["","","37 C# ","A9ryfws.ry.try..yyryeyz[[sCECST~~}T~~YFG5799964F+CC,CEcCCXCECCEEP56563CE3CEP665656F5RXS}T~~}T~~","Jagged arrays."," Data comes in various shapes. Sometimes the shape is uneven. With a 2D array, we might waste a great amount of memory.","But with jagged arrays,"," we can store (efficiently) many rows of varying lengths. Any type of data, reference or value, can be used.","First example."," Let us start. This code is a short (but complete) program you can run in a console project. It creates a jagged array of int elements. ","And: ","It sets values in the array. The program then prints out the result at the end.","Int ","int","Important: ","Jagged arrays have different performance characteristics. Indexing jagged arrays is fast. Allocating them is somewhat slow.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.7 (2017)\n\n","C# program that uses jagged arrays","\n\nusing System;\n\nclass Program\n{\n static void Main()\n {","\n // Declare local jagged array with 3 rows.\n ","int[][]"," jagged = ","new"," int[3][];","\n\n // Create a new array in the jagged array, and assign it.\n ","jagged[0] = ","new"," int[2];\n jagged[0][0] = 1;\n jagged[0][1] = 2;","\n\n // Set second row, initialized to zero.\n ","jagged[1] = ","new"," int[1];","\n\n // Set third row, using array initializer.\n ","jagged[2] = new ","int","[3] { 3, 4, 5 };","\n\n // Print out all elements in the jagged array.\n ","for (int i = 0; i < jagged.Length; i++)\n {\n int[] innerArray = jagged[i];\n for (int a = 0; a < innerArray.Length; a++)\n {\n Console.Write(innerArray[a] + ","\" \"",");\n }\n Console.WriteLine();\n }\n }\n}\n\n","Output","\n\n1 2\n0\n3 4 5","Notes, above example."," This example declares a jagged array. The word jagged doesn't exist in the C# language. This means that you don't need to use this word in your code. ","Info: ","The program initializes some values in the jagged array. There are lots of square brackets.","Syntax: ","This is different from a 2D array, which uses commas instead of pure brackets.","Notes, continued."," Indexes in the array are assigned to new int