH}F}FFQFF0Uy2F1Uy3F2Uy7QFFUDUQ;FU FUJUAF{FHU%H{FHHQUoQ<bool> UnUyUqUo<bool>();FHHUn.UvQtrueQ);FHHUn.UvQfalseQ);FHHUn.UvQtrueQ);FHHU'Un.QU]Q);Q U{3FFHHQUn.QClearQ();FHHU'Un.U]);Q U{0FHQ}F}FFQFF3F0QFFUDUQ;FU FUJUAF{FHU%H{FHHUz[] arrUyUqUz[3];Q U{New UU with 3 U8s.FHHQarr[0]UyQ2Q;FHHarr[1]UyQ3Q;FHHarr[2]UyQ5Q;FHHQUoQ<Uz> UnUyUqUo<Uz>(arr);Q U{CopyUjUo.FHHQU'Un.U]);QH U{3 U8sUpUo.FHQ}F}FFQFF3QFFUDUQ;FU FUJUAF{FHU%H{QFHHU{New Un UweUF.FHHQUo<Uz> primesUyUqUo<Uz>(UqUz[] { 2, 3, 5 });QFFHHU{See if Uo cU: 3.FHHQU@Q (UiUEUpprimes)FHH{FHHHQifQ (UEUx3)Q U{Will match once.FHHHQ{FHHHHU'QXCU: 3XQ);FHHH}FHH}FH}F}FFQFFCU: 3QFFUDUQ;FU FUJUAF{FHU%H{FHHUo<Uz> primesUyUqUo<Uz>(UqUz[] { 19, 23, 29 })UbHHUiindexUyprimes.QUTOfQ(Q23Q);Q U{Exists.FHHQU'index)UbHHindexUyprimes.QUTOfQ(Q10Q);Q U{Does not exist.FHHQU'index);FH}F}FFQFF1F-1QFFUDUQ;FU FUJUAF{FHU%H{QFHHU{Uo of cities we needUjjoin.FHHQUo<UP> citiesUyUqUo<UP>();FHHcities.UvQXNew YorkXQ);FHHcities.UvQXMumbaiXQ);FHHcities.UvQXBerlinXQ);FHHcities.UvQXIstanbulXQ);QFFHHU{Join UPs Uzo one CSV line.FHHQUP lineUyUP.QJoinQ(QX,XQ, cities.ToUS());FHHU'line);FH}F}FFQFFNew York,Mumbai,Berlin,IstanbulQFFUDUQ;FU FUJUAF{FHU%H{QFHHU{Populate eUF DU-.FHHQvar dictUyUqDU-<Uz, bool>();FHHdict.UvQ3Q, true);FHHdict.UvQ5Q, false);QFFHHU{Uka Uo of all the Keys.FHHQUo<Uz> keysUyUqUo<Uz>(dict.QKeysQ);FHHU@ (UikeyUpkeys)FHH{FHHHU'key);FHH}FH}F}FFQFF3, 5QFFUDUQ;FU FUJUAF{FHU%H{FHHUo<UP> dogsUyUqUo<UP>();Q U{EUF Un.FFHHQdogs.UvQXspanielXQ);Q U{CU:: spaniel.FHHQdogs.UvQXbeagleXQ);Q U{CU:: spaniel, beagle.FHHQdogs.QInsertQ(1, QXdalmatianXQ);Q U{Spaniel, dalmatian, beagle.FFHHQU@ (UP dogUpdogs)Q U{U= Uwverification.FHHQ{FHHHU'dog);FHH}FH}F}FFQFFspanielFdalmatianFbeagleQFFUDUQ;FU FUJUAF{FHU%H{FHHQUo<UP>Q UnUyUqUo<UP>();FHHUn.UvQXanchovyXQ);FHHUn.UvQXbarracudaXQ);FHHUn.UvQXbassXQ);FHHUn.UvQXviperfishXQ);QFFHHU{Reverse Uo in-place, no Uqvariables required.FHHQUn.QReverseQ()UbHHU@ (UP UhUpUn)FHH{FHHHU'Uh);FHH}FH}F}FFQFFviperfishFbassFbarracudaFanchovyQFFUDUQ;FU FUJUAF{FHU%H{FHHQUo<UP>Q riversUyUqUo<UP>(UqUP[]FHH{FHHHQXnileXQ,FHHHQXamazonXQ,Q U{River 2.FHHHQXyangtzeXQ,Q U{River 3.FHHHQXmississippiXQ,FHHHQXyellowXQFHH});QFFHHU{Ukrivers 2 through 3.FHHQUo<UP>Q rangeUyrivers.QGetRangeQ(1, 2);FHHU@ (UP riverUprange)FHH{FHHHU'river);FHH}FH}F}FFQFFamazonFyangtzeQFFU FUJUAF{FHU%H{FHHQvarQ Un1UyUqUo<Uz>();QH U{Var keyword used.FHHQUo<Uz>Q Un2UyUqUo<Uz>();Q U{This is equivalent.FHQ}F}Q

$/9j/2wBD?@.sLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwv/wQARCACWANwDACI?RE?hEA/8QAmQ?AQQDAQ))))MFBgcBAgQIAQEBAQE))))?QIDE?CAgEDAQQHBAQIDAUFAQACAwEE?UREhMGISIyFCMxM0JSYkFDU4IVJHKiBxZEUWFjcXM0VFWBkZKkssLT1PCDlKGj4xeTscHD0hEBAQE?wEBAQEB))?ERAhIxIVFBYcH/2gAMAw?ARECEQA/ALxwwwwDDDDAMMMMAwwwwDMYTOJzOS1ZCm+Y3xLlnPatpqpOxYYKkrjxsP7Mz2Xq7N8xyxpp6vVvVGW6rRNa+qM9T1fBi49jILIT2c7W2rWoMrakxQrYhzkcF+EOh4mcmfCPD5vPjaZFl8szyyttf7R2F2axafcCKjKgWAYEQS28jIeoXxdMcmb9QXVoemPOGcFKM+l94TI+7/b+Hlk2r8O/LM7406ZqS9QrDZUJgEkYSLI8UEPtju8Jflzv5Y7HUvvmcQ5Ztyy9k6lcMS5Znll7HUphnM2ytSiewxhQRJSe/d3ZxUNVVeUxqhOOnvvBxHKY25f9jjsYdcMjGl66WoXWqARBKxMo;nq7RO0Fv5fy426z2nbVve;WIlEwMkyOUsIvZMeKOK8mmJzmcjWp60dCKwHC+s5cGXt4/lx5oWDsIhphw3/t9mw+L/ANc1KlduGGGVBhhhgGGGGAYYZrM7RgaFOJTM5tJRmk+3OVrpIi3abXw06q9SHrXqMo6qAYEzEL58ZL5eXy8sjTe1dJ3Zxoak/qXyHpdHpx1mtZP6u5S/w/mLOTt0CmamuCZx6dZUMGPayGGWwz9JeXKubCrDPW7idc2AKoPYq6hP1a5Z5SH4s1IlpzHU3lUtVxKa1W5KmNWIeJzk/Fz+Bf0/HmhCxtSWrZBMgJ4yJzttPthm3zYIp3HnK0Ay+URBzCq5zsM/ERx5eP7+dB6VYqMQ7qVCq6j1V9Vcnx6qv5M8O4VWfl5ZUc+lPkxJTDL0gAkCWc+GBj2dLfw9Pv8AFxzs0rU7D5t0mWC2bK2wveS6kV+Qh6wi+D4RHHC/2V1PTmVrZNrzWsrAF2VzHqWNjl6O7l+L5RaPgPGTT0dS4syQxV9bYhdYo6e0jO8eqLb1R/MOQTnRe2VirypejhZq0kNNnT9+H4e3z8D97ku0ftGPoNFuqvFdjUbLlVhFc9/GfL+yPzZS2mXHL1c7pRwA7zlvnu4yLJ4tEo8vEfhxwq37V3V7FYmimRfIUp4RKEys+fEfaQseEeb48liyvQsNAjJYmMsXtzXvHIOXskg83izkfqlNC2NN4SCdupC56hBvO0bgPi82VHS7Ws9Ns6stAm/fo2ALw9RCY49QV/8AfA8aF9olss3TqQsY1OZUxFkDiKotPeGMP6C+LJ1XVs6j2uoV1mNZoWbfShop7+PEp+9P5vpxkv8Aa+xFaFsQtEvrT17CrASVVhR3RKZ8QiQ/EWVOd8EXbFdgILxhXfaVJ9SVLjx+jAQx5/mxvujNNjCrSZ1Xn3NbMkTV7e5f+z+/mpxZ1PqXaNR6XOji0/SXtaziXuEo29WvqF5ufvM5dL7X2NFqMoLr9S6bzJ7WHJIBO3EPRviewy/JkYTRVbrlZpLeTBVzs1l7kVefYDUT5jWXlIS8mJ0nsEYTdEwqs9WqwUesqN+Ah+nl5lZRIqPae9owMtLSiy55MWR7ySq/I+fFvH7z9zOF+t2dQfFwjUF6Ck+kyJ6Nnv5erZ8Bd3hxmEH6bblDeLwP3taJ3XbQXsId/D5fEJZ0X6S6kpJZsfUsjM0yHbdPdy9Hef4qv9zHwS4tYv6lZAtRYqWCIAtCFysVDPwzy8RMIsufQrU2KSy48enPR/pnpgHfP1ZQ+lqZfEF8om6gZJVk+6GpX39BnxEwfhLLm7HmwtM9b5/SDH+mPVpyxKlWGGGVBhhhgGGGGAZy2XAsTMygFrGTYRd0AMRvMznVledp+09BDX6K9Vsis1fX2EBEjWW/wgUxPiMh8xCOZ5eYvH9cuq9vUrU+dKp29RYpUtJ4pmKlcYnbk+fPx/ZyPXP4R7DSovrCNCtELa+LEQwrM77NWO3lV+EWRiNb1PRyuaeh1Jle0MGVusrkNlbF9Pw8/deD3qvgPI+mnFiRVAmyJ8IiHfPd9g5JIunDU+0Sb+oWdQNcmTGRK64zMJCB8K2dQvERcfMPkzo0qpVtp6luLa627eqymkCb7fKPzrD4sb6E6TRN8WS5u3lYg1c+q/n6keUix9baBdjSuE9SpZbPUhM9MWDMfCfwllFgaZoHRGtYoajZEelxVYao1uar+ZgD6pq/l5YhqWhNZFxtoZlFwQG0isE9Bron1eo9P+TPD73p/wB5nfqfbbSNJWiuqDsM6CzWhfh4L+CGM8os+nJZQuru1UW0z6t4Qf8ASEz5x/KWYtrWRAdP39EdoGokVyt0/VtKI6vT25BZr/i+jfej5w95jZcq2NToxWNgj2g0CetTsr8X6TpL+U/P7r7rLFv6JUuD7JrWAZD02keFyXj7GD/xD5DyMu0aQvenv3QwOmi29Hq0h/iuq0/k8f8AhlbLKlis7ZVQs0tWXElTvmfpK17T6NcIOFgeHyn7wca0V5pXwriRekFaBiXfCaynkpn/APrLGs9niJGrad059KGWX1gsPU3az/elX/Yf6zpfAeR9VGt+i6p349Js9Cwip0ndGym4jxhy/FRw9Z/7eVEbbbe2+/gjoAq3z6G8D03b/rJfYXrfNx8mIarI2L9qy8+mDOnCSUEKHo7eD1Y+EmfCX1532JffrRfqzDrojAXliH+E9OO5q1/iKH3v0Z1HpEWKdJ9izHoF6P1e+Cv8EuDHE6F1fwet8rcoizbbbLhs8fWIWAMZtHjhfgW1geXlw8JZ1UosOeuuXiW4I5dTvWCvxf2g+HJcjRNCDROv12lrD+agULYYK2pPizweX0Y/mLFtO0yWDFesqWMngUQEbzE+zaZ+UcWmHvSm19NVFWp09vN1dvWtZ9X/?jjLrmgP1N6LNBPO04+lYUr3bO/wWCD4Ol96WdaIUGrBpVsWotQfBjCiOkvu9X/AHon8w5LbwM0C/pdmGy2hYM6VrcIjpubx6TN4+77vLmfKqI2eyFtQUquoMQDOa11NRX4lLXv6ys79j7rN7/ZSxo3Kscld0qyIbXOnHKlc3L3iuXlP4Wjloa/T9N0y0neeXT66pH8RPrA/wCLI3pt+dW7PW1SXNiESPKZkuYr4sWU7+bwhxydjFfHpV/Sn0Fc1vCzMWK1msB8TYU8OiR/N8w5euirYur65HQbJyTA+qQDcsioK9HSCRHlQu+i2aXxejP5qJyfz+blk/D2Rm4zW2GGGaQYYYYBhhhganOwzOUz2tDlrTy/qK4/6ILLjbMRt9n2zP8ARGUrq9mLN60/2wTTEf2V+CNv9GYt+tTxHG1FsKCKIkdu8S/n/njHHSqEoBrgHcZnZIMmBGGzHeyWFt4i+UcypMtYIR5ZmN5n7JnIfqLm6nbsH1DnT9OYCoWEyM9Pnw6sRHxGUebActZBP6XQTKK59MqqIobM+BypIWl+bbxcsdqmit1laa9A11P1zr1m7cUeqD1vR/FzepU03VVUIsNsIr1TlUvLcnTXLzq5/V+KWTzW3UQXpY6Y5QzSmehCJ90nh3fmxogeu6darqmlc6E3GypTmqiJGRL2kPh5eIctDsnTKppKFlLIEpli1tnkSxnu2iflLblxytrhs1DUEhLCY+WAsjKfvGyMT+YAy6wUKlrUEbCsAXH5Y2zPLxqes5gwEwIDiCA4kSifZMTmczmWjHqKDrrp3+sXV0spJzBiOVij98gvq+X6wysaap7Sai6JVXrBFyHKnhMdKoU9xKaPktiUchHyHkz7d6j6LpoVxmepcbAzA7+5V4mb/SReHNexMUnaTKRfXm9Z52XrUfrleP8AV/8AUzc3NYuaRfpKxt+gEwKb3LD0OypcLL0tH+C3l8fnD1F5Xx5DWam+hOqaQ2mppXy3sUy9zUvj7y5Xn8Cz78fkPJF2x7RoJdbT0RDdXWyDY1TI/UCXOzPHHnYfm45Fq1RzIIeLLDzmWtscDY7j5mfUQ/FliNdKog+9Xpi2FssnK+u0J6cyuOTFrOB4k0R8o5LdYon2XvUdXpzYfV4xUtqKe7xT6zwfM33ivrDp4/abWpanph6Sa/RLVPgz1fver/J9UrfOtv8A8bMWpO/SaLvZ/Wdv0ghfTcQfylJR+r6jW+r4voPJqmPtnQXeq1O0NCep0gDrkv46heR37VY/NjlSlfafs++ow4ixAQrqbxyCwqOVaxH5sbuz1huk3mdntTHkmxzCuw49S4pDvle/h6VpXmH4HdTEEVZ7K60vjy/Rl6ZUM/YA79w/3lYv3Mf8D92O1c7tP0W3t6fp8+j2Qn4+n4fzfVkepAWh6hY5xP6PXaZQuf1dS962jb:AIZ09oa7dF1lGu0Vm5VqP1qur73u9bx/bV6z9sMf4sUrt2jaVI2KGtUHVGfKZK9YAs+VnDw4HVQRx0n0bn1DqEa1s9u3SZ6ot/l4TkmrmRLiTjY4jY4+qI79siumV/0c+zphGbFtGX1WNn7vhx6G/wAwbZLFT6sP2Y:ABmuKUrhhhmmRhhhgGGGE92Aza5cinQu2u71Ndn+ttx:eUGmyRsEZgpkto3+zf+zLg7auFeiWYKN4ayurv/AKxg5U0N9HbTRWUHpmoPBFbkHUhSiPg2xw+b4R/+5nOfv63T1MElBQuB6kqb3n7ZKVl3R9Xy5WehPOtaNDOQhbXKXgYeL5gLxeLwl8WWJdvKi1qdetEs9AtBXVLD727BswpP6TgsbgtnqHQa+FjMRKRIkgLmQqeOwsHzrEvmyxDhSrglRQEzIMmCiJjbaIjbOewbFGpNdcy6zz4HtspSx945n0hmqpbbsGshMq6Bk3greIBY+wmTHw/mxzg2dOTZPJ20K3iPIgZ9Shf/AH48iujsZpxO1InFMsTQmSl5Tv1bf2R+0Pmy3cZ9E00dPorVtEMZPVd/eM79vy47ZnlfrUjPdmcxm2RVY9s6HQZFqxaYxL4YpHOdyrFAc5UMceJLL4cqQpXvDK0vrugIFvEzgWz9rRYJcgIviV5Mtr+EfW66gRpM1+tYZwsdcp2GqO/Hwx8TGj+5lOQfTZMxvIeMeMfbBRt+78OdJ451IuydIrWqKXK4Z1ZnxmfdBfic/iIfl+PL/qacukcGidiIeNiZj30fB3fBw+nPOVB51HVTo9WAMo6+8STUsEx2d3eQfq8h56P02zNqol5SJGUbMke7xR3T3fDk5LxN56OBHJAUpYg5bQsrnZ1bq+JlcvxanP7osNX0Yr4V7C2xW1an46txUTx5fGlvz1m/L8GPebZna1iJmtHaKqdS3+p6xp5QRdP39Kx93YT89ZudIL/StJmlarAhqNcY6hD833N+t/Vn8X/iZtrlZqTRrVJcnaoRI2UhHiu6dPvk/UxHv0YrYANVrVtU0l4TZTudVvwtX97Tf/u/Qea1ky6dZZYU/QbsRWv1Dj0Ju/h6iPGlizLzf8k+nnGytFdCtToB06rb6rN5G0/ql1R9Cy5IfApv3vyZrqKz1YtN1aqi1VtsltFiSWfqbiPHXa3+q6odPq/IeOnZ+z6eOs1zGYhxdSV8J6am2EcLKufkL9Y5F4cCTPUD2jETEESIaoh9sMWe4FE/LxnjjnWmekG8d+3+iftyK9nVW0givciQZXryK4b3tNRH4N9vD4NsmG3dmuLNZwwwzSDDDDAM1OdhnNs0PJfFnquf4QX/AKlQr/4zqC:AGvH@7PBIa5a1pvP9H6VvTQXzv6fDoqDj42H+57zJd/CTHClpr9pnpagG/5llkeStJLlteeIvmHMgN45s+ZgeXqfVmPI0jyqhqK5bYQn+kLLXerPkK+RkXT5/iePiWard0ANSlRwEI6HGZa0GlPyfUXiza5PQmFpVPCZlsAETC+Rd5kU/DyzUqzaK0maH9S80GV5iYjrF7QFLgLmoqu/XF/kd7vKh8Go7TUAhrP1uyANuCB/dl4lIf+KP36i84e7yTdmNMmy6bbY3TWL1cfiP8A/i82M+i6K3UGcJeTIWfO/dPcmNaXfIj8zS/cDLWQhVZQIQMAtccRiP8A1mfmIvizNrUhSfbmcxmcy02wjvnMZtGB577fw2e0FrqxMRCq/Q5d0SnbYOn83ixHRuy7tSTEzBobZg50+x7yvLke9r2YHxKIvMpuX1qukUtVrMrXEAwTHYWSEdVRfAxTPMJAXiyE9iHspWb+ivnxIeyA39ssV7S/8UJEs6b8Yz6gmjK1DR7WpUrOn2JderRXmYXJbdJnOGrZAyJr/Zye9mtVhLPR2T6tpcN/kZ7Fl/wlliyXfE+3b2T9sZBe2GjGaI1TTxhdun4nrCNhs1N92Rw8vVV7wSzOymYm22Zxi7OapGpUAZy5NXsDPrjb1bPzY/ZmtMxiSK6ay4VXUCFxMlC1RxGJKeRztHzFi0R3YYBEz9k7Y11KxV712BDavZ6dkdvd9bbi38xY7RGK7RETM+yO+c1IlrnNMk1DI8y5MZn+rKN9v9aM7c0CYnvjN86SMUYYYZUGGGGAYmWKZrOSkRjtTpBatpViqvaH+B1f7IlyZ5AMz9flyk1XRrBK7U+jORMg9J7iS5H7JCfFno6Yyqv4QuzDb7K+oVk9QhDoWYWHrfb6tvd4jEfKWZ/ytf6YqlzTFoRqGohZkDmWUKatupd6c+bwl7po8llWZ/eZnRNNbbtx6ueqcn0w8ydNpcyIFfLyAT6fIfP7vDRey110pHizdY9KLNgJFdZW/lUBbeLzcePjy2tO0tGnIhCImZ+9cfvGl9X0/KOS/FhSpURTQNeuEAsd/wC0y+NhfMRZ0YTE5jacw03wzXAzBYybDFYR7TOYEY/zzhW+ZxBNms4ZNT1MAfNIsjaP7d9uOR7Ue2Ok0TlEOm5aj7itHKN/sgnT6of38ZU1KDMFgTGEK1rGTMznYQGO+SKZ+EcqenqiLXbA7FWYOsxi1AxfssepITdHzDy+LOq6jtP2jGQ6A6ZpxxPqWs49T+9+Nv7gY49muxr9KtDas21M6YmKkpXPd1PtIy+H6RzcmRn2p7PdOJNKRU6duWymzxjv57LLw7fViuAzETvPsj2zP8325ietfxRHY7V7CNV6YCfRacrlfA436h+Nf7QeYfky959s5TnZqsP8YQ4cuj6RdtIn4e8zDw/EXHLjzXJOLaPZmc1ic2HMxaWGM32iY2n2ZqOKZ14udYiNvZmcMM0iHv7eaBXc1DbhwxDGKZEVbM7MUZAcbwriXijJHp2o1tRqqu1Dlld3U6Z8DXv02Go/AY8vOss8+dv6ya+v2QQsVgYJaUBG0S1oc2Mn6jOeRZ6D0+qirVQisoEpANxWuNhiWT1D2j6jMiwFbdpVSu608pFKFm1pRElMLXHI54DuReH5ciX/ANQ+zn+OM/8AKWv+TkwehdhTEOAWKaMrYs48JrKO8Sj5Szzfo1Ks3tSuo1IMqzqFpUoKN1ysZdwHb5R2HA9JjMEMFHsmImP7JyL6v2y0bSnzWsvI7A7dRSFy0lb+zqT3AJfTy55KYiIiIiO6I2/zRnlLVVOraraC8siYNxhvWUyuWwTiOZg+8uLxnkLfr6mBf6+3Ggsqnb9LkVrMFsWSWddZM8nqh8XH6vGGPWm6lV1OsNukyWIMjATkDXMyueJ+AxgvNlL363ZnW1Vh0ZlbRr8HAsTqDHoQxXA+7qiNhHV6vT4+IDMPeZbHZTR36RpSqVk0MaDHM5IMyVPVPl8all+7ksXXJe7Z6JRstqWbRreguDAis8oiZgS84KkS8M5yfx/7Of44f/lLX/Jzg/iW1/aWzqd1dOxpr5Z6gzMme54L5L6XDz/1mVl2ap17HaWtVekG1ytWgJJx6viK7HDf9kgHGQ2rs0vtNpWrPOvReTWrVLiEkuVEKEwCZ3YAD5mDj5tkE7Ndkreka1fvM9FGm9VpVZaWHJLFtxLVDISoBERUvj5smts2DXsEmOThQ0lRHtlsAUhEfmzHKfWuNMOrdqtK0zrqZZBtxQSUU1bkyWT5FlPkDkXm8WQgWdodfXDTrchjcuiuYTWV3+75lv1W/VkP7F6TGrauXpp8dxdYZ1YnlacMlzUPzEDfE0fPwz0HSrDUqorDMTCg4zIxxgy9slt9WLnEm1TV3Q9UQEndo2RT1IUJUm9Tfl+Kpf3fw8i8mS/s92OXXau9eWEnAgdeqXiJRfz2J8pkHwj8GT/lMezNd8nb8XG8nMzmM0zmuX6tEBZaeKROeI8t9zn7do7y8OZV1Y26xairp12wUx4K7BHlP3jY6Yf7+KK1XT2rhoXa3Tn7SbC5/wA8HsWVr2219GoCnStOf6Qrrx6cxMfefydC2fGznlk+pb8dvZY1FboCEwRLrtBnH7thSUmvLOnKe0SuyjqCCth7m2mmfojp6df1fqev+Kz8X68uEu6ZxyIIzccTzcckWl4xTExxTO08c6MMMMqPN3b22izr9k0MhgACklI79zUhwavvGPIcccnHaTt9FVdCNEs1bEkDYt81Gzp8Yr9H8PzevyWv7D9nntY9un8muYbWF6XdjmxhkZlsNmBHkU/DiX8QOzX+Tf8Aa9Q/6vAe6GowWkVNRuGK+en1rllm09MOpWBrS/ZHcs8/aNfrI7ULutcIVY1Cy3r9/Hpsl3Avzcxz0VOnVSo/o6VfqXo3ofR6jP8AB+n0un1OfV8nxdTnkb/iB2a/yb/teof9XgSwz2WRjO+wScT9k928ZQIdsK+q2QHtHp1R9XgYdepXYu2nvHgXV9I59Ll5hEs9AcB4cNvBx4bd/l22yO1Ox2g1Ot0NOX+sKlDoa19gTVzBnHhYczj41r8Xn8GB5710NIG1H6FZaZVkIIvSY2kGzJbiqZGDJfHj7wcvP+D5tlugV5s8pgWuXXI5nlNcZHp/lE+osfoDFF9gezq29X0GS7+ULZYexW/92TfL9Jc8l61gsBWsBWsBg?IgRAY+EQ8oiOBzXb1aggrNtwoQEhBsPfaJKREPKMl4inPOXZy9Wq9o69x7RXWCzaMnFvx4sXY4ezxeIjHPRmo6dV1GsdS6rrV2SHNfUYvfpnzDxqNZ+b6sjf8QOzX+Tf9r1D/AKvAk0NFoAwJ5AwQYBR7JEo5BPf8wziW+07xnWpQKWtQDstYAtY7zOwrjiEbluXljAkgX2bTmOXG3xqcoiwaBVXZc1cDCLDYssrbbQq7H8rqMHY0MP78fIePm+dE15j2Tv8A24nKjj2x/ozFnL+xqWfwnhM5ngX82ErKfsyZV1rE5VnaD0vUdbfWUsnHXiEISG3cO3My+UeRebLV4F/NkZ1HSbC9RRrOnSM2A2XcqHPEbdfbjPSP4Hj+/mp8v1KYHdjtKXpfpOpCaroIYTCCycDLuBdJUAPhPiXHw429mOx4XqgO1CXorraDEio+kVjpzyYx0j4hWJx4eOPPa8Ce+gPjCHVmAsGTtAPJg7SUd49QN/NkuKCqaUQntzr0GCXD5loLLtxMRDRdCr6jUt9VjYSdhor6RytkNW/mD+fmJndk+WEgABJkzgMD1D8x7fEX1Yy9nqs1dMrCfvWhDm/tN8W35Rx8jM1qDFB3zAxvisRlkS0oOKZrEZtnSOdGGGGUGGGGAYYYYBhhhgGGGGAYYYYBhhhgGGGGBjb+jDu/mzOGBiYjE5VE4rhkyGmbU9Gr6gmFO3EllDUOXOzUtj2MXP8AvD8edKKzIVC7Bi44HgZwHGGRttuQd4+L4scMMnWLtcsIiIj2bbbR/REZvCoj7cXwx1htaQEZttGZwzWIMMMMAwwwwP/Z%iVBORw0KG;)NSUhEUg?ALM?ABSCAM)o0hXm)wFBMVEX/+uQ?AD/3MxSSUZtcFicj4CapnvRzNHWzLGyj6DZsZ+Yj59fWWSwj4DasMX/3+60ppmOiXTn+rqHc2m/sJ5wWmUjHiP+zub1yLTMsLDazeU7NjZ4d4DGu886QTVOVkG7sMTq2MJjWU+sqLajmqy6ypVuaHXj1+4kHhq+m4va66/Bm67nvNAhJh2Lg5L0xtytwbmmtIWUd4VGNziihHaom4vh+vB7ioTS6eD:/+Vpp/LpZSjg5NcaGR/i2blvKhO86ye?ACsElEQVR4Xu3W167aUBBG4Sx3eu+9nd57+vu/VUwwCpvA2IkwylFm3diy/4tPYgv48DG+0r9U6PmvzWpWs5rVrGY1v8T2mg8bn+5qnv/VSW4gLxq1zNWRzG8A9Heacxjl/bhF4/Yo5k/QvaG5x5xf47qzPDQHwqLVaUDz6hjmr5ycDmAsmKPmYHf3L0LAJdit9M1vkDs9bXIjmyMgOdFcykAmffMMwlPapyeao/I0ZXOpQTN9c59RCJjBIIF5BjPZ3IFO6uZrPi0BkBPNUT1uZHPpkS9pm+/AXwJOsJOY++RjzA80dmOKxZaIDd8nNL8yfIm+E/wE5jnEmC9htwmKohmKCc1DXn+afZgnMI+hK5uL0ErX7MNdaA6zOUlg7sJYNregeGhz1ajCdbU6WeZCMNnOZToxg/q+hbUKspaR8PyvzCOcyNyB8rswX8B9ZJ70qL0LswcXa3OFs3dhdhhV1+Yy1GPNdQhkcxbahut7dhUUojvTfFVcBZnlxfd90XwBjud57iqoxJrLMJHNn8EymrKdaW6wnWi+x6wXa65gx5ifsE3zeWEV1KI703yZWQUPy0u5XBbNDqNFWH2VC504s00txhwurDTP8zXe8rIGgBtjDuBZNrfhPE3zAoJNs4MdY3YhkM0FaKdprjCsbpqfJdGy4CwUiuZ2uLDSNA/5ZpiFT37VFOqyeQrZNM0BLAzzxMYRzIEDlYlkbtfgyUrT7EHVNLuwLbLrUeXKGdRMsLn4/LRcWKmaRziGecf/JJfNequTIywez629FQpt0ZzJ3MabPW9hmkOBa57XuruR8WrHolDIWn9YyUw0m00Ok2A7tlnNalazmlPrw5/3cUeHNKtZzWpWM2IHMqtZzWr+7cE6xP4C8O7Nak6emtWsZjWrWX9T1KxmNatZzcdMzWpW8w+3untwF6fVKQ)BJRU5Er@ggg==$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIANIA3QMAIgABEQECEQH/xACV?E?gMBAQE)))?QIDBAUGBwgQ?EDAgIFAwsPBgwH)?ABAgMEEQUSBhMhMUEHIlEUM@SYXGBkaGxsiM@TU2YnJzdIKSs8HR0xUzNJOU0hYXJ0NEU1RVVoOktGSEoqPC4fARAQE?gEDAwMFAQ))ABAhEhAxIxE0FhBFFxIjKBkaGx/9oADAM?AEBAgEAPwD7+)))AEEk?AEAuQAFyLkKQSpatcm5Qkg2sCpINpuLgBYuLgATckqTwCYkABI)?AjYAgDYKQCLhFTci5FyLloja1yLlbkXJRtZVIuVVSLjSlXuTcpcm40LEoVLIQmL?hY?AngQTwCYkABYABAEXBifIRtXLKY+WUGtrxryFPWjYuLmtryNcQeq2FUqqms6oMLqrul1b1vhvK5CquNBavulVq+6ZNKXrOhmQjMhz+q+6Equ6W0r6rfzE3NJs5k1o0eo2rk3NZJSdaRYn1I2rlkPnPKLXYv1RgWGYTWyUTsQnfE58T3R3dmhjZmcznW9UMbdBNK/8Y1n05/xytXmc1Lfd9MJPlmDR6SaP6d0OC4hjM+JU1VA+X1WSR7curl7CVz8rs8XBT6hmKrzPa4KZhmCe5ckpmLcAmZTVSACFgAgi1Iu41JjaXcakxXbD1vZrq5RdSFBG2EupCuUEKIMcjlNR71ubEppvMmKtFepXOpVSlzLFV86k51MRNyRuxvU2MymnGbLRsZUuWupUuhW1Lxemqez+ifvaxfrac95Geb0k0YZpG2l9crTS0rnZH5c6Lny37JvaJxNOLQnFP8AEVT9F/45Ta32+GTEI/5SMIk/4N/o1J7U8zg+iH5OxJmKVFe+smjR2XO1b85qs5znPeq7D1BXbJjjUEFhYmVPahDJwKIhk4ErYzz+EgAisoQAUqULuNSZU6TaduNGoKsPW40xZk6UIzJ0oYl3kBg7mbMnShRXN6UMalVJR3Ile229PGaT5GX65PGXn3Kc6TeZYrcmwsjO2TxoUWRnbJ40NNxRS8V7k4tUNiw6d7ZUYtm866J2SNXznnqLCHYlEs0c8bWXVu1b3VN5uaQL7EVPzPTaU0VX2LT4x/2DZ3MbtDKiXrayLxKef0iwSfRvUVE9THklVdXKx2Sz28Np9LgPB8sHtVhvx7/QG0zJ9JwSodVYPh9TJIkj5qaGR779dnja7N4TpIqdKHA0U9zOC/IKX6lh22lLU7bDbdJnjPn+nlM+urcBw7WKyKqmkY/o66FjXd3LnU6lLoBhcNvXE/jZ+6UtWlu/D2ZJ5qgwtmFYzDDA9zo3xq7nb9zti+Ftz0xXbYw5l3NaugEkFovYIW4EIW4FiTyAgEVbYCAUptDtxpTobq7jVlQhh6/hoq0jKbGQZEJ01msrSrja1ZXVoWkRXNmatlOdIxbnbli2GjJChdFctzFKZFOhqimpLIea0pvHgNW/4v61hx9FNI8HpMOWnrqptPKyRzufeytda3A9tWYbT4hSy0VU3NDM3K/bZe4qL0ou08u7kswGRf0qs72si+2EIdaPTPRWPr8Uh8a/ceE5UtKMFxilw+iwqqSqfFI+WVzEXK3m5U22Tap6T+J7RuT+l1/6yH8AyR8jGizXte+prpNt8jpYrL3FywtXxKVtWx1vl6/RP3L4J8gpfqWHcaYaanhpYIqWnYkcMLGxxR9qxiZWtTvIbUbFcvNTaVtWk28npXlbjOjkj1RrWVDnOduRER8Crc9nG+Ptk8aHPxXRulxlsPVeZroFXVujciKma2ZOtcm3YYoNEaCntkll+k39wpay49POXfa3H5XYvC5qpzY/sf8AedM06XDIaVyPYrvnKn2Ihu7SGfCZSXjzdgG0ZVLRa7ShJCIpYumKgmwsBBBYFbDSq7jWk3m0UWFvSo0x9TDLKcNJSLm2tLH0u8n3DqOP33k+4lg9DqfH9tO5VVN7qOL33kI6ji995CYeh1Pj+3Nk3Gm/edt9BE5Oud5PuOdV0UkCZ+vZ0pw75aMeXSzxm/ZzQSQSxsNVVU1DTy1dXI2Gnhar5ZXrzWtTieYTlQ0Fv7bf6ep/BKcqbsugeLcP0f8A3MJ4bk25PMC0kwL8r4vrpJJJnxRxxvyNa1nlVVXukVkxx/T3Zb864fQ4+VXQH+9/9PU/gmzDyo6ByvbGzF05yp10FQ1NvS50Vk8Jy4+RzQn+pqP17jw/KXoHg+icVBWYO6XJUvfFLDK7P1qI5rmut4yt2tJ07xO7f8Pv0Tmyta+NyPY9EyOauxU4KinVijSJiN/+ueY0O9zWAfIaP6lh6spkzfT4zm/bh?Kt@AE?kvE?L?LoSBrrVNzOa2OR+VcvNbsv4zY2GpTyxMWbO9rfVXcUQjSmVsskut7ZY6hsj9Xlcx1r85LbDMarXsfWcxyOTVdN+yNhXs7ZPGNGOXF3ZdWzaXORjc3aoq+I1krWW/Nyd/L/wCzJPLHqZOe3rXcUK00sWoj57etTihOkZZXukmUk1v7piqWTPVmVzXW7JLGY1WvZ1c7K5PzfT3UNgaMM7Zd3erYkhyI5Ful+FiuYrnCuWcecqY9RPJF2q+TgYjLicidXS/N9FDV1iFmlfN/LyXKt7gcX/5b/dQmpyMe4uL5TP5zb5UWum0DxdkbVc60DunY2oie5fAiXPmmgXKdFonhDsIq8PfUs1rpYpYno3r+xc1ydPG5DLJb0te/dv8Ax+i4j5ny3e1WE/KX/VmpDy54Zs9iKj9Yw83pvp03TRlFTU9G6lgpXOk9UejnOe5Eb2KWRLEWKc419x0O9zeA/IaP6lh6o81opE+LR/BIntVr2UdK1zeKepMuelK2Nr6bxl+QhdxJR+9CNM2V1DaNvSLE2J0pNm0lLixJK0gSQSSsxOftIzlXXK7SWrc8mTMaqzQOe71BX7VRzsiLtQz7TWhkbGsrX3/OO4LuUK5ZVkjlizqxkSxutfrUacHHNL9H8CqG0uKVzYJ5G52wo18j8t+uyxNfZO+dtFSSoVzb9ZbdxufB9PcNqqnT7EHMie9si08bNirb1CL/AMiWLPl9FfyjaISNVv5RXd/UVHH/ACjW/h3oh2OJSeCGo/BOXDyU0erbrq2TW25+RiZb9ziZU5LsP/tk30WhV0Y9PdEo3K9uIPzWttgqPwj1+D4zT4pTtmp5UmiemaKVvFOPduh8o0g0EbhNK2rpZnTMzIyRj27U6FRWnpOTiGSnoHsci/pMm9F3apgTjdV9BdIY9aYJJHdCmu6R3QoLXExeo9kZtva+g00kqV6ScWSV2ITOyuXrdyL2rTTRkvaO8ShDdWdJGqx6I5jkXM1yXRUXeioaMWjmjGb2koP2WH9w1MZrp8JwqpxDqd0z4WpkiRF2uc5GN4bru2niqXTvTGVy6nC4X/Bgndb/ALgOX1qk0T0WsnsHh/7JB+4dSHRbRuFzZIcGoY3tXmuZTQtt/wBB8zodOtOf7oi/Zqj8U7tLpxpTnb1Vh0Dfe6qZir9KT7APpMbOe3vobppUcvVNPBU5VZrmMky8UzIjtpula3ehNY35CqptLEEMtQhJIBoABKQ?YTFro7rtXoXYv3GZTEmdqO5t7qqot04ktazldFRyJ0LtQrrY7ql93cUuxOaiLvREQR9l8JQnSqPa/ifOcfo9ZpRNJb+ch9CM+k9n4Dz1fAn5Ue/3zPRaFc8f+uhkIyG5lKuCna83pJFrMNc337fOa2i0epp3fGu9Bp3cSb63Xvoa2HNyRr8JfMgO1uI10zla1Uva/OWyWNVyvtmVq5b23bLm7FOkMiu27lThfymGaslmZq5Lb8263CwT2zXnl5+tX1y/wAHmQwnTn/Ou8HmKBHa85pP7Q1f+X9awvoNE1mEJsTnSvzd3cdTG09ip/mem0y6Lp7HN+G4Ha9JSJuNDSWBskdM63OzO7+461OYcUTmRfCXzBMx4raoG+s6b4qP0UNsw06eoRfAb5jMQ2sJw?L)?CABjUxo5+1dlkVU3LwMqoY9Vv5ypxts4+Alg1ys1btTvXJyNvuDW7Etw2FrELa+DKnQcusppHVDpMqua625L8DqlAjKTX2c1vVVuz8SlXdU++8R0jG4lirkTNnf1yO8Sk07HRt5ybbqvkN96GBW84C1LbXLtS+VcubdcvWpH1O3VtTK1+Vjk32ttv4TGyDWuVuZG7L7dwkpEjZn1jX7bc3bwC0/b4cidPVXeDzFENuaFdYvg8xVIFCrQr6V9XRS08apneiZfmqjvsOVQ4fj1LdsDXMbe/Xstf6R6hsBsRRLcDl0sOkeza76cf3nRZSYnKqdUNV3wnNW3lOpC1bGxYLY47Im5GMZ2qJ5EMhUsQ2Mf?Ak?Agkg?AgIsSAgs?kKqWKqFcvChVS5BLFYwOaY9XtNnKQjNoU1WvqVctrXUstPlYjtqOvaymwjVCott6r3wtJ8Vouh5yk6lDaVm0ZArpgSFOgyNjQyZSwNLMaZCrSxDYxnASAFw))?Q?gAJAggsRYFilhYtYWCvaqTxLCwJiiwsWAW0x5doyl7AK3GMdiS1hYI7RCxBIXg?k))))))?EAkBCASAIJA.)))B:Z%iVBORw0KG;)NSUhEUg?AL8?ACZCAM?ABJwRsf)MFBMVEX:/+3iazwwuX/2fbVp8rjtdj/4vi/kbT/9v33yezOoMPcrtH/7PrqvN/9z/LHmbxFdNHz?ADCUlEQVR4XuzWy2rDMBhE4f/oLttJ3v9tW+SVoOk2GZhv5eUZI4R.gFK7B5ACt3+BFTx/iLej3D/Q7p/JBT6M/86xPureP+l3T9DuL+fOb7eyMsBHHkzYtG9/99zv5mZmZlZS+XFjqRTXwBk+yco919o91fxfpaSnnl3hYQG0FuoygApZDWAHLo68AxdCThD1+jADF2tQ8+6+TkBpKx5/0d5/35wv/vdb2ZmZmZmLf9q6+Nvl8Czvwi8/93/Me43MzMzMzMzM7MR0lqfcUua+XAPqFTN/HtABcEBL5a58iFp/n8oALoHCNX8NWDPlz1CIerkNkNSBeUB4+D9gMStfPmAs7NMuf41oEbbBmj1x4jYBqj1Lz/V3MtuxCAMhlHHBGxISN7/bdtp0/7qJbIcEcnxdhTpfAsQw4LfAelG/3RMui8gTflhfgQcMU0f5UcAr+kjZXuOHwGYhajOn9PD+e0AUcJE89sBUuiBfioN/Kj+te/TNFf9F6D9xZ9XCuuvxyqV7fRZr4t6Tcy8lXv9FUu0Gx7sP8bv9QVIy8GSft5fXh98AdqM7y89+pb13G6fH/A7E2meMMK+N+fY928L03SQv+w/Rfkmv744e01dEDDAX8QgjfKnL/PajACPv8lfU7nBz1qx7DMCrvvPZxnvz1PreFcVAYP8e2degFrH+eEVYIwAr1/qrxMIn74Z+c12PTWRgbEC/H6sozIheuj5oQJjBPj94BMulMb6EaBWgN8PPtGGHWikHwHNCPD7ZSXMCt51vxZnAPv8533g1et+beILyDTOP2MDcvtxJ+gKyBTDD74rIFMcP3aAnYwATBw/jFLICAjrpwq+ERDTT/WTz2oERPWTHgdOIyCmHxujFRDSD74VwBH9MFoBmQL77YBMgf12QKbIfjuA4vsR8FA/AgL6N/IExPE33B97AoL4ESjqC4ji79Mxe03vw1wcAQH81Xn/hoAYfvX6ERDCT9nrR0AIv4rPjwAO4acixl376YEzhp80C/h7Nxw4cMYZ3XiZ57kzbs+tAC:DXTkHOow1+So)AElFTkSuQmCC$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAHoAjAMAIgABEQECEQH/xABa?ACAgMB))))AgEDBAUGBx?AQMDAgMGAQYL.E)?gABAwQREgUhEyIxBjJBUWFxgRRCUpGhsQcjYnKCg6KywcLRFSY0NkVTY7TD4f/a?wD?AB?I?D8A9/QhY519DHLwJKmIZv8AbIxy+q6FDuzeLfFZCFA@Nyuxe26EKVKFCLoQpQoRdCEKLoululcrKbJ@EMlzU2VilJdMnZ1ClCEKVCEIQhC4DtrqmsUmotRhUFFRSxicfD5Xf6TEfefdc5TFuvU6/SNO1I4ZK6Bpigvw8nezZWvsztf4rgO0kUFJrcsFNGMMQjHyAzC24sqibdaesgkAymIshIrCzu7u19/qZdL2QLkq/1f866Zcj2Pk5av9X/ADrqM0ZOy2NITcAPj97q5CryUs6MnWTsrLoS3TJmfZChI7plWSUkP0RdLxQyYMmz8Bvu9vRYOrjWyabWR6dJw6zhH8mP/kx5fg77LR6Xp3Z/Uqiahr+z+FUEYVHE1NoaucwIjAT43EqDuxA7szlt6eCrGKV2Ng238Xvu/lsuvunXO9i5ZJeyPZ+SQnMz02jIzJ+Z34Ed7u/V10A9EwvvZXs92ViEIVqEIQhCEq8v7Yn/AHhn/Mj/AHWXqC5vWeyVFq9WVac0sU5Mw8ri42FvK1/tVZrFr4ZJYWGNruxM9r22s61PYo8hrf1X/outHqtRofZ99Eep/H8cZ8MeXFxwy/Ke/eW5YXv0SKumjMIhE2s7X+9ML9FYyQU9kLNBnTimZQyaysFtkzpbKo+ivVZ9FBt4ofosSTq+y0kFbR03ayYameOB5dPh4XFMQcnaeW7Dk7XXQPE8hEO3RYs+lw1mUNTDFMI/NlFjHdvImSszrClA8hIG3y2v6LUdh/8AJ/Z3b/S6L/rxrpg6MsWmpo6YQpoIxiihFooo42YQERbEREejMzNsyzGF9kM26yYun1p1KhSrk6EIQhChISdIXikPopZVuhkZN5J4xayRmvsyXa6XFWWSj4KxMDeKboiylCFYoQkPonVZ9EpdFKpcnEnxfwXKD+EDSuMQGFREV7EZADszt+aZP9i6iV9y9l512vHs/TR/JaSAf7QyYiKN3bDe/PvZ3fyVV3WurppI7FGTDa979XXoNDWU9dENXSyjLEd8TH7fZ/RZrE+264f8HkdRHQVJyM/Bkkbg+T2HmL7l2jKWeyyaSV5IRMms73uyuUrWasE02nzR05EEnLzDI8XKJCRtxAfIbjdrstfpRU9UXDop6mE8HlGX5X8uhLcfnynN9Lpy3bp6OxXVryMxY2e+z/WukQsWinkmhfjM3GjMopMe7kD45D6P1WUnZN6rXazUTU1HxICwLNvBn2e/mudfWdQF3/Hv7WH+i62eKOYOHKLGF+6/otHq1Fp8FLNLw2jO1o8Xdrl4Na6qNa2vhqL8aObARHpkQ/cqaTXnlkGKqsOW2Y9L+rLbxytfv+C4Mje7LuNMrBGnEJGfOzF6dG9UrN62WPQ1RmWEp+rE6zoy2HdXLFg6AspOC3IvcW9mUoQuTqdWro6mYOM9gMhtZtrO7eSdyskkkYGa7dV1arPouVHtJWwu3ExmH8psX/ZW8oNSg1Kn40N+uMgP1EkhFdQFRGbuLPZ/J1bIz3deXT9ku0UEnHGAagmfLLIDvv8ARk731L1N/FRg3qkWNUUozu13drXtb1Wi7LzazNTyhrETxSREwR/i2juNurYti/wXQ72UCLeqfZCyIIXjjYcnK193Wv1WqGkoTkkApOIUdOMcdmIjqJBpw7/L3pG6vZUaG9fFM1PLTFHAMTZHLEEcgkHcAjikkCXa/d6ee62FVSU1ZCVPVxDNCVsozZiF3F2IdvNiZnb1WKGjxx/4erq4Q+hxzMf0eNxMfha3gpZ7IICzY2a9tuqyNKuEMsF8jhnkA5Pp755+/Nv6rPVFLTxU0TRRX6uWRO5ERO/MRE+7u7q9WD0Vos7CzeLMsTUKwKKn4xs5b4iLeLuz/wBFxtfVTVkhSTF+aLeHsut1ikmrKUYoGbITYt3tswk38VzU2lV8eWVOX6Ni/dukPqtPqnygjwxJ47M+zPjf3VNJpEsrjLPYYvo+Jf0XV0PACNxkYc7v83ws3ouNeKaEu4Ub+txddlTRcgcm+LfclZ7JNNa5viG4s17+qvh6AslVgOzbKxWAy3gtYWb0Qub1mt02grGhnoRl4ocUpBfEuYi9N+75royXG6vLoWsVhZ6i9LUQM8GJhy8hF48rdfykE6x6ssY2s45O+2WPx72y0+o1VJJLlRAUUVm5De75eNt32W07IGXFrH3xxD2vclz2pwR0M7RRVUVWBDlxISZ2bd2sWL2Z/it52Qr+IM9BZuRuMBWs7tdhLLz3drKtaqM3+UNls7O/T/4uwHwVioj6MrxQtxG91ZZCG6KPNSr1ClYeo1D09FPNfuAWPu7bfatD2dq9Rq6zCSoM4IxcjyfK/wBFr9fVQsWSrEJwhxd3O3T1XWimSj0TK0eiyUJXHqnQpdlCpKMCbm390zAydSowZG3W26Vm2UqUJ@F5lq3ZfXIqqeoCFqiOSQzyhLLvO5bj3r+zL051UV1UfVUVVKE4jk7s43tb1XjZUtbG+ElPKBflATfwXW9kNLqacpq2qjKLiA0cQk3M43yJ/blay7F7pcXulWBHp/DkY3Nyt0a1v4qA6MrxSCKtFC2UQ2TN0QXimZSnxV11o+0QSHphhEJFzDyi13sz38PZcjFVVFJG8MTlCeWRGLuJPZthe1tt3XpOKxK7S6XURAaln5L44vayXF1raygOU3mjksTMzMPT9rwWP2fqJKnTIpJic5MiEjJ7/Oe32LarGoaKKgphpYXfAXfcrO73fxszLKVgtZlmQiQxRib3IRZn92QhCEysQhCEIQhCEIUJXDZOoUOzOpVOCnhNbqrEJGFkWbySCCdhUoTMLIQylCEyhCEIQhCEIQhf:Z%iVBORw0KG;)NSUhEUg?AL4?ABQCAM?A.5D9d)YFBMVEX0msFwTFuCzMtMbm7lkbbMgqKrbog4ODuU6ukmJiZuqqma9POTYXaO4N9ejo1SPEVmnZz4u9XWuNGi9fS7+PftocX96/M8UlL1osas4unl/Pz72Of:/+90eDzm8L0nMJFVwVy?ADH0lEQVR4Xu3Z2W6DMBQEUO82a/a12:/ZQkTrP.+lrCwpU8T35gyol6sYxgn+9zPx6aUA7He/rCeyL7Q9/Qck9fiOUDQ+WkL8Tzj2TNMX0hnn8gaw7pC/H8hp70hf/GL/zCL/zC7+pZBEnTbeWlkn3dhfjzOwixOF9Us9QEvut9YRvkz+9ga7c2v5MvBenofBQW5kv7YFyklJbEd3LG2Yb5KMhnr16Mj8hpaCSJXwPTPRdVF562sSGeP7xfl2+BQREcIh9jJBPxkRAfk3x5+T9E8vtV+d7sn0kyH8+8SMG/yCGCzK9f+I7GRy6iScBHovieJah8PPE58PuX4elofL9vpuDLekiXdvb7R9O69Xce7PbbyJ0HVbEqv7lM0+MspiGSX9eVWI7vhBw5QlD4mB5MG36HdaGCe7IF+FJWIsWRjcjHCPsI8pFNuqnj1uS7F7+tGzq/2U6LFfk4QyJ918Twm6196MXqL4tO4M2MWvARQpR33Zz5hV/4hX/eXVkop/2t8bntTxkUrrvzg:xwyj5/powX9+ZFH4+PtkZGALnBswto8KZ7Rg1e2j2GRV27ErWnKA55VMAnhpoMinEB3vVCoV8+YVf+IVf+MrMQ9FoX1BEjTKcGzUWVajgRf4++j1fV7Nwisb4gqHxWxSMHSo6UPAi7u9jUvFbCl/xymdxPrcPx4ZzviHzN5PFUvhtFcfn0LfMPFfgvwmfpsBQ+agAE+YbsFuzCfMRf51fLcpXYwOoMB9qgyFKx0eos28Zho7RRpljmYaP2eea0TeSFiMd1mB2DKZ6CJVv9BAiH6HywYarJfDnBBofScDHDOAJwPSsz+dmiArwAxthAn6KR9fO+IbEb1FVAKTZODnnb0Y5cMwI7zx2hCv8/VX3/RbmqVkp0r7PB4Qelu2yfKVHRKu1bil8pTfj5YqhgPVfGl0h1g9b6A64TvuVWu7IZipEz3Ys+pnHJjhxpuV7P2bo3/GZbp8iQKL5q78sKm2MVuVd95/yC7/wC/9KvxKarAoR37Z20GRViPiyeIYmqwK+69I+oiJZFfBVnfYJG8mq8Auf8D0EMfeTQ)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AL)A+CAM?AC802HE)z1BMVEX::z+P+p0/8kkP+j0P+93f/Q5:E4f/q9P+w1/+k0f/d7f/5/P/p8:0+f+Qx/9Opf86m/9xtv/W6v+t1f/L5P/i8P+u1v+63P+32v/a7P+/3v/V6f9grv+m0f/b7P+ezf/u9v+Avv9Ko:v9/+hz/+12f/9/f/s9f/M5f/4+:x9:G4f/Y6:2+v+Iwv/n8v/C4P/R5:T6P/+/v/l8v+42/+r1P9vtv97vP+y1:f7v+o0v+z2P/O5v98vP+UyP9qs/+Vyf/k8f/7/P/5YNTZ?ADhUlEQVR4Xu3Z546jMBSAUV+b3lt6b9N7L1vL+z/TEmXuQCjBk8kCK+X7GSnxUSRsuJB4k6a/TFEMUpAu02WSBKSyrAYVog5kKxdg2i6LGkzNSry+kEjJA1CWSKrC2xB4wTarA7gp8IJlVguwyg12agFWBF6wxGoBlrjB43qADyInFd+aZAIGkdP13tLLB0den2wu8lJSXRNur16tN33NGQUAiWFAsCp3YbEIIKPXI1XmI7hRBKAItusB9rnB9P8H78F78KFxcmFB2OR3X783SH46tT2HLfM8KkMCYIwaKp8TOrZDhES5donltIBm4yHQ5FG21hw7bL3nAOACESN5CUjjaGoD7UxZ2E7AitRuaYKgKmkujFlGM3kFtm4fBYELbI5dxnYGnvfF1lAIk5Je3WHZ/QoRf/ROMOQCmzbydwM+7ffU1cpy4jsuy2t6d3LUv3551ArByN05OH1W6i7L7xLg/ritfikCD5C+Q/D8Vmxp6e+Bwza1ABidfX3UcsHYrsGapXxrBwimRs6aA8/z3DjAvQJFElvDD4LFMBWVqvheapPSvTAHAbOfYU9PXliHHB5dIzh24Zkxnv32aTOYRYAfACP5hX4MvO3BsQCwDknUsYBRI7WkqyPDALiM/8X3xw+BJvoKJ9ij0tZg9KYnMXiAOGteBMfFAcx1/YhzvjQYr7BbgxNnsUERLG94mporAFcuGr4bd0UroZaaSNgWbN3lDucSK7oQMa78ULxgGCE8YAe1nwKfkERWYqLhZT2cvJ51AboMkzjAjoyAz4GN/HFXlyxzUdUhUaP2sQkwQwzlAHtkN+DDFFheBzNMJ1Hdr2evAM/lgb+8gzf8irx+zpA4WL3uAiwiTB3A2gbwudrzTysBa/njGO2BhHUyUect8XYOMmKcfw4e8oBbuGAm+GYSgVktwEN1AzhoS0d78Fp78E0CvL/ouLe1JoJ7OJjN29baiBnU+qTDgyNx0u2P5upvfkq6vXSqub2s/gYewfV/REqDK38InZYKhpNPP+Z3SgWfnkOmV+AepDAoF9zv3SgrhjVSI28DASYrGFXZpGywOhQORFGkQixqEWxcMAw0qwCn4h+3UlIHsMw90J6SOoAPDBKvk+8dQNlgfBMTr4Hewv/4Eki5YHzXFU9tpgFgZ3Fn7QtSMpgaZuMhiIO3eLHICd5VoH/rrfZfUfSbFverW/NTgL92xHNM5cAOXQ)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANI?ABFCAM)IJEiL)GFBMVEUAru+g2Pf:/8xt/BpxvPS6/vp9f0TtPCISbH1?ADCklEQVR4Xu2bwY7CMAxEPWM7/P8fr9baaNSG0lIQK6q8U2vhxk9ODD1gJBE3uwS3AEkjwy5EkCajqzgZ7GLAwi5G2M2uxceEJpPJZDKZTCYTzzCBsH8kAMCeA0OOJykNkLDP4iZAMu05UjkyYnMZveyEX3QJf9iVJN6npIC6FNTtWfSI/aeRfLsSpCAnup0nyF4nPqwkAwwV5ctKrS9G4qNKPtT/+nEK9t44/0EJ2mUiFTyr1EoEdSGlQGYi+t0vpRSFS6k+CZgwh5K1FJCJRkrJ7zYk7kQdiCeUUIskCSlFY8EWmiJCpy89WaRLiEruoLEjJfRNLxTesxRjdpB0r4ueB4p4rJTrQj0poHXuKG0UGsOcapXnh5WcJEDSajnNQWQJ+LaSUBG5Dsooc6EUW3W2laqziMNKlqVElFJ/ZLoavjkeCrhBn0OPRbm11VdeSknjZXfnPa0EsjUyuhLU5bp8rFQRnfqm5HIKXayVsmeLjfZBzT2mFCyslLSUtvUjJSwqVV810BRbKSkslBirOuHHvyb+Th/qLvtSUewqtVWl6rB6V7EYlRReo4TnycWaySqRgntKeU/JTNGm2FElzYfzSlFr9p7FaSVdKMozSvmykpPE+5TaQqmbfXbjWWoy6XCKUxtPUXxUqWmBrqTSTyvFYuItYu3cxItM2DE4KLk2zxmloLwxDnFQOUpaUwnjC8dZpdh+gMrZVjL2ZL2gVreaV4aUtCHF+GD1lvQTStCrE5kIiwio41nh3yjivpKqBiA5/IWS42+8ODLDWeC8Uq0lIGPFNpU82VFMAbnrYO3+HlJ393GSGJUMg1KRO0qDU7oVUJ5yNDfExhnzPKwUoxJWr3HMUAL2lAq0ITNaTxveanPndUmxtBeJACL8bvRQri9DgNIetcm1HYdp+w3kOMmgkHBW8BsInbhHX0Ge39EkGeRDI0DD4YucfLgTLOD2VU7QTRkNSgj7JkAogMHIIsK+DSwEZPR+JpPJZDKZTG7XEwq7GG6wi4Er/n+J7VJO0Wgk4Vf5L6CD5A+G4BPe8Jfzjg)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AL8?ABzCAM?AD+HiP7)YFBMVEXh4eH:/+gmpvHxsf+/Pzt7e3n5+fn5OQ6NDWLi4tnZWWtra3++frV1dX88vS8uLn77e9VTk93dXXn3+Dj4+P55ujn19n00tb99vfoxckDAwPz8vL4+Pjt5OXoztH33eDep8bG?AIqUlEQVR4XtWc6ZKjOgyF8ca+Z+m95/3f8tryoRWgp25Iy101JywHmB+fFSFhpjqZ+reVuaIOmp3LFtORqZwza6OdG9amca5h8y2ApU9cIBx6LVf5Cp2D5w2W7/jnhjQ4ly8mWxvjXPd/ptvzRzLGDrgKyKC2QThnQestCRbjDIo7u+H3oRMR84OWCdsA0tIHx3Z10LbwUIsPKw5EsUvMj0gtNF4Rkgz2dBoneOcNrxhMXILl3JLn7wamt6Bn/uew4V34PPMxnD/lV1ylg+UiBkEjQB4J8kPAR54jwIHEr7Tt/YfV8woF7L73K+3aeDEMAmtMvRgZlYxfIe4QQRAV5A0fYQ/rcfksm2WISCwUKdRPKRmtVgOI7Iw9xmX0ZsSJeEjHIx2Rp+1IJ8IhKyYUShjzy9cfJD2lAzh/JgzjufcRQbVKx28V8CM9dPFL+PgFazAXXKFzcUfCYbjGoiHQvYwimqh+huRB1oPmp+IRUCGIA0jDb61C5hP9BfB/wvrnT9j7DR1hS6IjGOywhH/PY6BvAPw2Bb9F5QT+GOF/KB5BHxQLqXj/MiqI8ffwT09PceM/5L1wxi84s1zmf8uDWHKIWrOy0vUf9JbwiZ/BfyIM4uKFFIrx92s2i/Kj8iP3I/+TiJBHyxcQHwpF+1cV85+TH/hiwjfQLwOwCer/KvygFxJyCG0AJTQ757L8FH6O/qW/lqRrb6I5LeajH8hMX8b1DZm6Z6PZ1H4EuAPoYU5Z2foJ/Bh/hN905pWUKZizGqLJVRONgynflI7GqioadWvKpx.ryYgXv8xZeHi4xOgfK2bKihzXbU2ZxidO7MxbmsaR/yoouC3SfqX/2r7nmpP5J/RaLLzYvK/GJtlbm3e2RD/01cJasXzJ6P+1XrF4sP8mYTUHPlxB4cZjfz8xSob+BH/J0l+N1Tax4MTCPkzD5L8KJ8If8x/Gf7sTfWxhn7xK2UF6/9Qcflk/qmsrAy/I37uwVaYH/XTtlR+lt51Ks5C4W+mGfEnfsyDs64Qrj9+gnHTe3vrMrn714vzJ0X9pPDf5o8xXSGBj/rJBShJ/8Xti/IjWn/Aj/hT/niJ9y/cv2hfafjHcSlAov2rAz9NvYAPfun8H2XjD93wX8T5nak088dJcMj/apDktxx/0f6F+g9+foCT7l/qlh/96z0BP8ffOen6ucqfj7wQ7V+cPzbyd5n0/Av1M2X/Gpd3KOLzFzy+cf8aTC5f/8Gv7uY/d2XQdGZjFjOQqTvT@lPp2aaprrWLy/NLF:kT/Hnv/LiqQ9/19M0xlvtNbN6WR00PDyMugU/Hz/HuA:5+yLM8Lr5PX9Xr9/Px88UrVv4hfCfFDeZ6n43dGN989f1aDJH++5U/Sv26ff5wT4u/MF/+V+QX7l+3X9ccqYf5N/r8EfbhcqH/pad48P1P9NHeNAIz3xL9Y5c+Yqn+13L8E+VGAOP5DY/JU8xelUvLz/SvOj/ij/ie9f1P2X6usZP3PkP/J+xfXH/sv969W0fzLCPLv79+U8y+Kv3z/WvHXYv0rfx8fn3+V+sH6+fEmVP/fdVmv64+l/DGdaP3cxn+0b2neHyL+svV/nz9Niv51/P1Vlx15friCP1X/An6C/lXkier:vlBfv7y2/3LWnn+fJX/gvy5aYZV/G18ftZGfv51TT:Qv4L9699/awnsf71dtm:7+Xf9IPPj+7d/H+hfqP559Bsn8Vq/s3Xf8aU/WvIt/kf6ONS/T+0Kr7+U13bP6bfv71bKXnX5w/6fsXGnDC929c/xPG38r332T9q2sG5ufnh8YIzn+LoN96f2gTvD/c8deTFiqgufvYxt8q4f61f387tonmX0v8my7p+6s+Uf/qW4v+VYURmCbo76bLPCBpb84wBvgrfq0Hl6Z+Iv63f0U3OKfXxjhXBaNNCH.xzbfm999f7jMH9VdKqv8LhW/0b/GdPz5L/Uv1J9/iD/vBrN9/6xsen75/oX7N0X8i139n8X61zn/2NX/u/nrJr9P8vMX7l/T5v3Vgfjn9+p3+heeP5VNwH8K4v5VJepfbYj/3fxDdyz/078/fPbw8vXnN+dfViWr/6eE/Bfip/4ryg+l+v+vojPmi3/E9EWeP/H8C+VnpPIvH:9A/RcS/Wv7Hzy+Fz+D+X/3NzPX/ALLMH+ZatyovDz6yv5+l+gAf?RN8fcvdF/sjzF7f81L+M8iN4U17BvK+NuzF2bfIMbDDa8yN9UH0OzF8ac3f9XH8B5WupB+eaKmhvjHN6a/KN6dzZb/UU+JE+NIBWvv4U4Pf64n/1FUhNr0HzjSnJVGxsNFq9vZIa5aIZVB5NyX++FvMnRf0M4vh/1mVZVv04+x2Zmozu+41p+nGCuUQz9B/RmP6jJNURH/nTpuTnAbyspeenR8XZg+in4OcOgAHsRvA4PfNj9iLPjw7MNWg/gp/RA9/aY/zzcKQDED5/BRgEBvLYH78Dn5Kf/v5dqSP5A7rDNQgjYOn6z2O6+QGFln/ERZqfSxDpCv2E/+IXgl/hW3Uof7Q5GH7oyvoko+vLYYGe8FE6W/n7l1XsRsDS098Avz+HdST6IFT+sCTiL6DTjW74H/8FHaqbJAX6NPzIIZRR1tUbPa1+usiLXNjEE3S0hJss7RB74qfamSh/QA8xO6t/SM9BkT3UTpuKHx0gB79ftt9C/GWguMUOxst7cmHxKwzggyyNgOCP8FfoX4e/BB4HEqqLIH4bmGgXFhzSpfjxIoezKDoWkccA5Os/V1Fat9IlgSCUwUKw1sLiGJYuWEWpT5+E/Mih+Nnz26jWEitWRl+0PaFoE4X9kfwxIHs0jZZ9VYIFOHSAFaDRwCPYi4XsUf6yDiMYKq+Vach03xlNJotGe1Nov6tLpUAVmYFDB2wjJKAx?jmIH8ZKlBVBuk8n8k0N6YmMyzGD20i0xUwnr8k7ShgmVkhyeGw3wn8/7b+A5lMu+3mJ6yx)AElFTkSuQmCC$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKQA5gMAIgABEQECEQH/xAB8?ACAwEBAQ)))?AgEDBAUGBx?AQMDAgMFBAYFDQE)?AECAwQREgUhEzFRBiIyYYFBQnGhBxQjYpGxFSYns+EzQ0RSU3J0gpKitMHi8BEB?M?gEEAgMB))?ECEQMSMSEiQVFhgTJzgpH/2gAMAw?AQECAQA/APv4EEADXAUmwAXC5C3K8wCwjJCriCcRARrRkgXQz8QnMnBrRcm5TkNcMGrQK7jXIwaYofUJfFn8BKubhsRt/Ht6FNOxZV6NBLSkruo6PUlGNanIlWp6gEoqElN1avwLUXYAk))Au))C3Ec4lSmVxJdX5fZ5mZ1SWROSeF0d+9/9ZTj1b54XK17HfhdF+AYJl1qeqSV6xeVzFWVzaaZ8VvD5+RGkU9RxHVU7VY22MbXc1v7bHj9d1yOTUKh8Tu5li3zxRG39Q+RM+j0jtYj6fMT9MxdF+R4GTWd/EDNW38Q0Fl9CZqsPRfkaGahF5ng4NS5bnVp65NtycJ2l7BlVH5lzZm9TzsFWnU3xVHmHURZ180HRyGBkpoa8U/Zl1GdjJ2Nc73bp+Kmuhc11OjmrzVTn6vEr2Mnb7ndd8F5C6VVJHeCRdnLdt+vQjDa7dwuV5E5ICSTuRqpuPC7Jnqc6on4snd8Ldv4m2mTCFL8+a+pCWgBbk3AJC5FyLgDEXIuFwBgIu?wE?VXM1Q7ZPU0uMdVyT1GJbw58lXJTv4ka978/iLJ2sZA37anycn9V1kX5Gas5KeX1J67jEi2OzJ9InCrY+JTNZRXxl3V0m/v32TbpYzdutDgq9Of2p0eVjo8OLUNavckZ/as+91T2/Hn8/1KRdzhVWs6kyik0xtXK2he7J9LmvDXfmrb257i59Gi2+Tv1Jb8yyLUVvzPMrUb8y6KoW6b7kol7al1Dludul1DlueAp6xG2ycnqp2aWt2TcaCS+g01fy3OvTVfLc8FS1ybZOT8T0FFV5W35jYSZexhn5G6OQ89SzctzrQv5EdU93Ru17Va5Lt5WOfLRuiVcO8z2dU+JrY4syFw8WZI552J4lt0XcZ0ssid510/BDQrWX3alyURjd0RCMN2ZcXNttbpc3QT8RPvJz8xHWem/opnVrmO25+xSDdnRyJuURyK5qdR8iMTq25FxLhcEnuTcruSikBYijIVoo6Ak3sAgACtxkqk2T1NZmqE2T1Hjyrt4cKsbsp5jUmLvse5XTH1UeeaN59Tlah2Yq+FJK2WPFjVc7dyLZE/uqNsfavrbzj5XqUS7nlK+F1ndbKfUNe7Ny0elwarxWPiqFY1sdlRyZsc/4e6YdO+jeu7QadFqVNVwxMlV6YSI73HKz3U8gnBG74/L5QrUsiX3tyETxK6290+R6CbQqpus/oR2LKv6ylHd18Uer+Fe9r438jXrHYzU9D1um0GpfBLV1aRrE6FzuH9s9Y2o5XsYvPnsGI7S4LFWyfFDqU712PTN+ijtg3+ixLbpNH/wBqYK3s1rOiyNj1SkfT5eB2zmfDNiuaq+pMZ8SidjzEwaleubPU9Hpqrv0ucWjplumx6bT6Zdth4hVMuxQt7rOu1zvQpuhzaOn5bHYhj5EyiNaI+RZcVrdhhD6m5GRCi3J6o7rMiboVXJQiamjkXI4bIpRxOQs1WRdfkGRVkMii4aLLLjIpWg6EYeJWIOgiDoKYw?JIZ5+SGgpl9g8KreFcrV/Rr223/8AR5athe1FdZfmnM9dm6KkV7LZfxOLqVdPUQOge1uOy8lv+Y1N2fT5V8mZGzk9XO7Us/VPT2/fi/dPKaOrl0v6P210PjppmSfhWNyb/m5G7tGz9WqJv34/3bzBPH+zqaP7yf8AKaTnp/sTb3W/rcDtdpUbO22i6zTd6m1Salma/wBmbHxt+bcV9R+28P7RNGf/AIP/AJB2NIhXXOzmnM3dVaLWw+sbZE+WDv8AaU9q4P130yTypv3zhqx7uvzETBLW9nePFrVmP35Z/pEr9Xpdep46CuqKaL6oxzo4ZXxtV3Fl72LFte1jp0EtR2j7E1jNUXjVFKr8JnImX2TUla742u34FHbml4+twbf0Zn7yQ62gUq0vZqtzTuzcTH/Qkf5kTERx1n59ExaZ5uSvxkvFUen8tj0NHR8ti+mok22OtBTeRMyWtdLT0+yG9kew0cRowFmx4opwDEvxEc0IkWqzuQrUuchU5CyGe5bkoooEzBIPcnIQLkYfutRw6KUIWNFmp63XtLWlTS5pXZoodEHQVEHQRd?kCEkUql5IWKpW9R4VWlnkldwlismPz5nJqWczqyIYZ28y2kM3JM/8crUquoqKKOhfGmESpi6y37rVb18zlT6jV/oh+i8Jv1dyp37Oz8aS9bc/I708fM50sJdWsfXzv7ZuS9omZ7T6x1/X05WhanVaDLM+GJJWztRHsdf3V7q/maKvUpdS1Wn1SWBGOg4f2bVX+bcr+ntuX8FL8i6OIea12bdfWYzVMcl8inb2xOxGfLrrrdDWObJUaax8lvE/F6p7dsm8i2eufWRtgZGkMO3c625Jy5GKGNNtjfExDPatY8R4/Lbx8nJb+VvPn0iEQwptsbY4yI2oXtKpaama0sQhBxVmEsVuaWuFXkTBbQzvaUuQ0uKXFtZZr1U2FVC2wqpuPqrqQmwytGx2DUdVbb3HW9@azcdzdkIk1ayVqy+f4FzZJfe+aDQN7vqX4o5qlNmrjhMb0enn0LUM8Kd40IIvhIABCVKmWomdG7utyW2Xoa1MD3pxpu45yWwTFL26liiyxVRzUd5XMT3I5z2W8FrmmBcoW9d0/AzW+2m/y/kW1ZuXwzVC97G11XcxuRHX2svmdCdF4qYpdbcuRlxVznOVPIuox8ssqs3LGNQfElG7oWSoiV0RsjMzDQwovDdxWamKZ6rUHQSMpqePjVL08PsTzUtapzllbR6w6WdcY6hiNZJ7EVLbfIp6tVbtSahW0qt+vwNbE5f5SNb4/Nx1UclkW905opydUrKb6m+PNr3yJZjbovqbqNrmUsLH+JrG/kKt7L3KIqqD15Ep4UDBqtVW4j+RaVv5DQqsragK3cdgyt3G0kVLhsS1uxc1uwI3cXss6KWM3He3ZB2N3Ge3ZBexuiIU7vqXIgkXhLF5KLMrawqjTvIaCmPxFwpg?CVV06laMYy+KeJbr8SbLulve/wCwcnfT4KOqmFPDazLFPEt1+JndEjXOdvd1r+hql8PxUpt3V9SyrPyVZpI0yy9vIzPjTJXdeZsc3ZPRSmRm6bF1GPloyYkYl+BGBbrN1kMRS5txWtLsSu0tHHEmaEkMU7FjmYj2jNaWNKmmusjNIoGtcnC8Se1VVU+F1LdPp6ila+GWRJImqnB6ontRTU1CxBF1YK5pKJsPYmwqzFSoK5uxaqEYkxJeqtrR8BsR0QiZTWqGtJVg6ITYXVsQra1bkvathwITipGv8ycXloAlDW7DAB.?AJYVWp0HIsMSVatTYrcxNy9UFxJ0lq6zOjQqdGbMRFYWRdTfi1iWIXhG3h+RHC8hu6meBmSMswLkj8hsCJuevDirAwLFNUahNFx5ImRtZjgtuaHXwOc7T4qnUJ3VESujxZg5ckS9t7KL2WxxiRstPLRQ8V78nuzyXdyWvuJDNOyve58irBxXQ4exqql2/PY1T0+E1C2Ji8OJy9VRqY2TcrSlkkjrm4q1zpFfFta6ttiqeqCTK2KoWpnZDXyZd6GS0ftsmxL5a2lYyomkZLDdvE7uKojvai3KU4n1CukkY6NZHI7vIqdCyqqIaumZR07uJJIrPCi7IllW5Gmx07EYlliLAMLYZEJsAamIBIAQk)?QEg?k?AEEEgCEWIsMFiQWxGI9gsGoxWjSbDWJsGjqSxNhrBYAWxNibEgnEASBAQFk6EgAQFiQAIsBIAk?AE?AgEg)Ak))?AbBs))))))))?Ag?Ak)?Af:Z%iVBORw0KG;)NSUhEUg?ALQ?ABkCAM)YLeov)GXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllP)39pVFh0WE1MOmNvbS5hZG9iZS54bX)?ADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuNi1jMTQyIDc5LjE2MDkyNCwgMjAxNy8wNy8xMy0wMTowNjozOSAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtcE1NOk9yaWdpbmFsRG9jdW1lbnRJRD0ieG1wLmRpZDo1MmY5ZTgyNi1iNzYwLWE3NDAtYmViZi0yNDlkZjJhMDM1YTAiIHhtcE1NOkRvY3VtZW50SUQ9InhtcC5kaWQ6RkYxNEQ1RTY0NjRGMTFFOEE5OTlDQTYwMTY1RjIxRDMiIHhtcE1NOkluc3RhbmNlSUQ9InhtcC5paWQ6RkYxNEQ1RTU0NjRGMTFFOEE5OTlDQTYwMTY1RjIxRDMiIHhtcDpDcmVhdG9yVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENDIChXaW5kb3dzKSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOjMxZWFmYmIyLTgyZGUtNzQ0Zi1iYmNlLTIyODdkYTAxZjY2ZSIgc3RSZWY6ZG9jdW1lbnRJRD0iYWRvYmU6ZG9jaWQ6cGhvdG9zaG9wOmQyYzRjMjViLTA0YjAtZTY0OS05ZTk2LWUwOWUxNTVjMWNlNiIvPiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gPD94cGFja2V0IGVuZD0iciI/Pr8RwDg?ABgUExUReXl5UxMTC0tLZeXl7m5uX19fd3d3fX19WxsbFdXV+np6dHR0cTExPn5+Y2NjUNDQ+3t7aqqqvHx8Q?AP:/6amps7Ozv39/eLi4oCAgLOzsx4eHmFhYQoKCszMzNbW1t+YBms?AKHSURBVHja7NrplqsgDABg6wJIFEXtNuv7v+UNolbrTHuX00ruJH9slfZ8hoBVGnU0Qp4O6T7JVF7Fr+8RAbBztvOggG6vIwqi28++2ymgV91OAb3CbI0utTgUL/vEZOotp4B2zt08KKB318FoRjOa0Yz+Oej313hHAe2cuTonNoWodDsooFcRDNqlkwIandWi2ymg/zoejs7f1JkCGp2ZSfYvBYi6fMD3dxTuxhnNaEYzmtGMZjSjGc1oRv9byBNcFpR4HfFBEdw6IqMZTQV9LGVT6+gkxCccKKCd82MeFNAf18Hoe2iwiSKHtn/wdJ7R99DxDdcNtASA7dDt76EFCL/LGiW7TuMRGyAamSNaG9c0tsN54BZ3VHITdL+OqNSUMVlYG.imy2TiXh47VpWqJcu0enTanpcUNqnEMnZnQt2uu3TWfVVUCzW9tDZKuVyjR8B3Bpsmj9vIK5vt5C76AH3TvapVblHp6gV/aYt8KDy7WBLtE/mrGi0L1wzDcTMv+mG+tDTuQWAVsIrC59MOaEx4QasteOEkbRDzgNAO5D022ooWY+e9UI/+ExAmbaXEhhRKzRM5XFj8liiD/AptkEre7kAuim68jPJN+Gc4hTpupHl8SEPa75Bz8oDazqb/fJzWU5vXRCf8ITpK3S+GIiuhg0OxEy1fsarfAsdFtoxc2uVn6dhfqUBX85wZyxugE6X/3Yx42usGaNUXysAXWDl0fe+u2wPP5jSDKm2kME8Nf0SLa1SKhEauiBjQGMme2Cgymv0UKOkglcCGM1oRjOa0T8XfSxLKZumrrWOKKB75yIoVMMqGM1oRjOa0YxmNKMZ/b+hta5JoNFZN42U5bAa8ku?QAynU9Numf39g)BJRU5Er@ggg==!C%iVBORw0KG;)NSUhEUg?ANM?ABMCAM?ADA6XJ9?ABIFBMVEX::/9Pjcx+np3/L/+PrCotv/8vb/8/f/5u77+Pz/6PD/6/H/7vTfz+z/4+3/6vDQteOsec/17/n/5O3Ijtb/7PL11/CyhNL/5+:6vH/7/XJrN:+/3:f3/+vzv6PXek9/m1/D/+fu4j9W/mNn/4uz/8fXrl9z/6fHWkdvVv+X1nNj/8PX/6/Lzm9nnl93/9/n/5e6zftL/7fP/5e3lld3/8PS0hNL:Pzry+394vT/5OzvmdjDidXtmdzXs+O7hNLTrN:9fjEmNnhk9zQj9n02fH/9fnKotvv3/L11e:9/r:P3/9vj:v743fHx6PX/6O:7/T/7vP34PP67fj12PC6j9X/9vnr