arrays. The earlier statement allocates only the list of empty references. You have to make your own arrays to put in it. ","Also: ","We see the array initializer syntax here, which is less verbose than some other ways.","Initialize Array ","initialize-array","Notes, loops."," You will want to examine each item in the jagged array. We must call Length first on the array of references, and then again on each inner array. ","Syntax: ","It is important to know that the pairs of brackets indicate \"jagged,\" and the comma in the brackets means \"2D\".","Tip: ","You can allocate different arrays for each row in jagged arrays separately. This means your program must use 1D arrays in parts.","2D arrays."," We determine how to choose between jagged arrays and 2D arrays. First ask the question: will every row in my collection have the same number of elements? ","And: ","If so, you can consider 2D arrays, but often you have varying numbers of elements.","2D Array ","2d","Performance: ","Jagged arrays are faster and have different syntax. They are faster because they use the \"newarr\", vector IL calls internally.","Zero index: ","The boost in performance with jagged arrays is because they are optimized for starting at 0 indexes.","IL: newarr ","il","IL Disassembler ","il-disassembler","Method that is reflected for MSIL test: C#","\n\nprivate static void CompareIL()\n{\n ","int[,]"," twoD = new int[1, 1];"," // 1 x 1 array\n\n ","twoD[0, 0] = 1;\n\n ","int[][]"," jag = new int[1][];\n\n jag[0] = new int[1];\n jag[0][0] = 1;"," // 1 x 1 jagged array\n","}","Methods."," You can use the type of the jagged array in method signatures. They will be passed as references. This eliminates most copying. Only the reference is copied on each function call. ","Also: ","For local variables only, you can use the var implicit type syntax. This makes programs easier to read.","Var ","var","Benchmark."," The .NET Framework has optimizations for single-dimension arrays within a jagged array. The 2D array cannot take advantage of them. ","Thus: ","Jagged have substantial optimizations in the intermediate language level. This can be exploited to speed up programs.","Jagged vs. 2D Array ","jagged-2d-array-memory","2D array code benchmarked: C#","\n\nusing System;\nusing System.Diagnostics;\n\nclass Program\n{\n const int _max = 100000;\n static void Main()\n {","\n // Set up data.\n ","var a1 = new int[100, 100];\n var a2 = new int[100][];\n for (int i = 0; i < 100; i++)\n {\n a2[i] = new int[100];\n }","\n\n // Version 1: access 2D array.\n ","var s1 = Stopwatch.StartNew();\n ","for"," (int i = 0; i < _max; i++)\n {\n for (int a = 0; a < 100; a++)\n {\n for (int x = 0; x < 100; x++)\n {\n int c = a1[a, x];\n }\n }\n }\n s1.Stop();","\n\n // Version 2: access jagged array.\n ","var s2 = Stopwatch.StartNew();\n ","for"," (int i = 0; i < _max; i++)\n {\n for (int a = 0; a < 100; a++)\n {\n for (int x = 0; x < 100; x++)\n {\n int c = a2[a][x];\n }\n }\n }\n s2.Stop();","\n\n // Results.\n ","Console.WriteLine(s1.Elapsed.TotalMilliseconds);\n Console.WriteLine(s2.Elapsed.TotalMilliseconds);\n }\n}\n\n","Results","\n\n2D array access: ","3712.2539 ms","\nJagged array access: ","2090.3271 ms","A jagged little summary."," Jagged arrays are fast and easy to use once you learn the syntax. Prefer them to 2D arrays when performance is key. Be careful of excess memory usage. ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKwAzQMAIgABEQECEQH/xAB0?ADAQEBAQE)))?QIDBAUGBx?AgECBAEHCAYIBw))ECAxEEBRIhEwYiMUFRcZEyQlJhgaGxwRQjYnKCkhUkM0NTsvDxNERj0dLh4hEBAQEB?MBAQ)))ERAhIhMUEi/9oADAM?AEBAgEAPwD9/)AEAMLi?dwuIQAxkjAGS2Myk92EKr1BqMtRGsrE+To1DOaMytYHrbUGow4guKA103C5ip7FKYsHk1uMz1FJiPV?AY)?AQDEAIAEBGK4CuAO47khcAq5i2XJ7MxlIfJdUpSZjKoXKWxjMtmqNRF6zlb3NHLYRqlUIVTdGMpCjLcQdqqFRmcmpmsZAHXGRtFnJA6Iiqo2QyUMSz)AE?gYmwICuJsm4BTYriuK4Eq4ybhcRprS5qOSdT1jxk3qjH1X8ThqTnfp8TXmemPfX9WOqVVmMq3qOSVatHqMninfnRY7EyuxVo6zeclbpODDzjOd7nTJbE1UoYQXSYNSubUteklWtUawMot9hvFqwtCak3dRNqXEstnY4J1YzxPDv1qJ7EUK1UmlGpL+5qqgIU7RVwl1WWNExkU3sWMwIBMAGS2DJYETFcGSxEdxJ7iACVcLiuFxG5K6UqjONV8LUk4QrU5zvbTGSbv3XIznEOhl2Kq38xx9s+b8z47L8hxGa0J4iFWNKGpxjqTd2un2G0rC/bX2zpR7DN0I9h8hPJOVOC/wldz+zSqu35amlHNU5RcpsrnGGOgvs8ena6XTzoabj0n3cKMewJUzHKMd+k8voY7Rw+KnzOxxbi7eq6O9xJtORxOnLtZvBS0rbqL0bm/DItVIyj3GllYrQRi4VPo1Xgr6zhz0fe0v5kXqavK8TLqn0rM1K9+dKe3YrtH1MT81y/MquXYpVoJa4XjOnLbbrT7D6fD8r8Ltx6E4fcan8dIdS/h82T6+mRz4utw9EfSv7jloZ9ldf8AfqH304/KxwYzM6VfGKNF64RSjq6m79Q+Zd9xVsz1X0NF/Vx9auaERWiEY+pLwLKMiWUyGBE2S2NshgQbJuDEIjEACoApvmS7gIrPmCgt+vmuVVbRgI0v4lRX/Cm/jY6cjo8DKsNH0o6/zty+DPI5WVXxqFH0YOf5n/5PUwWcZXUoUqccRCnphGOio9LVla3O2NmL0z5Dl3VXCweH+1OfdZKPzPrYzhUWqElKP2XdHxPKP9f5Q4bB+bHh0pfjlql/MAfX5Ph/ouW4TD28ilBS+81zveejYypmxHS+Tpx56NjOl5XsN7GPd9teJ6RYenYqwEavHJiMJhsTPRWw1Kttf6yKk/FnBV5OZRP/AC0qP2qU5W/K24+49aElxJu+/Qi6r5ne0ip1dkT4yy18/PklS8rDYqcV/qRUv5dJpguTuIo4qFWvVhKlBp8293be1rbH0CWxSLndHhDfUVdE336CrlwEyGUyGMktkNlMhiSBNgyW+cBG5x7QUo9qJlGMuo442+m6YvaKu/D/ALD6NdzkjnqScmVJmUmPlPTkxuAweOS+lU1PT5MrtNe08avyTwVS/Bq1KffaS+T951y5RZbGrKnefNduJpvF929/cdFLNsurfs8RD8T0vwlYtD5yfJTMKDcsJio+Mqcvn8Ssm5PY+hmUMXjYqMKTcvKUnKTTt29t9z6tVIyXNaa9W4awDeBqjmjI01EWKlbxe5vGaOTUVcy651pz1jrA5VOXaaRqyMrzWk7jVwh1pCVKF01caZVwlp5L+KRSJRSK5FEXuyxIo3iUMhlshjKs2Sy2QxJqWc0q3Dm9adjpJYJrneNw/p6e9HNgp8atXrdV+b3HVUw9Cp5dNeG4qVClQjopR0xvfre/tKTVSexxY6twcLWq9cIS+Gx1yTPF5QVXTy6cf4kow9+orEvGybLKGNjVq4i+mLUY2dt7bnbU5OYX91VnD71pf8ToyOnw8vh21JSn79PyPQZRPm6+V4nAR4tOrzb+Y3Fo9fK6taphVxpOUtTWp9LW3STmkvqYw9KXwN8HDh4anH1X8dxG64s1RhE1iRTjXUaJmSLRFVFouJmi4GdVK6YlmcTQybRSKRCLRfIUiiUUbJSyGWyWiiZsho1aIaBLnrVFSg529hyPMKfnxlH19P8AsdGMi5RhD0n/AF8TSUI20tK3Yxprkjj8JNqKqK/QlLb4mzPLzXD0eNh6dOCjKpLzVba6R6jKxCZdB4mfa+FS25mp6n2O23zPal0GMisJ4uEzOnTowo1Kb5itqjbo7jshjMJU85x70zeeGw9TyqUe+3zMJZdh/NTj3P8AuAcuNjHEVIRpy8nb2s9BU3FK3R0GNPAxpzU9bt02sdlhUM4p9hpEqKNETTxKLQ1FD0mdUEXDpJUWXEiw43j0GiIijRGbaGi0Si0acwGhiGaQiJaLEMIaJaNGhNATmqwldSsc9TEqn+0hL2f0jvaJcRxNjwnOOMzOlKKeilFvwvv4s9HSbqjTi3KMFF9dkk2JxK1Hi5pR2MdDO3QS6ZWpvNcehi0M6+GLhho8XLpHpZ08MfDFaGEYl6TVUylAjVTllpK0mqgPQRaqcs9JcYlqJSiQqQItIEikhzlRoYIZeADABg?ACEUIAkTRQWAmbJsaNCaGWMmLSaaQ0j0sZWCxpYLAMZ6Q0mmkNIhjPSUol2CxJ4mw7FDsThkkNIdh2HgKwx2GPD?MY))?AIBgATYVigAJsFigAkWCxQAE2CxQAE2HYYwCbDsMAMrDAYAgG))Af/9k=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAL?yAMAIgABEQECEQH/xABq?E?gMBAQE)))?QMCBAUGBwgQ?EDAgMDBwUK.