3/L/+PvGotv66/neveXmxOrx3vP;2So?AEY0lEQVR4Xu3Z5XLrOBiAYYGRIcgMZeYepmVmvv+7WPtLvHVVNXLH6TRnR++/YvKM6k+2igSFOUMfR9K01knT+3ezZ9txvn+mKW3ENklSMoDBljoK41R1i9CI/3L0SU39xANNIF9gIuC5SV0/0ylwMiZnuSkImYK1M73bZk3aUtNWyEbWzfQq9czifLEpSiVq0jqZ2GV6UU7nXkdRFNb@w2zyzSmKcCklLIm4PaezgTz4dlR7lkO82FkrvUsh2Xqh7lN6RW0xqbnYCrnNvXARNfaVM5j0pLaAKALU+fgE6ynaXE4AyBJEfoS29fxcLF3fkcRYXI5gIiotWT4BINVmDYZE3fuZUwuunAalnFY8jxvMs+/M/cOGkZpElcyGmefhUwqysZuErVB8evpRW4TAtMYXWjNSsOqJ6x7TB+mdn1h2t2pCk3mOMzmFpt7gHqV1zSao37CeNo8tjdgsbimqlZJTY0cphaDjgqY+tvz9jfzmUg47/Ulxvo0WSyj5Hl8k2VpioJtY8P5XGQaAGREKHVVMAUFTEd7QJqzOmKTWQvTWi5sU0r9MEYpHNMUQY5lN/WD2++e8ra9ILNk4wKm8Dmg5k0cRWRCPUAtCijqfN+IURq6a2ouFF8Y1u5x+kEEP054W8TolrqAKUY9y97D+kOBCfVGYSb1R73ZqDcQx5QujVI6qVvpd4y5i7CVhdLipvCov5eakrDAhExSy6oudcfu8kzpJ7FXKp18l7kcaz3WpGZ3che+p4gJ2tyfm6DhUhPkZsfUN9OvEM/0NYLa8cbreXZm.hig4vUzP51qgVN0PvTvYXJEpmgQZCu1lvgctZpOFQUzYlJcTqsMIyC1j1vkCaRxa8lxU3QppEulNAEuaMQ+pZvqlilSVq9899Eq5mIjYZsI3Nl50YVMGk5Taj9GkxEaDqByeOmY1xggituZaY2mJycpos3V2AKBCZD69zsAltIaBoRc5Xne1Zi8nOaNIzfwjznm6Y/VHzf0fDw1hg37zWpSQFxeys+s/QfYNKPNfzpEhP3vpt5w9wd6elMw41jPa+JHeNsj2q6zj0jOnZlB+PzJTOimyWZS3cd+CJ9HJOSf+7pzhTjn5fNPXznWaIWIX4qjJpHMbUNMLVzmLo6xvjqFzBFfFPl1xs?eeAoTBfdldkKs9m+/1+vxy3eXotPi+nqtoihPxWrVYvX54D6Y+u8gZjjslqJiOvM+wqfwKpdu95RBR.W9+YkhICxV9JkybQIrgmZCtOq1Yh/b9z7l1eyp8zg1CptWaztDDTH/pzoZR8u+Ypg8xmePHNGnoYaa/cXO3XvLumD7s7BY4YylkKu/PMqZrp42Wm2hLzYDOX17pTds68XhnYRXDS0yesaH/IzAx/9ZSSeH7vaN4PvTjykOUK5NSl8RRwSu3leQwU+minEU0mR50xfdG/4dkMplMJpPJBHc5he+GpEmapEmapEmapEmapEmapEmapOmjSppWnzRJkzRJkzRJ07+QCGjGRJDjq)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANI)9CAM?ADvVccn)MFBMVEX::89On679/78eT9+fP89u746dP57Nr++/j71Kz4u3b24sf35s7138D3qkf2nyPT4+7l?ADDUlEQVR4Xu3Z25aiMBAFUOuWGxf:28nHYcuRIu0DRldDOf1KGFbLOrBS7sMU+hZe50Sdz/YDY/pcvq+d86n64+TPpnUHZRURIcnnaTugKQpR3g9nKS9g26R7tuESDEtMiphkbgk9VOgQmoe90161urYGhzdmtR9NOkkTabPJp2k4YCk4WUSA7IN6GJyKwAB7HM8QbgvQmBmiPHr2DHFCHctDDGl20KJXZU01EmBw7eHXA4vFg6z5?M8WubzUmINPsYeO9cf4tDvr8ED5mj0V8Gy1U1Y4QKaaiRwjcJyv08kgLnQPGskRCV5JzzMr/EoPc9X82gnjnKJE2pkFi+SCGDbnkkhUAF9EiiGYkKyU0ij6IzUdDc5HRwi2ozKRvEu94iXbiA6qTJVETaWRntathEYhZmLI9M13XPSApakohgRqJCKikk7V4PbCIJEKIvohwlGTFJUEgq2kSKm0n+lyRYkrySQK4bAptJbg8SgIiQt0gpxahP8WOTjDFtJ2FYIyW8I4mSdLv5LFqQRt2hbrmH3NTADJX2InniXFqkdDtdA3PSrLgNifWL2aPhcebByzxRTbuQEEJuDNKYomhZIbGStNMMSsqFoXWbSSilMEipKxt5GZA7kgZNUslozkLHNGwjUfFYpDHyJZSNvIw5CbBJIdfR3D+o39lE4tpfEkUEL5BkhRTmJGcem1qTWOAVUlgjhYuzSekfkcqQaB8ScwjvJ91EKFWSxiaFbNKmM98PY1sSy44k4RC0MUnXlqS/Q/J7kYTfTiqi3UgMn0JC72A3Er+bxAL7kuQTSFm0Hwk+heQOSOoPRBLYlURtSCeJ3kI6SScJD0jy/w0JxCaBmCRpSxL4PYlWSGSToDmJf@yL5LQJtH7SUB7kqQ9CYCkRkKTBAbJo9WJNs1IVCNNf9bQI4lWSGSSqD@KyQySWiTPJokbE2iKqmIDBKZJKsTbZqRsEZCk+TRIrlsMknYmIToa6SbqHtGQpNkdaJNM5KvkbLIInmT5KxOtGlF8t5VSUWkpPksTJLVgTbrpD8fSQpyQfpdmQ)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ALQ)9CAM)zrLMQ)MFBMVEX::i4uK+vr7Z2dn7+/vDw8PMzMzz8/Pm5ubHx8fr6+vR0dH39/fV1dXe3t7v7+8OWlUt?ABXklEQVR4Xu3YzW7EIAwEYGz+SXb7/m9bteoBVnTq045VMddYn5xEEJzwEpGn/kREgilcQ4q+pEgCMt9IUbeJN+DJRtNfI3udbqRLQQp4UDzj7gqTawBhGLgWd80zUtc/08HbpRgPNaSEfUjGWOUu45toYlr/JKMvpWNilvKcwjYUo83qY3VqNjwmhnGttWvqBPWwD8FImJSJqmEbgjEm8QNbLezzdmO+hWuHFcPaf7sRMThfj2EfiiFf6aoJ7PioabKBX8sTlLkyqmGTdWdEw3blzWiWD4Mzo1kmJkeG/bDDNfD5dgCVZ+AZMwLVjVG7beigGniMKAm4Xgyx1hKMf9zzBVg3xlDbevVk3Nk49vMN/98UlA/b/zdfRjT9fXNm5On+QK0ro1pO296MZthj3BliWLBcA6+hBEyegYszIJ0Z0TJA8o3TNN/wn5OTs3tQjdP0afo0fZo+TZ+mT9Of4mQgBSW24WQ)ASUVORK5CYII=!F%iVBORw0KG;)NSUhEUg?AKU)+CAM?AB9VCto)qFBMVEX::vr/Pnp+v8yP:+:+8/+9fcH+9P+HR4v93:+6v/7w:wsPSWVpr5uf3:f/91:dneGwcLT/+P/Sktb+9v/+7:95f+kZKj92v/zs/f/+f+8fMD8zv/80:3t/vIiMz4uPzxsfX92P/8y:lpen+8f/92:+6f/7xP/7u:94P/jo+f80P/7v/+6er78yf/ioub2tvq7e7:/v/94v/93f/81f/LhO3y?ACkklEQVR4Xu3a146jQBAFUHcm5+TsyXlz+P8/2xnWlG0MvcBCyw99n6vRkbC5JcTsf+PgfUiPqZ/zfSzZIbM+NTzc2Af3mPrioL+Zy5Q2+veUVt5erFIrtVIrtVIrtVIrtTIgGOMd/0iIvbybclUpX2NKWTylMnAwL4xaIsykPmbdx6n4XCm/CiFu7KcHOo2ScKMlrtNKtOzrK2IKUVd+cxbmJEpstCdpU85RmxKhtWqlEQ5Qos0ESseQhTQrTZkSWeMriVTJm5WWVGmrVhrBACXKplBGnHP8Ho+U8cLCgOA2Jbl5jCn9XinvaHpQztV0TwJK3r17lqC0FTVkBMweDflSKZEipTNEea9amYOSdFdSUFpqlLMhytmESq3USkII7q30fT+bXsmIU67qLvi6KFe1hpxU6SUFsDor0yXs6iqUGIg9lC9vphDqlEE0YMPMPl0RlcrANfors8W1UiUrjP5KukVqleGpifNduWfKu2eDzpR3vu9P1j3MBY4bko7dQxcHpZLucUAT5Z27x0SVMl4pUSagCbo35BqUP9Q0JJxPevS4XSmXinoc+tDpoVxUSqpG2YaRK1Gl9JuUWuldstKF85f8u4Tz0ZD/eKxImbTccg+Uoex56Z8oGSg3U3WPWzEZwdw4xGWS7klX0OM0Pto2FnRUZX7kKRKMd/xskSucvKYUoGzbidDWFOMp4QLynF1AooSMqSRDlJZq5SwcoJxtmpRsQiWLmmWuAYnOlPT5Xfmrrgxs76B8Hvd7IrZrIIYBC2VvWunt9umhpswsQX+D0h5RWcaLTojRfmkPElA25PEtyI6Ur9QvBdl6GmUJKh9BLucJJuwgYR7mvABlLalYxqlI43j5IYTQfG7bW1COkD8/upOVozMCaQ)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AKo?ABvCAM?ABLjau3)GFBMVEX::x/fD4/vjp++eo6aHh+t7Z+NaD4XmmP1hX?ADzElEQVR4Xu3a247CMAwEUM/40v:41WXCIJTQulFDRLzask6dlewrpBH+BTZk7O72lRHru86PvVH/VF/1B/1R/1Rf9Qf9fsDgCUERu2aqTiFisGpPyo:Kvirq77qfKeijCz6RazCO7pmkMPu7fGritAY2qSena6doo2F8Jy581Ut2k5hr3USRBLjX0TlTU0J/ZSrdP4U6pO3Rg2U/uxj6n+tifOoU6xipql/eAc6qQfUbGmpZ1EtT51U9s4hzrpB9RY2RPnUO0D6uqe51AnrqbGAmpOa8U51Njc1Jwyh9FUdlHNIsIjmoqtpWpnxmzdSi3zl/hWajTS11bvU7duZy3V2gkfb/eZ5thLJbmwHl1FzRj9h2IOydzUdlFZ0tlAl6rZQqJkoekOKonHBmwLNfJ8BKBzgLapbqTmDcQWap6PLNJiTfWN1LwBT89yAxVSpMVKiUOoaQOi+6ksLd29UP0warUAYjM1t/Q5t6Zp/s3U+mGR3EJNEgJF6remOIaaH9ax1LLWA6n+XVQ/mKpzStORqWApEcduFSBJ4DAqqyKPo1ZtuY+aW5Yc9gnwnE3UXGJuqqNSKSlHfbHm7KfqmNQ+Zdnj41DtDRVXUrVPxZQ8F1LZ3KS9pfNSar5Ye4PEtdRP3gPotdTO2xVaqvFSKhqPBfO+S+Jq6gdvAolLqWmtnRhxNTVWUoFrqbp6rcGrqQpg7ePXy6n0FVIAei0V66ymHIGqANX6UvxLlZdS/WZFzxrEv9QvpdJv1s5iDSxSlyup4ncrNVqtRYHOUr2WqjerAgCZfrviIHGXOqQO6qhIr5ijqNOZoQ68WAv26RdBRAV1Z/PhUaKaNLmYo3W5oqJHpfsztq4VZ5F62sxTpF/slteeeuoVdubyAdUa6uhoXLrFHH9Bte4BjfBnbHk2D0VJsJ3xMYp0izlelx9UTF2qeIRnbWa6R2ijqdMv5ngdfXUgIVMREeH9RETwbGqWGiVHY84baEDOpkZzIEkTj3ipvdcWJ3yM0i/mRF3WfHSWKFoqo0pWZmkesKRfbKm5tzZSI2TR2o/zZGpMTRSQhdD7UpFTqWrLB5IsRjtSyMnUeHEgyXL4CqsiZ1PFlg8keRWqR45D5Hyq+PLZIZ0Qevd6uqVOjT1L+S9VGTFaS6NIh6PmtZqyHEiDUlGttEgdMvJarTrlnINSOUP16UKSURM3aDqQxkw+PDC+NB1Iw4Xqng+kMYP28O.ULbQgAwZRIaGyqC58TwdMUOGzdkxbrzz3/zIa4UMHU3X8cBhWun4a1X5hsxQyldEvwH6Bz+nryhZR9a7)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ALQ?ABYCAM?ABrlS35)MFBMVEX:/8BAQFSVFTT09N6;Lk5OT19fWvubmfoqHQ+vnh/Pux9vXy/f2s2NfB8vGa9PIxRf7)B/klEQVR4Xu3Y3Y6bMBBAYZ8Z/0GS3fd/21aONSJxmybdbA3qnCuEb77BSCCHb4g/Fd6Voz8f5WhHO9rRjna0ox3taEc72tGOdrSjHe1oRzva0X7U+2Y0iEiMtWjK4SixyQYomnaOLjVGEaE1DFD3if6wLpc+gGCxY/TYpdQa45HQ1negFaoBKuhB0OQjousTaIW6KzTpiOh4RDTpcOgK8VfopPkRWqeiVSDdo1MEMKgIyM/6luQqADHPQyvIHTrRsj2gp1ez0EvT0EFADd3NSK3V1DVeb6QGEKDWKiDz0AnkBh07Ngno8E4rSO4PvMxCN6Ru0QK5+QrUAR03GxLnoRPIFg0SWhlkQAuyuZqGDhHKiG78Ec0GzUR0AnkFrddeQX+eTqePZVnW9fwedPOW59HWK+ibbIDzF9AZ5J+gx/oWrK+i+6N+4fWwvoy2/gKdgefRwZqKDgV4Di37QQeB4eNiVoUYevaDlaPmyeiCoWO3ZrFlIPQKRPvaT0YHMXQComoREFtEiuY2Cu26REBno5Xx11RyR1fYztSLYTY6iKFDEjNv1Xq7WsIE9KOSqqb7O3lchXZMepmIfr3xmLRcdo/+7Tlvm6DsEm3lpKW2Cdi2W/RY0mJH7QdAj/2faEc72tGOdrSjHe1oRzva0euyfJxOp2OhrfN5XZc2wTT0D2L+qWgE/awt)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?APo?ACOCAM)vgeXY)wFBMVEX::o6Oj:f7/9/v/1vr/0vr/3vv39vf/+/20s7P/9fr/+PzPzs:9vr/9PnKyP:8vjPzf:2fvRz:n5v:8/j/3Pt1dXX/+v3w7++ioaK9vLyBgYHo5ufGxcb:v:/P7/+f3/z/nGxP/o3uOXl5fMycvX19f/8/n/+PuMjIz/+fz/w/jg4OD/9vvMwsf/4vzPx8v+/f:yvn/8fj:P3+/v:+/7/8vn/9/z/xvj/wvjf3v/Ewv:8ffW1f/QJvlN?AE4UlEQVR4AezbaU/bQBDGceSLYOMjzkHUQzaHEAgE9KJ3+/2/VYfgyi77oGctr9R2M:XM9r8/NLr7D3WwIIWFsAaWABrYbPJtQFsD6d0pStd6UpXutKVrnT39PNxeUXfXy6/2bVc7vtFF/lPu8TuF13ki8Wct1iI3S+6yOelTXOxe0cvy1NeWXpIn5en33mn5Xwa/U5KnulOas3YylM6m3dLZ6cN6cm6jmD1OoF0smLQ2bxjOjltQE/qKI5PQHEc1QmikxWDTuZd08lpA/o6ik/ewU7iaI3oZMWgk3nXdHJaT09qGfwCk9E6AXS28pTO5t3S2WkDehTL4DVIRuMo+WzGVo77slxi8zddxeqh21H022JYGoYhOy34ndDlGV1/BV3LU4qS1IythH15IbH5oqv68dBIejVsRX/dGPqNGVvJ+sJUsn26F9VDI+kXw4o8z/8vutKVrnSlK13pSle60pWudKUrXelKV7rS+TtDI7Ji0sm8a7rla0n6Mjo0G7OSS2S+p2+b/EbW9u06vYIA9DErucTmndFX6XGWWd+p0IsnQCcrJp3Mu6Vb36TR60ZAJysmncy7pVvfn9JLZkAnKyadzDumk9N6erPt4waV5eHUclgKc0IHHbegf5Nu/0GJb3T7z4i8o4/6eMwv+phPBj2jj/pQ1C/6qPyhgyrYRQ/2hn72clfpZ6+ODnaTLvIjse8gXeTSm92jA/mu0IHcZzqQ+08H8r9C31xegcI0n1oKK8w6udg:dl7WLUCVUWGnn72DP2xANbOJrex7LXIu84vbbpCbTCygXX0++k1U3qUHx5s7YcfLApQb+9h5L8vkwum9GJLns06+4zXooIG1iF/tWcHO7KyQBSACzdMJewZkWZnTEh4/9f7/+HYY+HcRd/kLjqHOSt091lYoLwn3e8An/ZtFjrsYfm47DoJHfYFdGunpz+2pMUvoBs7Pd2nLs0H6MbOTr/W8w10Y2emWzk6/GhnpkO+J9jXuz3Q0iHPbVnW/V5l5a465I/e7OrX0NKU9V238p4Q/89gC7QdHvIYFqRZOsJLbzneqx746cjD2DGOtXh6+kONHSMkl5WYDrS1P+WIrrR0kK0dy3vJTzsvHeBwDc9p74GHnI1u5eYC8uXj05ca9fOl/Pl5vE7/l/nLP5DXJejPh3csr+V15NvEQX6/kZ2wZ5D7meyDXPeJ7ECWUx7jRPZmjPo1VDH2jb3ssEO+e3NfRaawW7nv94nlXvWyRyvfVURWXrmrMQZjN3LyuV66djX2dMnxUEijOGEZ3/dLruTy2q2jnV6+2YXM2unlrfsgH+3sckmm5qOdXe6/gO0cB81VV9jp5ZjvgBd4c4AdcnZ6AfyZg3/f3t/wLk4pmmT6fbvrU7tYdE31+wN1ZZZji7p/w/fj3MbUSf5G+QR4xVb9QN/jDcoLu4QUkzbT97JMY7dRLGoT2gNWN170aL/LE3OHS260j9+vnru36/rT7lOXO2Z5T/E3u6v4cqeWI7mMdp+xkeOWJ/hrGOwt5sZ/utQK8Hsb7H6KExavsSc5Y0fo7bKeeHX8dlfdYBeXgN+o/0aBnG92acDzy+NPuxyVXi7NeK1dQuWWj97RLiVDPqPdi0xrl0nsv/Zf+yaz2lVkUjvkM9pXkTntE+bXvsmsdhWZ1D6p/P17+3+Da8z8iqWrFQ)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AMk?ABcCAM?ADzs2HH)YFBMVEX:/9eMEpFFzF0RmAoBBiDVW+cboiyhJ7HmbP/4vL3yeP/3fDpu9XZq8XmuNLesMrtv9nhs83+