@)?ABAgMEEQUSIRMiMQYUMkFRYZEHI1JxoRUzYoGCkrHB0dIkNUJTcqOksvEWFyWiw9Ph4/A0Q1Rjg4SzwuL/2gAMAw?AQAC?A/APv4)ABTKu8XGu9d5fWDJnEEoQSgMzNDJDFDJAYKZ?GI)IAJBBi92WwCJczBgj1MgTYkBAC)))Aaxe9d1SgGbCSUMSUBkWIZNK0UsbwBgpk?Yg?EEEqVve1vScndrYAyuVSu3kG1j9NPFCl70zrqDONq34dRe1xmims15nnBllNlvAkxb0UMgVK)?AQRcEki5grivad4Jy3LJOiVFU0i3bqYI53aoLWsNgkou7tUZndqgZTYuWt6KGjnd2qbiO0QGD0sWEFecjOClXWLQV5tCMxNjFXoZqaNa7zjW9iGzmXtPP19RJzuTK9bItrIq9SBUshs0TdrKqJplaq/Ub9zPMcXby/nHeKkpPL6bvFSDorTL2odzMZNdqhw0qJfTd4qbVBJJLVxMzu434r1JcFb6dWtVyqmiKvgeiQkh.c0)?xUwuZGjiEjo4N1Va5zkTjZe36gWRtzORvapsZjVzmgySb8475ynOifU/npPnL9oN6Ol6W8mljvOXfLGmhQMkzOzuc7TtVTqNaShVKiMXLe9iDlY1ygwTk+2F2M1fNec59j5uSTNs8ub3prrdJOJ17HzXysw7aDCtP8AiP7IKa7nLbQ6j/KfyDjXfxj9lqv7ofzu+T+/44/Zar+5Pz9iFPvLoch8WvAxVStVVeJ+yXS68Rndbh7fsuc+Sbzi69n0G0jzRrqqSFGbO29e6ql+FuHiQyNHqt76G6l7Jr1IYuXKialSVDLJxKp6uNmXRev/AFxFJUulmjar7qt9PkqJYkaxVRLWtqbGY8zI/PI9/pOX6TqVOIxRU0stnbjHO6uz1nlvdul9CTwb946ciKlkU6GDU73pLI1qu1Runip0wc33apfQk8G/eHu3S+hJ4N+8VnX5tN6CnTOlgjfwpz+pjF9qoea926X0JPBv3j0vJipjqoZ542u6SM3kTszdq+kDWrIpI6d7nNVE0TxPQoSYoZA4I)ABgpzMUX3pnrOopx8Rdmqkb6LU9oNimS8idyKpVE0ogh4aG3CTTsSyA289kd8Rs00W7w6zayiNu6hYSaL36qa1Qnmn/AKK/QfO+X7M9Dh3/AHH0sPo0/vb/AFL9B5fFIKCsiZFX0vOGw5tn5xzLZregvcFJYxz2ZWprmRT8/YmxMynCe3ePuNbgfJS67TBv2qf7xy34DyLv+IP2yo+8YOLW0FUvCO/ym/ae3rMcpaWukpZkfmZl3rJl6KO7b9Z3kdofNq2qfXVclW9qNdIqbvUmiNt4IXy4lX1F9tUSOT0cyo35rbIaNVTumyIioiNv7bHRbhWjFauVyom0ut97u9p9AdM29syX7LmrUybTLkXt+o8G1VultF6lQ246+tjVMk7+5HLmTwddCyjpI4JGyq5znNva1rcLFkmDPezK2Vuva231qd7FpFZh8utlflanzkVfYeXO/hU8+J1TYaxGyxR3l3mt10ya6W/KOnW0NFPQ1XN6eNkkaO3msa3eYmbTQ6Er0e66dhdRKlA3m0iZnOfmc5q7qZt1OPqPGnd5MM/CZpvQYjPnL/8AJqYNCyXEoGSsR7N/dcl0Xcd1HtaKmo4nPijgYxzkR26xESycCIukW4tVpHE+Gy3e1PVx/wAC2KQ3I3ocyS0UzmdX2pc6t42W3U3ltwQvkTgeYV1y5rixDXWzVQuYuhrr2lZmADE?AGKopzZ8OqJZ3y5mWcvat7Iluw6gBnHI5iqreyxz46Gb0m+K/YTFRTM62+K/Yb4Bksz9eBgjVt1E5V7jIE3KiiSF72ObdOCpqcmowWqmvlfH4u+6d0EFkcr4+jb4z5ri1G+kqH00qtzst0b21RHdnecOVmp6nlOv9LVHyP/ABtPMzdZCnqaRFdDG9eLmtVfjQ1iUMHO1Mc+pGU2tENlpcxprxG/CwlEGex3uTVPuzzd6M8P4odejdRTJNzVc2Zyum6Wrnde929x4zFZZ6LBaqeklfBUyLFBDNE5WvbmdtHK1zfgRqnxnOwWTlDTYxhrMUxOpqaWtYmaGWolkZkqEdC3O2RbXau93EnArp0Soei3W+XVF4ev/SHpsLpVgxhkf5t0