0+vbrcfjtc/xw93WqMLSpL7:v7:f7/7vf/+vz/9vv/8/n/+Pz/5/Rvi2eH?AOGUlEQVR4XpxTUZLFIAjjGAFB73/LHSrI4sebafNRBYomRukTWEXEJhWGiOTUi6LjVNZaoq1/rLUisxKZUP/fnm6fVfkUl6JvRR9QtPsS8DCZtKoFEaECySGOiyqkoltJFddoWxnoG1gSxxXzqAmJ7XQljA60LBiXkiLPt5IWYy8jgY9STKSvwDuT5jjCBqwC190qJVp17aF1JYLdNwhSDpX/r5FkB9hiBaQNx5IRlPgZhGkc6nXudfmo4AWL7u4h70HjRgrl2rCvpmC4AuAZDUiLSslMukxD/bsJa/EqJdJe0HRykVb893CmoGqyfC9xeG8?gD1Rp84ewDmcSqZnsvDTi5nVwc726PkekCR70h5qQjeFErq9N4AIArmjJjsYVB3+D5sDTJZOIzhBWl3baq3zi6PT2u8E46fn67fD+WPsXLbcV6Fwei1MYRwagsQ8v5vuT87YTK/tFXNUjVgSCWv2s58flNB77UrxfswdBNCxsZEBDbnjCcu4EnOufi5MK/X6537FcT32038eRuJ6L3wJ0KLIF9xWQlM937HK2h69wKM/KJzacM0xZDzZr610aIqqrFMvAYmhND6hYEKFgiryfTObSuXcw8vR3dezEyfCLd4eb08TnbEruFJvrF6r7QSXvPed2KFpD1GJCIuOfzRpNb/N5n/mhDbLKs610kp5WOZkKZqLytm/Pi8TAxWNQHmX5M7/YpoSY2fayON3kjg/ZvJEqmPx8OevD8mKDAZU+lEvC3VOohVRKdJl3N7vXYEjZk7Fq8mFcXZCca9wCTdJhjCY1+q+o1xOXVsaXzqCdGItlkqJeSN/2ZyT8jskvM0MGnLZPbLhYjMMjkQ7LOKR106hNSOj+TScNKkFtqG8lQFm3NuqMmJ6B6zCghHVVEpLXRMd+tSMXQeLWfbvmmsQX8qIh5jmJQSTWwgYgfWy4R5dqUxU7v7rJ2bryLTvHOtNrbOGQZOqA/G6T3O1VBMzgqa27lhXbYqgIf3+dER0Pdfzub4gwk+i6kgi2TGGKcPoQwwgUzfLQKnA2sVaHeORIm8S1SbJOwfk2m0BiAj7PWIyFFC3FsVwEE8KljPiEmByfj0mFIRAQ459m/N9TTWzRxTOGCSeDTrfYjjVjHENKe21h61Iqpy+uQ81X6y1iS628QkoVbZnr3OgshCWFYzK2UkqSZysGpStG4oMeqbsdiUPOajGZh8H5MKlgQ+0kdDsKKSPMjHuJiFmMVksg3MRF6gSkmIzDGlvf7QLA7VlM0Om5IAI6YokQfJaFkRxl6xA1IDGrWLkbw+TpuC9MIW8vlnEzDH4nRLJY6FmkCFQoAJL5NqfEoWB3sKZ/+B8OWor2sOha7cbQWdGMQN8dklvl8Buu/WL+vUYDJIKSFok303+TUh44FVxfvyHBWGCdhyDpEZQmKi/302yc1vZ3+IuIwatK0wEUzK1HgSQuLtvp6Ifr5Ym4FoSIA/Qlsi/YvGU5JH5IEMTPY4jl8mJCYtw4TVBFAHdEKkxP6bZtVEYcnG8HMnJtR+Xujc+kM7jUynTIsw9GFeAt8m/j/a6kCFQRgGAuh+YoCsvf:zO3wSuQwNbTsqlUAIY+EKsiQeHq/+oAGgO7Pv3LoTJREmUK8JzeKcV1DM+EpBvsYo7xyyZDmw9V/aV0vDlFYs25uSiChtYlRKhKH9IhAEciiEJAl5hALI3YyjsfxcsknlVhTwA3S2JP7STUys9YTKXhnqUrE8UTtQ2ZYgVYlrGtNggeJWwCVz2cedcc5KFmWJQhIpSfMjOE9kgSoUQ6uk6LUfydtJtkNrDGV8fJ/SlmCPUnXh+0eDi5EZ4qU8uFV7IkqtUwPOy5LnHUFCS1zyftLqb1ut8krcRyOEDoAhhQZkEvscv93uWf0DzqZtO/+rfZL0uL1rJGwAd889cvtb5LRetEg6X1fUC4lzv2apk1KM99e1wHTOXfjzLTEofxN4tw6c5+96x7lllctJ8ix69b4kNZrLvG6aZsyPwABCf/pFy+l1GDcppCXoXH4gfJajL4hrZSy+DStQscFY52mZVkg4dwLlkoyiDZK2nYiCSC2BSNLaK3nnQ3pLNzPUeKlXfglJyuR8jsBdi4QdkhWo5S5IRXyf5P0Wt6TBPV/CFFLZJtJxLnjJ1FCpCbtxt07NgQOJBaSwUiShEiClBn2vICxStUSpYcfJXyweWIIJGg5CFJKTJtLLEn4DOGbIm1BjRRiABIlg5alBOljLzusqiWgQKK60tEZSZUjQY4hjyRZ2kLifpOkhig4IKHmZ1b/aYWQ+mCItPMMScpXEqNqCdL+StJpeSkBhRxJIgqJwnbvCwiYOcXVEqGthCSUS2RfQHp1LUH16toBkRUEze7jAUlK9UTrnNcem0RFhfb387p3TZKlkiCWrO7YaYtPmcXmkGE6JVPv9ie1WJWqZ+IlIohzT1733WgaSoRcLbF4RvL443GH6R4dffF5tvfAWO1qCTIDb+mdG0ykdAly3E6JPdJbi1Uwv0kGLdHo0pXWY7cnRVWSMX9753SDDBgppzV+5zPJPUrGV2hHcSy/jhBL3LIAMu7pPP7nuchUJnneIJFmzyBULyERn4VEA5IkQ4P0+/2IsUH2SjJHCNIS+SM2sQQQdN7/u5S4CRJTfKRnSychUa9cMnw8Solv0Bqvm1ISEpNJRkiEDYwEOVaJTIQ42rQMsQxNFHqVuZJgJJCYi4uTvgHlRhLdIoWRZBIDiMYFCjkyioVE42dsXEePVTsESYwmoCDRUfILEj0EalpelHmXDNOkYMsufE+KhcRkEvuIknhne9s23cxR8kwaXyw8drIEY8rX1sGZStLNFNE+YcVIQHn275IeEluOBH04gV5JsvJZCzH5K0aISKGgGpu2ZQkrsPbWzZ4ngSg5IPFCcuqU9PQmwBK3oyjhlzK15HkLErEmCCSgYKfINUn24r@EDmHg4QbwdfM/GJIlPQsSUuL24QIlu5A6yfFZ6JSgtt+n4LKJXyDVkkh9noikBhIfJTI7BRMlEJBEFBQLgHzSZpviSBIlBzoLkKy44gz3YNk3I8LiRMoShxLhNCXE3l8jJCYKNHFKfhtIAxC7PK2PSVwBsnGEoVtkkO6u0Ddd3eKJDdA4kahyfKRVCXpl3lW4szeqZHSDYJbKpI0DUtMee+xtnydFu9N08Z00q7e42wWz8HHD5IhPH2Rsj+OXMIWpmhIjlOyzrlEQUKZQiJYEqolNWV3zq3jtlkZ5EjYhP2WmGy/w3F0YylxIyflQMpiJpi4IYYxn69Tcssk/ALkQF5lErNHydVXIpAbrVCYKVE2o0VgKG39VEhk25IElCTp3iQbJAck1C@0+8/Q69zXSy8qeDghB9jXusgMWZeXrUEisxxx7RtlGw+VkkU+Uw6dQGSS4Yg6ekwI+mO95mEfcG7iCW4a/rFLBkcSCZK+Idz+LbH0l1KcAhu1QLJjShXEoKfEs2SenVlkoFiycZBciQJOSAZ79zrN4IEDqT+KUEFxIqYvpTADYk3mEkN6bYooWoJd274L0g4liBmARIpfnuXvH6cCWdElo6ra+xdX0l+s8Q2cSbXEnRKBkAgSatrHUOFh?eH7ayPqo0vPZiw3tRpPw4Tq7veEG5XMJ8lnhVra5rCf9flvT5jgeEu21BsvNhuYVYJLFQFIxaIiApIURZc4ahYXwBmCTaJD1LTJA8f54J8pwQC0tz.5+p4FpLTo+LP+dxtGSRD9+kjyihIqS39l3VciI1NiVz/dYopVsW5X0pqX+m0QBZi8le4M;VZIxIXkUUiMCNkPULKFf0I8GMXVgW1DKr2XRsnznxIDic4k2O/c1KLhkb57aJjmCge6kryvLnsNAUVDIhL/b5KmlPhTdiXRtWTYtvAzXz20/rcEI4mLS+1XTyqb/0fim6aQrIA0tpQEytDWkuNbIv9Xvd3tvAnDABj2aZwoqixFIj/g+7/LtXUgBAe6b9O08t4AeWTTgyr0E9FZRAwhGDhKUTKVKPhacs+89whb1nv3zO5XtMZBWtYovMNF33iwrpbbwxjdK4ZRNph6wdfiKyWZdhKAw0gzCuRSkk8lG80qSXFaMrPYMIJuDvjOrhI8nQ@opOQu5ZMH2ZSMEicD5AwkETrJAuqSFWSziWAtSwIBXnXSfxvblezBdNJUnADCYhkuF82VEm+mAnJ2gU6SGZ0V5LPM3na1qE8HjQ3CItBSdrKEXRFG6qE4VwCHGpUoFXISSKJncR3kjiUCC5VyTOSzw3mmdkSCgPJRhgMxWGCVsJQJZSvJCVsWc7tV0TyUvmJJO8yL4eEPGoviei2Aqf1LCGskgRNwqCyoVWf6hpESlqiKENJpvCoOfokgRJc3+PVBjFwLcl4CnEWRWL+WLLQJukoZSSB5J8dJNtIbPwggdQgvSQkIJFQL/G9JGqJpji3p+TM0nQ8y5lEIFqiKRpCEcCI5BGVRFO4PjX3RW5zDpZ5/aRLgkMLeT+QyMmVRDVjczy6n4/iJb6WRJFI+sIGt4VF4pQBmkTFYfCa2AWUZBxjD7EzSCgS6iXe6u9WxpIoJWNFYkwGWCWGCAYxHUZiCvygwlwhhhN8aGrFZhkUz25lsn+HMI6ZqkRO8+9SEkndx9SQKjFt1v+3aVe8SkP6LYVbUDAwm1lB9u+f+RbJNQXdu3nSkuSlAt9Ekc4lZiAhgTzgG5pU8cAhkWBWEOMlgm+k6IyTrIbUEtyDUlwN0x5SyNcQ4CYUcmtokjjYoN9KcBfK4lpeZ0G6A8ZcQQhuI2kUfzaRG2FYFDoG6TYcWGjkoAW+vPaX7ARrxR4dZoG7lozxEhpT4G/6BSm+SYg8l4Yo)AElFTkSuQmCC!H%iVBORw0KG;)NSUhEUg?ALM?ABSCAM)o0hXm)MFBMVEVl4fzS:fO:by:3d9/7B8f74:6T6P145Pyp7fz::U9v3j:rq:zc:nW:hthqPe?AD9klEQVR4XtTZ2W7DIBQEUKS7sHjJ:9tq4RIjgEPBZza827rqLoaTxUTPsNSkdAZ6QmHvVlMRXrNpifSZp5uaPY3NLsbmg3f0Cw3NLt/NPtGs+H/M9tWs9zQbG9oNnQhM4uINThyFXOMPfs40H7RIwHnzGRqoieaj8gSovmbnxVs9ofknFn3j3iwk8aZcQ14ItLErEvyRpPNWWY+INt5mWdKzZIMTw9G9FAzuzLZ8bIsOfNeKIUD96eY9Yg8LYk5/xAFzb9htBlXBhXMU1LEpRfxWDOuDCqZk9Motp+MNePKKJpdZnUSOI5R5umAbKlo5izMgePoNuPKII3mZUG7zocw/jh4eoVjKiqDtWy22RbmwTuJfqO/qV4ZrE8z5cxUODU3dkQnZLgyEjM4jeILZYwZV0Y4MvuCagLH0W2ejslbs36atbSSdeyI3pBxZVj9MGswh6dhwbVJvxlXBoWtmcLO7EsmsJM6zWoPyBy2ZgrRXP4Ion+4+s24MrZmCtFc3EcOtuc0wiyAvDGHaIanMf44qsk+fJhDanbmr3GdZlwZW7OmZjY4eCexlJOYQWVo2Jo1pGYBPtB2+C02McPKiNH4QGK2DWbXafZ1PzVFcmIm0xJuN+PK2JpDzixNZmkx/6EylJ+Z+B3amm2T2baZcWWUikE2ZjVtoWYzgZbDZmk0S6tZLRhG2Owbzb7V7FHtY7MzjdEWM64MbE73Eaex4DiguZoMzGAfYY5vMTO4NmBG0xl9dVyDGVRGnZmrBpsbNKLV4mGEzQLaYOyI9mAY1Zlt1d+Ox4xoAcMImen1OU8e5Wc0Wt8x2Qg/E0VK5UCy510kYxa02uqnSDTTPM/rLvMrS/OwOd+8Jrm8ec3k4uY1m2Fm/Z55HWT2hMz6m0Hm9UvmSZ/pNsdc3vx459tmokbz4yPjzeN745FknHk5xRyZKXq+qnl5FDLMHGJ+KqejFQZCGAqiqCBQjP7/3xZiL92BkDbzuug9CDv3+mS3V9QwZn5ivsqZL6GhODnN1u3zn3zNti9a6vGHWQesTtYSi4bnAvlpXntLnbzdJFiVyVoK2DM2b+9c8xzevn3NN1kVvbpt+LfxL3lgiewx2Rwku9nObVPN56aSYnXOv+YVLBkLR47M1ogmOzfvp7hqJpsRDHJzc4Na/TJvgkvm51RNfJrMjhYbwQwtxFUzl1IvN5rMUJ/QvBnBuq5gpppwcimG2dHqh5leiWtmsPOwcc29qcMe5hVwKS6ZG1aysOF1N3eo2dDLABqAK+atpRwejnSZXa1ic+JVvWImm/RkpsvsNZSb6dVlJTPYeRiRGWoGM60El8yYSr1cgRnsyNxUCK6ag6mMyxl7A7N1SHHHRNQV)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AO4)vCAM?ADThAYB)MFBMVEX::suOjW1tbn5+fjid3z8fSZquR4keT5+Pq1wOr32vXZ4PfK0/NPdeTj6PnkT9vNZmRw?AFF0lEQVR4XrWZ6ZaySgxFM9QIDu:tlflIyscqgOXpfuvkmQDp5sIGfTopdT7/V5L6ZlGTBNzevF8PlNizuSZa3/QCSaGCpdp72meS6mJgFJujf4k9/uGehtURhJ73fdRdp7WOh3acFCB6tqcEJvOxiKGeeDclZdEueHhrhxQZ39JnmPS5HQ/lDnQ5bAClVWqEVBX3dVpSvtS3GhXq7e9bqv3ET3QNdh03Y0x1m0prkA3vIaG1cbzdnzqSgZds0VKoGuw6RplBl2zjX3b7iis3cEWmZyu0ZvpwifALdS1FqZrlIGuswU4CC9GN54mNdCFcewWGpNP6CZ/JyI9yq2RQQvCi6FOz7NnDtl8UEsXkV6K6RbUTStweUNdmDExiwhzwjMmcBX30ZW8DW5iecHOfwp1/ZhdVrp9ef6nm1JiFg9D9h411HVfxxI2pAochtEt0nwqkhgJzhyVOtYt3taAy5tlwLZDFumuB+omb2ts05sFwovR7eqDlcSRIBg6HIeaiYkH0gK60MF/pZehboMZ8foubbAtRlfU3yeyAdKr8gGM6eYurqdais7q+igYHcPP0ZAK4R1GN8GJg2Qkr4vGZA3Apdi8p3UdBXXxkmANDsL7sGQJvcDkYjCa08Xzb9GtIqK5EVHLKiLdpci56IrVH+rC2O6SQBu7JkF4b+Po8qfUp7X6bE2ma5SdbhHJtNJE4DFTVXNu5Jjgj2HTU7rQxoJIGN5hdL2uiJKhuxtFh7rVdDM5xAZ+/LHFwXPGYqyHuthm1Z0gvDMZdfxfV5QcKgnHyao7XcuFkicL9DWliRdV1LUeQ137LrY5/s+bfXS9biMP6NoFGOvWvqUMtpO2mCJCW7IGugyYLoS3DKPrdRlAXTMG3ZiOqzmShHboQDeGMbz7/UBMN4aQjNk91m1OFmyF9qBuOqmrGCKMLk0ndJH+f3Vb+ttWv6pb4ci2ie7vdcNxWb6r2yxnZR/dL+iWQ10MDKxfX9PF8I6jS/pj3eG0KSVbbdo3dTG87jmofUFX/sLrtq0pi0fphK78BejuwwvRJRUAN5YU6eqR7m2bF1NF21hXz+pieGe4lyn/RLd7XYYtBG2v6/rHDPwFZzNp/a2uZRo2aiDTRV1cIpXG4cXoUgticV3XNrFAV032i7rZhReiu3B0n/AV3Xusq6qNjOu6uDpgeB8uurFuOqULDN45eF3+mGYwDXVDkulmGoa3u+UvwD996JFu8PldstWCdfULumwzmg2E10c3IicbMdYdzP8oZls/bbJ/6+TInze+07EutsG3eGmxwSVwni3HQgaUgv2FI93FvJYXtukuLfxKrTaYrazuRcIpXX5LvWDD1+TVxpZAQJzEE0ulp0OOdAOqLLr8DDipGyFeV2EkjG5YiSVf1+2iS5zST3V5aQPhNSC6kW0SaZd1iyy6WfiXury08eEFuv88thW6qlvWdSeL8O90GbcqKVF0KbbVi7q128FkG8cIvqAb/kKgPYouhbaSY925lDqSLeIOVv8aFRffo+zaK9PhiNYmCG8RcrCVGv3YQLGuypveS6n1n3etpcuCxWmB0wt7rc1ssyKwMK1tmNMb+IkAZ8yC6L42Vop2FhXTUQloeAByXjdus+VAN0Dpki6KtC/rxgU0bBHaXtRFj/Y73UyHuuSJbC/rokbToMkF3SgLLdQIbI91m6qek8ggDItvrBu3QUKPPC6lmQ51TSXrm0DBOqm91s6ZThK0uUiDSudG+Q+cSRLJ2s8yWg)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AMg?ACrCAM)U5iNY)YFBMVEX::99u797t/o6Oj86tj+8+fi3tv95Mv:fzy8vH92rjV1dT138hFRUb8/Pz/+fL/+/j5+fmWlpXqxJ3EwL2Uhnjx1brOtZx/f38?ABtZV3+0qeFeG1fWVXqzrL/zJlhja+0?AEqElEQVR4Xu3cCW7cMAwF0GqXd8+WtU3vf8uKsabwDFEziWJUBPhv8KLIIqmBfvBMfM8P7olxnqdpnrlTYlIopRIlcncop7VzAOHtcNr+HIYXkDB3hOT4FZyaZkiMrB0PwWrnnAJN5AhRi+O1DcFanfcKP0mcnL0Mw/CYc05RHPfKPDlw3MQpgci/1vds9gve7IyPkbaKz68ciFliQaLR3uBfNEoZL42VtLoxZanZubeF140BFu7tbYqDwyMy3tyJYUOK1Q4gjB22Py45uznydWj7kB2PWgGEv8PmA527I+gM4e6obUHEoeBo5+5og3ZwtKPEyMARVo4EQeHQ696tR5skFkfr2qsW6GmTI+ftX3l46J2qG5IddKybKof0R5YQPB09fixBy4ow3iPy1ZJzBFcoQWvqZOdfa0n1K/2ISHDPLlMUmWvJpDEHzX5lGi/3I3JjVR6JZEw5bGRMYc?REMEMPVDEsMQSZSRgcMY323GG5MkDCDPZDpvifx/SGP8s4bYlHATm6Ihz93p93aqgHQA+atAlgVyqh1yWCALo29v0i+UBDkzgYAjMzDFWk6QFQNRGEFgQQDwepc2z0nZQPKCvKL@eEEuTqwhBekz471BsiSnhEkLwg41vm7JOwg9xtAIAIRiEAEIhCBCEQgUjQWlPHSWFXX6srwQcZBxC1OYzyPAV2+xjH/TsdiZAoO473vNnLmMMQeYQ905+3Uca1gt9OnLbCdYajjosdur/npRPzBrfHD+VzB1RsJ2dwCEDMkhy+8DN0f8ngmPkpw3nXGENfTVUDoY6IzDfWDgRog9MHdmQOx8DVAyFKKC4QqbtlAiHaDD4RoAPlAyJacHeQeKRCBCEQgAhGIQAQikEqLRinjpbGiW10ZPsg4aL8B3f6Q8T5fgND3ON4cYpyXxBj3YOAB5vi9Q2z9DmkOy4OS+bHVuIODmCfTkI/c4/hGKec0ZJdXNUZgmHWAMhZe9OB0pskvSu7zqCSsx9N9TOPUOuVXbx047Mtwzc/eIkn5gjyp2zz1fVhHlV6Geu9N0yjXE5JCiFkgDrJAPIKUXU8vG29Sei1pNyQFEHcNASF+MLB1k/P+ThAhKYWAQ0NAQkBK3h?CbFPiiF6.Upl/wiJCWQ7MgSAlIm0fYNSfhBsCRk.8ILWEHwZJLljCB0JIav1pxK/M8T04HLClsQJKj8BzBjHmaJrUVqB1P5ZLcgDTXmPKTHT84sx0b2rZckhi3hZEvqrWwA4p1Im1bLAEIKPwquPotgExKv3wsAPmcRN3EGfO0yuV4LOlHMMTZ4bMBiVY0RIWb9LdL0DTm6D3qEL+YWekwfCHojU8a0mdI3t8gOSYH6tn3hWCJm+YvQDIjSy4+OdAUhQEEHxymOaC5FoN/LXyUm4ZYhPo2O0BwcUVD9v/8VgMpPxDrgJSXKHVAyovGaiDlZXw9X63yxqr8HBmrd9AnO0CI6qqG4QOG4AYEDva6HXT1Ww7Zf0BH9yM5FKTKkSnuEI2hHFUOsXHPvnQg+zuIa4XiKQpqQHaDEBc9O1ys7wOZFHH1xiRx0kwdeI+g62muEPSDAZ6QOKOfcHCVFP6o5g9Vk3s4mHpeS)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AHY?ABbCAM?ACRS4HL)DFBMVEX::R0dHr6+u9vb03N4B1?ABZ0lEQVR4Xu3ZwQ7.AhF0Xlv/v+f3ai4aJDe0BoTWDOcltimworwM9a9sZ/xK3bYYYcddthhhx12WFvSfoUk+xArhmvk4VnZ17FhHsrXsC5U6GdVKKFu1tUijOVquJzNVckR0rEbGW/gMPIHPkx/+YW3vS4UqEAKZB1o6Zl2DxtqsSctrEItJrqDBa+xBtZ5i/Pb5azKpwIQYJNS5BKDRT02SAYs6HEI6mJFsjmb9Djrche77mSjDmhOA6siqx5WkNV5dlgXWfewG7K7nR122GGHHVaQ1R+w83UB2B9+Of7ld/KCLHn2+Rl3sQqWPm/i7Na9rNHfakM2Ag0RUMPAoQxwsKDLpqm+eEL0behoNnOkiRt1+fSE1WDIlNUTyzK83QgXcrKJtIFb2xU4H+n7c4chKbkSndiM6Oye0WzlVVCXGLvE1HAv3bYZ9EvFLSoroJTlsAyOB4vkMHP5k5Zku3E3n9sOrD0eRUsd7kaAx8c)ASUVORK5CYII=!U%iVBORw0KG;)NSUhEUg?AMg?ADHCAM?ABr0Ox5)wFBMVEX::2/f/u/P/i+f9OTk7h+f/j+v/x/P/5/v/8/v/z/f/m+v/p+:s+/9laGnk8/fT9:a6e5wdHVaXFzc+f+rt7vW9/96fn+Ij5Ggqq7D0daUnqG2xMrM3ePL7ve/4+7M5u622OOjv8mas7uX7P+J6P+U6/+H6P9o3/+c7f+j7v9t4P+Q6v904v+M6f9l3v995f9g3f+B5v+r8P+E5:D9P965P9q4P934/+68/9b3P9T2v9N2f+z8f/+:9x4f8/FNg+?AI/ElEQVR4XuzYWW7.BQFURbj2Ribmcz731V6si7Nayl/ERWldnB0ny3w5jl7/6kNICbkHwLpLcWHPESG2MAQGx+i+BDFgby+/RAGsoaH5IEhNiZkv9+LoI.lOUgIWUOCjK7DEahIKmyBQPpum5WBQoFcr12MYthQcarS5rc8syQ6eu+MXav2UCaUhlHGg7kFprWLIYCubgiRp4MQ4EsyyUkTo7hQELiGAwFcvAtawbDgZxOh5TBRAsG4jMaWT.unXlmtxCgexqnzTG;H46lAJw4FsXbtQtowoFEjTbGOrpb63gCBVE0oWDbNSOBCfLFtZEoUC6fu+YBGFA4nJolkihQIZhqFsSRQOJCRK9UhhQWRJFEkokOPxaCmVKILQ8+cVXsThB8vtFv5vjf6zRPxM9EqB7KLkkEnGEQiRJJ/EQWYSZOslrZPYSW.TEKGBEl+XLotEKSRxEzCgjRmkvy2QBBJzG2BIFWQCLLothxkRkF0XOa2SBBNottiQqo0SdsKMukFTIH0CaJJsJAksQ8JDNKXbosNqQ2kI0HsbUEhmsQ87XjIRa8tKKQFQwZJ6hoEeXF9+I6uwfUI2UB6ySQWcvoLkB0QwoecVwkfokn0tBMh5/JtPR3kH9JQIXzI+bcgn3zINzv30twmEsQB3NMeMQ/JgACBJKQkzj5y2FfV5rInff+PtfQ0qI1J0UaRiFW7fYg4GMyPnkH4z1ScMtCU6gOcB6MkPO1p1Pk43hLAWQ/eulkhDkIl4HoQT7jRUtCW4uMYx9vg5oCwo451nu+guZjWm7YPJ0h0DMaOQgzEuqkYTHBssrzag6ftSlcblDDkxrdfD7XWudYIMRDKhIudaA0AoxIAfYYo2ITjrMGGbawNqPkgAPgLIUnAOdhXsc72oLqLvR0ZXNS1Lcpph0wfYIu7hO1Ng8nAjEGmP6IIJ5O3J2Nhk2cxXWAPldZZ/TaIJ5QG2OPJ0za2K4ETQwbPWj9fF7LGX/pwOnVTNA+/3rYn4wRIHOfVGlR7HPoHtwmyHkC4IbeBdPN+v6s1QugKjzoQfuzmyHuA0JUH72je6x5EumtBAkk435GhJUF+ueZkx3I4rPaAENfOnXHJyTQOWJPcQMyTPWwfQqsYMvY3+99Xvf3izSar0GXptpWP37UsHDRWhbNdwS4c59i:c4UB/EXYrUHp+BY5VWdBYi.5zXoMbnyDZrtAnCHcAu3LtNtx3vANzYEjtyCJApEiqDXWjLhXFDWyNl+AlFeESZIzKlh0Z62rMevDLKdU+E3o3vamlXPo5RL7fdfynEvv/XCuT4/d296Pn/1dv4y1D1st4jhEfWYK7fI4S/Re4W;5fhSUcdwORF9XIEDDGeO+D07blsGZe5vSnsMxJhJh3ABEWnk2AsGN+yLkhX0aXAsoQdvwoiLA4UyAMID3GnJCR5bKTIH2HO9f86355qnNDJkNYMTuk35CLIeRgxuyQoYNH1mSItatosVisgDWnqQDrwXh7EtL4YQlr/CdAsCGrYoH1GKlTWxMhrkuLT1P/1GVHryEXQax9LDDgzXYRSaxZLY1y3ZUGI74hMbCv8rg6gBXSeIyAaK0ZL8F+ObD+GUgnQYoiJDi6jlaNQy2bai+jh7ZGJRb24QA1KCGNZwcyzg5uCAGmc/wZ8mnxWesoCo461tkGx4mF9TbPKc8eKUy6a0ryhTQeIdyOoeMqkEWuP0X29BRtdZ5pfQAbzjDLNJ6VlFIm1DchMv2KDeFhhXlDz3EdiA6QKNL6uNxgbhjyUkqirRSAV3lcA1ghxP6KDeF29B040y+FmFeQR2ujo9bL5boRAEHCppTkY2HjBAiOLG4HDqu+YwqkmckrrKcnAPMKUj66AIkI;Mch9YWvATJEwqrhaGFjkE72HEdyIbmN?m0GFoUQodbxOQX4buCSKk8QGCjN6wYsdvF0GeCMK33x3OaQ882bEj.XCI0Ve2l9I48nRY5DjD3J8BwQlC/pCpNTcAnS3X3qDGCJ6JeTfm4z2H0njCUJBAzK4HeyY8t9ULYdja1Vgdam55QgdIVUmfo9w6i6l8dgQbsfAgRCpFwwZtkStFg3EKPc6QgfIddZAqtHZzruIaTw6vslAB0ZZl0JaicV6GJbHZyhhtk8qdPCo6rcDHVMhLOnCh29DTvwK5zoVHAMGO/66GNJKWMvFT78KkVcpdAxHFQ0rdEyFkOSJJX6mIPJLn9FrBzomQ7glncTPAiHHkEGOCyHcEqLMAUHHCAPzuMshJJkH;4+g0cVOvqQcVUxhFDNAWkcPMWZ0bbjEsjyx0D4sYoHFTMwa/iOjpgZIejoM1DBjssg7KA58n5Lnvl8z+qXujtIx1D9ujsIv7C6ewgpLBdD7qnaMH5Yd9IKhpgiTctysXJN2WVRPirHEHlxPJdTmBYLafztIKpxoKRcWOeWJW64UBMWx3Mc74SFZzeEmPRZN1U9l0vnijLWH0obOuPbON56WhwvrvI/1jWmX0IafzOITz9iTKLjsnCuLDV.mfa66gAKGWTHLWmnxLS+NtC0g9aP5eq60j43IWlmRaSbZ6JEIy/WoiQxt8Ykub6Y6rOHSlLStsojY9juSNQb/cEESLT20IwuEpTZVOG6Gq3BhfOZC0PLQcAa4IIIfZtIVg/pZFNU4YkAL49KwmCEiVDblg8tD7rOC0IknYQ9/B2CJKFoTUP5PASgiD61TS0JkGENP5mZbqhtU2jAYRuQXk+BSKk8desqCkMHzBm9EBfiHGdpmCLNEZI+CSIgnWlqzdcUQdH+ikhjb8+ZBkgxhdpW+ECAk7x7hPLvzUyNcLa+BtCSAJBUkYGs19aBc+fFJmKD438aCmk8VeG9CX8HP9vO3aQAiAMxFBUCOn9jywGJKi4loz5UGbbRynQbmEZIolfiJEQS/T1q0Ihp0QUlQbBTXJYVBzkKpFFRUIkEcXlQbBMOcqFYJniEiFYLhtiiQuEqBEQlw9xhgxpvVXIRwEYAlHCIB/ixkBcIYUUUkghhRRSyHebD4D0XuTEORDyXFAazIZQEWAghE+IZh7EQRGxJ/JsEIT/hhRSSCGFFLIDbc3i4WV/d0o)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AII?ACKCAM?ABRjmKi)YFBMVEX::29vbq6urw8PD09PTs7Ozu7u7y8vLo6OjmnP7suv3no/7wzf3+/v7uyfr8/Pzw4vb5+fnt1Pb:v/t6u7z0/788:18ff9+f7q4u345/7r4O/+/P/m5ub07vf29PZvdKUE?AC00lEQVR4Xu2b2W7bMBQFfblp974kXf:L8vIMCzyEKkbmIdAzXnOw+Bw4ICCtHoShzHBtpnRSzarXHzrkKG98nPJlE2h75C1QgedzeCtS/BdoUO+czh1SK88kYJaZWPokL1CB+HGeASFnDGuUzFaCw7sGO3N4a6w48ZoLcygVtQfhb0NHUrE6GaH5QwtOUbtIoesMQ4dstXeIcyB/cuoPxRcMIMlx6g90VHki/GcilHPBDPQY0SHJpvBj2SMjb6yUMgX4zYVo2maeAZHjtGgAznGi7k73BTyxTimYjQGZjDkGA04KHaMZukwK2hujCcxMAM7RhGYgRyjeKIZ2DGKwAzci2QvAjPQYxSYYceOEWegxwgz5IvxkI5RYAZ2jKhg6DHCSdBjhBmaiXqRXAsqyN9PdPgiXYrhc95vN5vFjX/joyLyHt71X12hfXUFVRWqQlWoClWhKjz8b+rc/yspgf4xjvqOm7F285ynGoNEGA/3IjkmDLgXye5XQoF7kewTBsJ+qoEKj1b2P8dYYxQYgR6jlI9Risco5WOU8jFK+RilfIxihB0jUDxGKR+jlI9RDPktNkHKxyj0GBFyjM8Z4fD2GKkY9xfk7TOmadrEBJXVR5/16WtVqApVoT5xqwpVAQxeU6FNKJxPCcY7fYcMY8B6ZgTwjy5mQXNl84WLJL6mUPYRm7lBfs8aDZpSLw4tTpV8kfwtM0FX3IvkGibQWkrEuBDwFIjRhO+3smOMJ/DsyDHGE3gmbowwAT9GMHCOHCMcgnMNN8Y9TOAsOcYmnsBaR47ReIIJrDXcGI9hh/YDdoxooMkxhh16lCLHqOMJlLLkGBsdGyjD/VB0Gx+ChxxjPIGHHSMatMKN0aGBIsc4CwQGLTvGyKD1kGOMM/A4dowuNqDHiAYtOUYvEBvQP6EHA/ZXyzeBhYElxwgG/E/oZ4HAgB1jbOAV2DGqUMAbPC3GPzZST8eWeJrK)AElFTkSuQmCC$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAKgAyAMAIgABEQECEQH/xABx?E?wEBAQEB)))AQIDBAUGBwgQ?EDAwIC.IH?IDAQ)ABAgMEBREGEhMhBxQVIjEyUWFxQVIWIzNCgZGhJCUXQ2LhEQE?gEDBQE?w))?AQIRAxIxBBMhMkFRFCJh/9oADAM?AEBAgEAPwD+qSsv6T/hSxWX9J/wpKt/WXnZ91LI9/3O/soDol4sTMNUlf8Acv8AZfiv+4xLEYa11Lfro4rvUvxDnLlMQ6a6lv1vvLbjA0i838FMN6XmZw0ABVu))))?AVl/Sf8KWKy/pP+FJVv6y80AHS8RJJVCckLQuWMsnlauknj0nen0bpetNop+FwlXfv4bsbcc85xjBWW1Z+Pc3GsC9/+D4mHT3atBQVdVd77TzupYt7IK18bd2xMqrfXPievU2FldR0tJ2ndoOrN/Vp6t0cknJE77k5uKujT9ofSg8OlsDKezVFu7Tu8nGdu6xJVudOzw5Nf4on/AO+pTSMVJS01dTUV1r7nwKt0cz62ZZXxSI1uY0cqJyRML9TJ2voAQS))))AKy/pv+FLEP8jvgQi3EvP4TvYtwvc0Bvueb2qsZGpyM1Naj9phkmOGVoxbCcnm6krpbdp26VtPt49NSyzR7kz3msVUz7ZQ78nBe5YYrNXyVUXHp2U8jpIvvajV7v8AKciJaUq2tFU+rtNFUS44k0DJHbU5ZVqKp6FM7vr8Hm26SPs+mfAzhxcJuxn2phMIdkDu+vwVltp+8PQ3HiaUs89olvnHkjf1+5SVkexV7rHNYiZynj3T1WuPA0XTVNNNqLrUckfGusssW9F7zFZGiKntnJk7n1RY+C6Qekii0ZdrLauz6y43O7Od1eCncxnlxnLnua1PZMih6SqSr0XftR9i3mGK0VL6WSklgRs8qt2ZVjc807/qB98D8w0p0vUuotSdjx6bvdJI2ults00yQ8OCeNrnOY7bIq/tVMoipn6nPqbpstmnb7f7fXWG9cOxPh6/VRcHhxslVqRvwsiOVF3t5ImQP1cHxeoekGjs2rdM2Ds6vq57/nq00OzY1qYVyv3ORU2t7y4RVx4ZXkc2mek613nTGob7VUdbaqKxVEtNWda2bmvjaivxsc7ON2OXivgEPvQfmWi+lyk1RfLVbfw/erb2rTyVdFNWRsayaFieZFRyrz9PhfDBzX7plpLRqXsX8M32pqHVU9JBJEkKMnfCxr5Nm6RFwjXtXKomc8vAD9WB+eSdKNGy66MoOxrrx9URJNTd2NvB5Ir+IiuRUVrea4z7ZXkejoPXkOsrVeayitNwppLXVy0MtPUcPe6aNveY3a5W+2c4yB9kD8p0Z022fU9ysdL2Pd6GK9umjoKmobFw5XxY3t7j1cmPVUwenqvpPhsGtfwx+H7tcbj1PrzOrOg2viyqLhXyN5ouUx48uQS/Qwedp26dtWOhuXVKqi61EkvV6pmyWLP7Xt+i+wA9Eh/kd8EkO8q/ARPDnY3mHtXJO1/opCo7Pgv9Gjjx448ueo+hgp0VCLy5Kcxdz2j+ymTmuFM2toailkVdk8bonbfHDkVFx/Z0FCstqPGo2XqnSGDbburR7Wed+/YnL0xnB1VTrx1n/r20HBx/73P3Z/hDuLReYq6K8wwrH3nqlP1Blv6zj87jPfszj9uEz4+ptp1l26vUduy00k75ldH1fO1keEw3miKvPd45+TqYdDCjd+adL+hL7rS40fVGaerLPT0sm6jusb9zp3Lyc2SNEkYmPq16e6L4p7PQjpC9aI0PFaNRXbtOs4rpG95zmQMVGokTHOwqomFXwTzYRD7lhqEPzTod0hqPSty1bUah7I4d6uUlzZ1GeSThvkVcs78beSfRfr7HxGuuhrU+o9aawvtNV2alkuPVpbbNx5eLBJBsa3f3MYc1vPm7C/RT+gwB+Ua30Tq28fg7UNurbP8AjKwcVz2VCSdTm4rUR7ctRH8sIiLhM884Lad6L6j/AMVai05fa2DtTUFRUVtbPS7uFHPLjybsKrU2t5cs4P1UqSrMvzXorsfSDYoqC2anr9PdhWukbR07KCKV006NajWOe5+EbhE+ic+eU+pHSLpDUd+6R9F32z9kdQsDpZJG1U8jZZHS4a9Ea2NUwjWNVOaZXKLjxP0oglXc/O+lbRt7vl40zqPSNTb4r9YZZuDFcN/AmZK1Gu3bO9n0x7nZ0V6RuWj9JXGKtmo6i/XKsqLnU8JXdX6xLju5VNyNTa1PD15H3JJCYs/nLQPQtrPR9TpuuoLhYoa+glnirNk0z2VFNLjC84077V3YTCIvd73ifT9I/Rrf9R9KcOp6Sj01XUVNbW0UFPc55WubIj3P4vdicmUV/LmftBJC+Xm6ajusN;I9RTU893bEnWpKbPDdJ9VblE5fwgPSAS?AQpJCgUcYvN1MnAcz2p6GD2p6IdT0MnNCPDm2J6BrUybbRtB4Sw3jM2GzQlqw0Qo0ugQsQQQSpMpKkKVLYZWsk;C2GU3aFjMuQvWzQkqWKOispABCwDn61/wDJRatftQtssxnqdOPrrBw9Yk9v6KcWT7/9LduWc9ZT8dzjJ72fcn9nHlSCe2znrP8AG75Wev8Ahk6ZPtUzwQNkI/lXlKyL6IWhVXv/AIKYNqVPzF+BthbT1rWvHlqjTRqFtpZDJ3CFkGCSVUFFLFVJhlaVShYoXhzWlVylN6ln+VTMvEOe9piWnFUtx09DADbCI1bxxLr6wz3L8eP7v8OEn6kTSGteqvD0GyM+9v8AYOF7AV7cfrSert9hQ+Qt79RV2odbUU9TPRUTeAy0VPVmfl7qdFe9mUxJiRV82efLw5H2B8npi7V1brnWlvqpt9Hb5qRtLHsb+Xvp2vdzRMrly555NHLXhOm7BqO3XLj3jWVTeKXYv/Gkt9PDzXwduY1F5ehfQzNRR9us1RM6f/tJeoSOZGzdSbWbOTPff5u96/Q+oPjejitra2p1h1+eWbq9+ngp+J+yJI4lRrfbK/6QnmJfYkFiCVEDBIwDKuDejT81fgpwnGtH+qvwVtxLfRzGpXLqwSiE4JMHqoILEBEqlS5UtDK0MyuDUrtLZY7GMnkUxOmXyKYF6y5dWuJVBYFmWFRgsS1O8nyExVCuXAN1anogK7oazo2/WJ8vfdIdqXN9dBfr3a3yMa2SO3zRxsft8HOyxVVccvHwPrCBlO2Y4fN3PTUldaaKh7fvlL1bH/Jp52Nmn5Y/MyxUX15InM69OWd9loX08l0uVz/MWTjV8jZJG5RE2orWtTb9fDxVT2SAiYnGGZBcgtllKuFLQ43msfkQnanoVy0rp8WS5UbkrRfqEuhX3/stTM/MX4KzMYltWtu5WZh0gAyeg?IfJ0Nh07Prm6XeGHi36nfHxpH7vyswo1qN+nNmM+JpX6D0zX1s1ZV2iCWpmcr5JNzu8q/yelbLWtJfLzXcVruvPidsRObNkaN5/1k9YIw8W9aYs97qI57rQx1MsbdjXOVfDOcclEmmrRJZ4rW+hj7PidvZDz7q5Vc+Ofr/p7IJRtfFTWilsOobHFZYFpaeqkm6y2Nztsm2J23dz+i+B9QYXStmgudspY2s4VU6TiLhcptYrkx/KHXtL1c2tTNme0YNNo2lssdjPBLU7yfJfaT9UGUxTysCwKN9qmAaAZNjIqbFCVLUZFDVxQuwvC8fkQ0i85nH5ELFZa0niXT6mUPmX4Kbl9S8PmX4K4xDffvvGGoAKOg?Hm2+lfDd7rPtXZO6Pb74YiKekc8Dn9aqkc5Va1W7U9O6d)cdYkHXKPixbpsu4T/ALF28/7TkdGxSJYmvnge53eYq7U9cpg1JyrNIZ7CNvsagK9uGWBg1AydtQFwE7VQTgAwqUU0KEwpaGbjNxo4zcaQ5LrM8qFirPKhYiVvkBpD5l+DM0iRd3gvgQ00/aGoAM3W?DNzJN67ZEx6bSzkdy2u/wsAK4dtxu/nAajueXf4WAFNi72u3eX2Lg))AE8C.SplBXapcBO2JZcJfVBwPk1A3Sr2q/YUbE3BZGt9EJAzK0ViPgACFg)))))B:9k=%iVBORw0KG;)NSUhEUg?ALQ)xCAM?ABEbnNr)flBMVEX::n:rD8efE8uii0MZ3pZvH9evq:q+7OLL+e/K+O7N+/HQ/vT9:7e:jY:ZEcmjG9OrP/fPM+vD6:7b:fx:zR:Xh:j3:3F8+mCsKbI9uzV:a149mNu7GXxbvu:tsmpBSgHZfjYPO/PL0:zk:mr2c/J9+3Ac952?AFiUlEQVR4Xs3Z13bjIBAGYEC1917cW97/BVcIIzwQTnLWym7mLol1+IJ/GAmhLcvemeZgWYM5l+va6KXKGrfNNbgmczlOjb4q/DB1gDJGO4uX8qkIufo/OkVwzcOpanHHALvhnMp1svYz30ZRfU/ywh+z3iCsDC+Y2vutnBH2KjhwQL5PU4v62moKr0HheQ1HdTkhyE55WUgpcwUo6KTPRr/Ip9iJKPlxSfVlos6Jm8D7sAV6vtwLmrhDyJUF+cA5ZRIWvp0ZBvGe5IBejJCYHxVtrQBbRheZ/eFdmxjfZjJmH9Sjo7qdrhBNL5/aUkFjU/xQxmHgjyu6TAhh6GGFuQp6BZyRXL09ekFY3Wk87XP6BRrdaD4kdJEndwVtX15+iOj3M4eKoeuRcLQ+Ai/RGWRzndFBp/YYAbMWXeIqLHwZXeEIooVGRSeEF5R9P9IVi+SyCk/pN9DO85sWaL8IFfQ+1aJzItAvob7Isr0+0g2baBqOQ/oNdHSMGxkdhLED0KdTqqJZpn2fALQIdS7JLvpI++M8ZkUnOpeElmWdVTSi6DAPMg2aF0SXFV+IoEAIdhCG9cEp2dqvl69D1PnAO4rrmhZA13XHd3gn8b6Lpru7raDBcjtA2U4f6fuy9mmi8WsvyfUrIgKb/DfQA0XzfVJBI117MfWbYTWno4mdEqGHMF/wF8v4++iTaVNBFwbeKKH9pIYtRNdakFzByNMxCLSLtkGf9zxkHe/9vPq8/mJG4UIGINYZaDMEIdwCfTbxKrgtrX9F90m5CtzPs2uDQUvQWtgm24ERd2+gAVlU7X3QiTZkMgj1oI10dIOR5iMKWYo2QDOyQPtzop9oTlbCe5Fai+B0DmgtSzs8gg9Z76MvcqM4jnbGzGOnn5McthbBud0j0Fr4OrSE7H20hWQ0NS9oD8nlfpZLDDg1JfIqM9palnV4WWWPn0BnPBwqGn3WXnYg0scYg9biKZuH+wNoZ5lnDdoCl8ljouXOshKcivfDH0dTM0RrgOo/wu7hBSegaPluCf0MmmjR7ifzJUV6uopQ9zM6rDB96vhhNCFaNBSysqVIN0HLNfU84H9GwywMukiHRbMO+UvQptJe9nKki4Jrwl+C3oH2AlrL4Rlpb21K4y9BY9he4C/4Ax5mmNL4JWjxRH2Qpx6vz/8Tw9yNX7J7oIO4EI54QutJS/AckZ9ZlOBhC/979E7KpqVGOusZxhOnQ6Aj/ns0lgZXIz2jnQXDzuFmdPS/0egERrA/iXRvJNRSz+jlLq8Fm4wqO+jRzftoOMSgRLrkh4cBz2M2zmgMH373Eiw/a9FdvxF6B9rL/jXS0XJMm/XGuGCIYSwHeUc4nSelyWrRHtkIjUF7uYBtez0GpO1lJGRGzyPeYHDTXEq0Fp2QrdDo9OLEcCO7s0gb5I5Qyc9pw4gCXA3tkWrRMdkOfXhJxA5+5w4/D28QunN0wgiCdsbADNDAvCF6B462QX+8sUgvlyb8hUnLDIOwWSAbGnRCtkRjMYYJI42iZ6QJSZLxifaPPAfKAaRrpSo6YorC2BQND/Rhb27geatB88EUCIPD6NPB3IutG3RV7OCqyPqN0XvABXfXlXTeOqMLcZmmzgIjbgUYut8KDRcPbBj4I5PQ2YQQnGr1tFaL9hP+zuVtdA684ACmHCW00bdg1al1ziH62DYc3XcrGpdvokVHUfuFlxkSugO5Us02erxiouPaofoaxet7xO5d9F6NNK+GpUOoP2DHlutkQ4x4JWf4NcXwN7a3d9EPNdK8WhkdSo0J1oBBs7wszxFhQdFBuWDYnWITH99F52qkeXUyOpYufY2I5Uobfzqno52Whx+HrRGKZi/13kC/X/hxsKw5F5Zp8wvcuTADdMeqmZq4XjVzRX8N+AOuHBJq4NDiuw)BJRU5Er@ggg==!A%iVBORw0KG;)NSUhEUg?AIE?AB1BAM?ACbjZ9s)MFBMVEX:/+Q8Njf:e19+bg+vPt:qb8tzv/fnH+Ouv9OLW/fPz/frj:j7:6g8t3v:uqRW+6)iklEQVR42u3VsQ1AQBiG4VvhotKJxhYSG1hBcyswguiMoFXpFBoDKCygVVqB+Ks7uUpF8r71l6f9lL9MWwWxlPunCAgICAgICAgICAifENLjbjduhbYz3hZpVq1+WyxFCAgICAg/ECZpLN06exr2UvLYbNLK8yIgICAgICAgICB8WKhqq+aUBv/0AqZkjLrkiMRY)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AKE?ABJCAM?ABimLZr)GFBMVEX::zpsv2wdr99Pj50+T74e386vLvgrhS6vXp?AB3klEQVR4Xu2YS24DMQxDrZ99/xt3URRCFgOOGjYMinDNyIHwxnjwIib2d2Jxk2eUjSf5c6eaeT107YyyrtKTcuE4OMZ3d88otq7Sk2LhGD7pZ8w+94L3E2jNj12c+isMbeHUYB08DJ2FYWdzMbQeC2PPHWeAeIghzlU3otIA9uAojJY93Y0mz+ZHYbSc0PUmcUw8RqsI3ebUp8RT7uvuYqgNUDzI7pGEbi9xiiFXGxxXTswoJmtD4jWfPaCYj2EsDOKeYUjWhjudGlKMtYHVbcGZUYzRInWjOSTf15vUbQ7F2oC/5dBqAy4dtTbgG1usDdh+jK0NNMWwRkGqDdh+UqwN+FMutjaQui3ZSm3Yr8QwBmzE6L52sjY4Sxu8/UynDX5nz6bUhrqzwmRrA6lbvUKtNuCXu3xTbbCmUKkNCRqNtVAb0KuSS18bDtDCi3Glvq/TTidGFPMxBC+bTZpGG3As1pJgGLM/qNEGnGZAoQ2jBWq0AcZ6jkQbQCyj2xptuIyZe9GO4tsrjt5ecfTagEPFkHDhKuw1B125NuDwtYHc1dsrjvS1AUSuDSm5r4N+4b7pawP/50l8bfhP2vDRhvWu2lBvrw2u1QZC96MNtK5eG/yl2mBCbeBjaL/G8AtqQEnsBU7ZMw)BJRU5Er@ggg==!S%iVBORw0KG;)NSUhEUg?AJY?ABoCAM)kR/m5)GFBMVEX:/9fnOnZ5fmFse3q8Pupx/LE2PY6i+Z4iByf?AC+0lEQVR4Xs3azY7DMAgEYP55/zfeY7VK23GGJg73Wp8MNlaK3B1hVZWZVRbyhIhK1/4X6mmbRf0pvHaILF37e2jems+XCEbeJKrUPhNaWwoJh28R4dDYUEhbXIEAvGs/q/WZrPZnsrqeyerYypqnMczM4i5W27m3iHrahKWemenT7bJU0OvXWZ6v7S7lqytST/X6OJOYIl8T5qBFzFhizJ0aKP81YmGXARRw8Sypk1ms9UN8ZKmvssTPnMVwsqVGe1ZIANZiGsFWnT4t6yzx5QaUROuiWQVr9+jHkVOW6NLioX0qxiwHLErVNWUVYFGq9ikrwNqUqnXKEsCiVN1jliIWo+qYshywvJmwKSu/s7KpqGtZ9dGcZWHl97NSJOCHHdvBkoK9pe5m1fvdUFs4ynYt69h4PFYWiOtY8e7152sLyHWsd+3c1xZQuew61Td0XVzAr2P58bhpLHav/FFPREubfirkAhVPshbbWmh3rbZ6leveW4ds5/KJyTGriE828OcyZuXoO6WBqqRZPvlMGQpuFpoFckioumgWLq2iVS40C+cQq0xRc+BZ/D+LBlPCs4ou+MLJ51mKCp5X8Sx+sxLkfsZSsrIcqGasJDfLQQZnLOP6TgDVkBVcvYeC1TkWfv8Fo1KTAQunootShQxYOBWdjMpDRiz8PYRS.7MKv2tKmXOslR2BELPFKNlLLIKTLkAla+qrFxfyQEsHM6o7P18z+9YLozqKGJZTOEmULm+PBSLuqULqESHf/ZS92EAFWDBAS6y+esXFWaF0ieQKPeSVRaFMgFRWMWz+AeJ;MLWdxOMSl0GbHmY7mFVTyLH2LWheZp1XNWKzDB690OXXDM8rTpAF0eRCOWegWE4HpXMFIOWNysPu5jDkSI9RKFcAF2hGV5Vggf1T9nKRTh0J+y1Mvum2PFLFDau1igtO9mgdjC8ngCC5y2Xaz5aZuz0LW9n8Vf2zxrvwizcCHtZ6nnBhF+kWwM/CLZz9LtIvAi2RXgRbKdZSHPiz+CLM1kMu7KU)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANY)3C)ABVkOvV?ABSUlEQVR4Xu3Y4WnEMAyGYW+sfbSBlvh20Bbawq3TFCVFuDShJDJ6f4b7HB7IEe5afyKjIOjILk7Py2dY2oIYI7s8TcUqVrGKVSyTLf6M/sDyKfv0aVaczljztFj/VbGKVSyFiKqN8rKwvwb0iyHU9kgA6ATwvWTYaHL5ARYdwdyO0fw2FHwuuPw4S8hJ7tLULIK4J3BlZQ1V7LLMrBaGUUrWNPJBbhYR/WRpapa7JXgKk7L8FWy9U7BIy/InzlyalRU+cAux5CCgNVhOXonlX6wlWfZSVrGKVaxiFatYxSqWthVZ1pZk0WIs9VluFp9/f/oqNwtngHajtgDLDgIG2FG/LnULIz4cMsLIRpMpoil8eofVL/8hLO2Xdtzlqd1hyZqsHmqEsrMQHpue1TlQpWbFdyEBwPlZ/q7yI+UNrH43E9piqKpZf0Uf/uSX7MnWyF8)ASUVORK5CYII=!S%iVBORw0KG;)NSUhEUg?AK)CFCAM?ADrcAOa?ABgFBMVEU?AD:/9hY2IbHRqiqJZ7g3iPlIzu+9v6/ejz/ebv/N3+/vbn+s31/ej+/u/q7PT8/vP:vL4/M77/dtOUU64vp/7/frFx74uMSzc9dr3/fG4s879/OTI0OXN8sPy9PnI8Lzx+/Cn2Mzo+9jbxNbk6PPqycz77tP7/dTw/Mv26ej88t357uu/x+Lb+b3DzeKcweLE77zW3Oz99+vFvMf779bJ96j7/u/U1NTk+ce4w97f4N82PS89OkD4+fk+SD/C2afa4e3b5MTl6tnq8Nzq+ern1eX99OPK7ML:O/55LjV2cPw8fjw5e/M9rzr3+qq7MfT9s3x3t/L5uWw7M7k+ODE3trizNv4+8blv8PP+LDV6+rTtszH8Lqt2c/y2s7HrtWhx9zC8rG13tO37tK/8a33/Mud6Mrn/bv2+8SfzNr79PL9+O389vXy9Lzj8uL558Gi6sTlu771+73Qscn++/Hu09XOstLQ7sr44bDB88rCqdXm6rf19NbP+aX33KQ7zRWn?AGGklEQVR4Xu3bVXPrOBiAYRnDzFxmZmY8yMzMsMjw11eq9bmOJW3TZHuiOeP3JpPJzTOfLVV1UxRNRK1C7uJ+YQFuQR+v7kVuY87Cvm5RKBFKWIWY5uPx+DwXGOEWCPLytQiMJkTA+DzOzwcGOEUCPuJxFez+akAP6AE9oAf0gNs53VDX8xpCSNNW06ph6pncwk6xGIm0HxjJmauIn5Y2zJnlYrwYbB9wR8+jkzIVRSm2BxjQNYQkBp5fB0PaLC0sb49E/JGdne3zuYxuGqo9Wr1dwAwFqDM1JTvPrmLfFl47aQ1lsooSEQFXVlZWF7LZbhZIPwk2DdQtnrGsKCHMAyDT1nbAFxAuEoRbUBQOkH4SaBJIfWnMU+ab2AfPHJizxreGxwc6qYDbGtz+cb+UQBX2D5gfACNsBMjJ1yKw7C9b+aP+uqLlVCpDfGoW+5J1DYY5dYdJi0xORth2uYFBIVCUP5UcJBug1osHmBysK7zI8MB2hkC/C1hOZuAG9Nf7XoX5nS3Q7ypaHlCxL79GBuhqUNwbfpQxKPwk4OOHUuXUUWWm1BYMMOCaSfgqvyp++ZXpgEQZhQMmCvxc4IcGoJQ7n0mAMQwcc/f7DU4vblzBPWLqIlHGrS4mCrx/nR+iMOxjgGSJqNhXZIEvuBHmc6YuogQg628aaF3hGQzslhJIN8ELcIUlBBrYl4YrLCNwhZ6SA5IC/7JvQUmB5wmQHAMXZQTCGlmDNSIh0MS+VezLy;0YJuWFZjGQAMWcRPAddRsNUVpBJinJ4WgrECEK8EuIyFwhwBzLQDVdFo9jgDgPST65MLaWgPALbq6lHCbFwmA+Pv0GQK7GgQmBWUAOHaPbfL1FV7fiQ+sjU7wvjv09g6/DByn780x/X3l9XeiuphcQBjfcx7wPhO60wYg1BJQpwteXiCcFeZkBirSAT0ggOUFQg0D3wqygc/Y5h69E1biRxm3Z5;8PLeUfjFCt42CZx4ymti4unEH/woo+dHuwc0Cty7TdpjahHI1ijwAQQT/DaBNQx8KCkwIz0QDguXZAb2SgzcgANrVWbgAgZelRT4JwHmJAZ+gqdvBdmAkEafLNw8AyCpUeAPotYx0CTAl0xzXU0DqQrzemh1h4XLTGKgSp9u7Z4G+O4Y2NKThYt2YqCJgesYWGwSuNrKs5lGgDrCZbFQVqC9U3dICvxkb4TNAe2ekOBE/QDqcS2Si3skYDUCvLMCy1hWoEr/0tQpK9B+tvBMUuCGfRNKChxboc/5d2UFGhio1eAaywOExjbgOwuF1oDOw8IvUA:Z/FpJvjmZRoD81lFyZ7iNPOE6cgDE7wL9d3us4IJXiNdHKrT4bfoFZR0NbA4qSNchmyFHXVdGl8S9j3TkYcyvvwDnYMocLifNLzvDoBsGDhJlokWwyOstgs4/J/ADh3RM1enpMCONIJztaTADc0Wygm0LjIysyCUDIgzEUldxvdhVTrgQ5KBjjJjeIjVh0dxgaXS0tL4KAUyUcY5G/gb5AIO1wVAwT5ozctEVkZuTeksVMkEby2NHrdU0k01rSG9llU2R+8yObfjL7brC0SBRDY7u+9qeh8lRQ2EJ6tWmTwlaqo5s7D8uXD1eqUyvlTCMMNQV53fRO+t9DH9TKKMfts1C0OiwA/TpA/uphsBVg8MDdWlib7LH2scCAHQmhh2OjsRCG0AUZyGgdk2AKEDXWjUVEPPLcd6p6YqlfYAoQ3dUNN5y6nlrX/JKY1PbW5OVcZJFT6Q9hhsALTrx4sB1zoQunRrdJxJSqAH9IAe0AN6QA940om6gxcGcrLQbt5dAPY9PuesH6o76QPMAUxBZXfBgrDNKW6buGvChmad7Tv78JMVvDpCcVGJ4q6ozpi4Eab3ViPTZWdRZ4mQMDQvKhq5KRTGeoUNMVHn0Egd8LCuUMLqlEAcH9jbFDAlBiaaAXbunnKCMRLHB4knmBBOMGED4+5CxU5htQu8aqT37j7aRROijj1MxxM8A6BLeHgsOmwNCKu4USB0EtDZNwL0gB7QA3pAD+gBPaAH9IAeMP7:k7ykYIgx9uEsJBIGPoqEwTpYV0J5zjFE/wXzd93x5vnhJo)ASUVORK5CYII=#!