jf6rj10Dt50VurN4/wADx2LRVVNg2JS0kslPUtijSOaJyskavOIc2VzFul23Q8ej+WMGGpjTMaqnQ84Wl2UlRLI7Pk2uscmZmWxLVsU4pPtJUb8FEv4qfUZkft35uOZf8Dsq/VvwlynB5OVMmKYbh2IztTbTNTbaJZXxyOic5LaJmVlz4RRVnLvFfdDmfKOuj9zaOXEZtrW1DUdFArczWbzt7f0TRC+WRFRmnUcxOs/SkirnT1GzH0UPlfkf5V4rylw/EabGZlqarDZIstS5EzOjnR+VrsvSVuyXVe05vlg5QYzT43gPJ/AsQnoaidrpJebTPhz7eRsMO02XFPNu8StyorUB9pJPkXkmxvGPd3GMAxzEJ66ohauXbzSTZX00myk2e11Tp/HY9ZyorcTwnE6eqgqH8znRPNX3Noz8n1O09pWSexB57CMUnxTEJHMe7m+rsnUjbpl+NQAeh))?AB4LlNT1L8WqHMie9rsnRRXf7tp5efM1Va5F776KfRMTvz2X5P7qGm9jHtVr2o79JLobHN7tRyO4oinTgxzYsbG+FHIxEbdHWXd04WU+dPU8HF5RVv+Lf1/8AlH3GfB8PmT/Z2/J3f3bH5ZpWaoUPareJlNjKzZebZo7Xzo5Gre/C3HvPpNJy5WRU/o/9d/lns+TmKri6S+Y2Oyy/lZ+lm+C30T5Jh0S3Q+rcgaSaZlXs25suy60T0+0xuZQV0znoksm7re6N7Du4zDtKekpvhPmd7GN/9i+XC8RYtK6stmgY2Kn6F2tiXRvm+zN1noaWKpiRG2ez1XRDpwNdbiviSa1S3M9z8yaqc7EqXnFBV6e/MY79ZG88pUcn05klX/zFiyW4bqOvc+ioxb5rqWx5sq6rx7Qa0q5lzKt7IiHPwqKHmNFzduSJsceRnZp/E/PKcnXYmzE8kmz9z6OSuy5c2fZvjY5nd07314H6Yyiy9qmS62Kj5d5Ekov5N1jYI8lW2sdzt1+nuN2Tu5ES6HzrlxPjPKDyty03J9iTYlRSRQ4cy8ej6SPbv9/XZ7r2vXe06j9LmRC8LA/OXI+sxnAfKdDHyk8xidVUOjxH3uzpK1udvvHm950jXbuh9p5etj/kzU1D+lTvifH+k6RsX7r1PSggHj/J29lRhNRVfl7dYs36DGOt/XB7)))?HDxFn4XJ8n91DVyHUq4/Pv77fQhrbI3Wv3Gp3Ia0qcTU2R+SqJnA/YOzLVpWdqmhW1MUSs2irvX4IRTZ7vytvwvrY/MWGw8ND6/wCTiPcrv+j/AGh75KKP4XsJWBsStyqvWa0VVE96IxVVVvxSxuXfbVLfHctiNlqJ2FUaaGw02s1yLk5U7CcqAkki5AJ)))))?BrTM31KFjN1yalLmljXFMiGtkLiHNJOVjDXOWHKirbPwS/oiksiyXW3D6yTGROj8ZndO0KiXQ1qONyStVUVOPFO42XqioupkzgXIYNLDrohgSADM))))))EKYKWGNiUUwclynKY5S+xqtapjJKjLXS97laRXUtyGTWhquLCEe13Ata2wRDIAyMg)))))))ACLFKIXmGTvKZmudl07QRYzMdTIiNFRUuliVJABeQ)))?Af/2Q==$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAMkAyAMAIgABEQECEQH/xABq?E?gMBAQE)))?QIDBAUGBwgQ?EDAgMCBwkLCAkFAQ)ABAgMEEQUSIRMxBhQiMkFRYRUjcYGRobHB0QcWJCVSU2JykqOyM0JUVXOC4fA0NUNFZIOUosMIJ0Rj0oT/2gAMAw?AQAC?A/AP1S)))))))ACkvMUxuamRN5mciO0K7JvaDE9iqpdvNKS/mkZ1R2W3YTzyULtem4lEBOVAC5IAII)))?Iu?Bc?Eg?AC6daA03orUTTr1VLkKpCm5cGKDp06EMoRSTFZ2d3JuWjRddC4JKIyy3?Bc))g)))EOXQrmcWcmhWy9SAF03EGvXSLHCmVek5stU/5x32jXlqGxrZTBJO2NbKdnUqiIeamrpfnpPtKazq2o/SJftqab8UZuyr5jUdiTE6PQewjtqWPF8aqv0mf7anqcJlfNh0L5eU+y3XrsqoZ6WubUOVlrGWmrGzuyoljbABvG6))Q)AC)AQCASCCmdQDICrXEkg5uNybOlb9dPQp5fEa/ZQPfpyUO7wxk2WGR/tk/C48PNUnmMXrNlPl7EPN4rVbKfL2IejdhFbk2ndCj2dudsl3eHMY6igraOPay7OeG3KfDfkp1q1ejwKprNk/wC18D/8FH6jo8CJXcSrIv7GGoyR/Ruxrlt2XXzm8sEDnpHlsqpe/wDPhNvYwucjMtlVLmsxyOamWy31RUPV4J/VkP734lPEU8je/MbzI55Y2/VbI5E8yHtcBX4pg/e/EpTDP6Q5nUi+krh35dzepF9JvgA7x2w)?AC?AQAQAQSACLkXBIIBFwLmNUMhVBcBhYq0C5B5zh+vxND+3T8Lj5xXPl4pLsc20y/m7/F2n1PhRh8uJYa2KnttGSI/fboVPWeP97GKfov3jPaeOxqlnkrNpGxXJZOi6aHksYpZ31W0YxVSydF9xlbj3BnuG3CdrX8U2SRf0GozZU3a7MmLhDR0eH8T4PU1R09+qGOY1t97uXZzl8XjQ1/eziv6L94z2l28HcU/RvvG+0zcer3JpBZeuyl+N13RDZeuympA/ZRNZdd3jVete0+gcGHfEdN+9+JTxvcHEv0f7xvtPaYHA+iwuCnltnYi+dVX1mzgsM7J3OlaqJbp8KGxhEMzZnOkaqadPhOmCuZLE5u09Nc9ESCMydYFwS)?QoIUgC4AKqpIBAuVu.RcEXBJFkBBFwCCblSFUhTicLZpOIQQRPlj4zMkTnxSKxzeS52ipqnNt4zy1RRzcWbB3QxTJmzZuPTZvG5HXVOy56/H1dsqXK1OVNZ2l7Jldr6DkyRHIr9pn5LlTxnIr8+dMqqnjPOVNHUTRxM7pYt3pMvIxCZqr9ZUddV7VLSQVEtQybuhifJtza2VrVt1tR1l9Z5HhZw9qKfFe5nB2hZVVGfZ7R6K7M/dZrUtfw38RoYV7oWI0uK8R4T4ayDlI17o2uY6O/SrVVbp4LeMwMo6v5S+C5rNpKq2bMvl1PoTY5+NcY49iGe/N43Jk+zmt5j1XBaSq7i0/HpttPd7dpe6uRHuRt+2yJftOFkTKjmqmW10VOk7XBaJsODxNY9H98l3dsjlt4r2N7DXvzrmuuhtUDnZlzLfQ7+bkl22sphbzTK3cdVd51FJcACpBkABlLgg?EBSFKqALkXK3KqRcsQqkKpW+pUZi5NylyxUsigAhSACjrllKPMblKqc/F9rs6fJf8ry/Bld67HMqk7xLkvmyL5bHTxhrnMpsrk5MvK13plcc97jQqV5SHNql5aHxP3N4IvfzSbZE5smT62VfVc2/depGS8LoMiJ/RGZvDnf6j0eNcCpe6S1uC1DYX58+Ryq3I7raqCi4G1lZiHG8dq2yapnyuVzn26L6WQ20njzbXN0bjNto1dtL9B6Lg1G73t4ZtL5uLs/ClvMel4OMjbhUeyVcueTVevaOv57mkrWtajWomW1kTqOjweydy49k1WtzydPTndfz3MFGt5Hfz0mvS/lHfz0nUS+UnMjV5zvKLckhUXNmtfSx1LnSQsnMVWuXVN6qCrW96W6gsikmyACxYgAgEKtgUuQ6TsMD5/o+cixidK1u9TNcg81WcKGw1UkLKVX5HK3NtOlPEIuE2f8A8T7z+Bm4nNvynFXhFh+dWbTVNNy+w9IR0nIixpPmP9/8DZZiGv5P/d/Awugem9DdjxKmkTku8ynQLGtDUbRyNy+c2DC5FTRTfjka9LtUkAFTKQpR5cpJbM3wKUduKqc/E4XTxR5EXNE/Pl05XJVLb+05UjarZq7ikme/Mzsv6bHae92Vzr9Niki8pmn82NSWJHbzUmia/VTgubWbNruJSZr8zOy/h51jLs63KzJQyv0+Wzk9i8o7FjZg5vjKR0rFU120zFU4E0Fe13e6CWTT5bE9LjtYPTyQYfEyaNscmrnNZ0KqqvrN5pc3oaZkZtRU7Y9UIy6Ftn9JSxKG2iGyiFHRJ8p1uoFwWJBAIUAKVJUoqixRxjkNSU23mrKTY0Zk0PB4gz4fU/tHeky4bSy1cjmwq3kp+ctjJiLPhc/13eknA1VuLQ6rrmv28lTuK5dldOhPUfLGQN46jHporreVVOnFhlV/6/tL7C7XSQSZJky+s2aqGXj8E23SOJicrXnanOxiuilqI2QvR2RFv1ami3NIqJv9R6WZsVGxzku1UVES6oubwdJ3aCTvrf56DpnmcJqPhMevX6Dv8vr85oVDMrrHpcKqklhunWbAuarJF2iaqZ8xr2Oo2VHIWMcq8pvJXp16i1yr+gjLfQtmuYFa3MvId9lbFLudI3kOtrdcqp0GxlXTUhqd8KLCnWQrUUxIxepTYhYuXd0mTKZWlmM1KtjsGliv5wsZ0Qy3LEoVaWLEooABJJBVyhzjBNJuLI25ZGl8xXMYdqUc8vkCsMj3aGB7zHJKakk6GRsZTYZjh4inwmb66+krgyRNrtrNK2PZovOVEvfT1la13fpPrKc6ZTqtZmYfLsQ+CVO1y3yqq28anU4TugmSKWGoje/m5WuTdqtziRPMbytzNHFkZlvc8zW1q1NQs+XKq9X8Tv4FN8Yw69foU9ftUbE3VM3gPD8F02mN07dfzr/ZU90tM3rccbEWokqeA99wUfJLRucnylTzIYYnd9NnMYVibHd913dJh4z9Hzmha56Rr9klnm3mDug0uM/R85sxu5KeAlEspkjmRy6Gdr003hn5VA1qdRlYxt9xOhuMchcv0EWLEIhkQqouWJshYWKs6SwBJNr?Ak1ZXHn+EeP4dg3F+6VTsNtmychzs1rdSL1nbnPknu4c7BP8/8A4zq4ZTNqahsTty39B2sHo2VdUyF+5b7vAqnrYeGvB/8AWX3En/ybbeFOByJ/WX3D/YfGsD4P4xilLxnD6J00OZW89vR4VN9uF4nTYrFhs1K9lbIiZIsycpNdy3t0eY7UmE0qOVrZNU7UPQzYDQo5Wtk1Tel00t4j6q/G8Kk5ld90/wBhjbV01Sr+LVG0ytzcxU08Z412C4tRQOmq6R0cbE5Ts7fUp0ODj/hM/wCxd6UNB9LGxqujdfyHLloIGMV8Tr27UX0Hduxy8prfIbMMMHzMX2ENCNVudClNZ+44VRRwv5zEXxJ7DYp6OldVW4rB4FjTq8BuLh9DsXO4pTcq39k3TzGGOOTaK5l/KbcUU1ty+U1HuX5XnNF1BTfNt+y3/wCS2GUsEO0dDDFG6yJyWIhhrsapqSqfTyMmzstzUTpS/X2nQpI3MzZkPH8I0+O6j938KFYY2zSKj9dDh4/VPw2na+lREu625Lbl6NDqyY9Sva7vc+75Ke0wwYnDdeRJu6k9prYbg0lZTJMyVjdV8KGyuDvhic/axuRqal3xwN5N9Tk082KTo2ZzUta97Ju8pMlfG63If5E9p14OY3wHn9loejibohrSta2x2KB0kmbP2GdhmaY2GYxHWYhZCSELAzh?.A.?AaMx8h93f+4v8/8A4z7K9h8e/wCoD+4f/wBH/GdzAl+Gxp4fQp6Tg06+IxJ4fwqZPcIqp5u6lK+RdhCkb2M+SrlddfMe44ZYPJimGxV+ESfGdHeWmkZbl6at8fpPJe4LhUkOG12J7RmyqXNiydPIve/2jqcFcTl4P8LKvgvitSyTjDnVVG/5OdVcsevlTtv1mxiCKtdLJAurLLbrS3K/j2G1iiK7Ep5qZUzR2W3WlrP8nT1oq9Rl90iqmpsJo+Wvfn5ZPpaX1PP8EF2tVP8AsHelDr+7M7ZYZh37dfwqcH3NJNvitSz/?rvxNKwM+L1k8PpQrTx/FSy26/Sh6uOLXcdGmj3GRlP2G3FCcx0lzgvkuZIGm7GY42aGww1Xrc1nKWaeL4Qp8d1H7v4UPbHDxJPh8vi9CGWkfkeq9h5zhFT8Yp2tvblJ6FK8E2/B5/rJ6Cjka6BeIRysh12mZdNydptUtXJFHkszyGxxp72q3K3yB986utvMNOyNKaOHNq1F6NdddFvp29Zxcuh6BrDWOkYpdbHQw+LJm16ijWl0JJMJ0kaEJAJL))AFT5T7uuE4hiXcTubQVVXs9vn4vC6TL+T6k0v6j6uDboqt1HO2dqXVPZY3sOrnUFQ2oal1bfRe1LdB+Ufetwh/UWK/6OT2Fvevwh/UWK/6OT2H6tB3/AH1TfNJ5T0/v2n+Zb5XH5Zh4N8IP1Fiv+kk9h9B9yTCsTpceq+6GHVlLFxR3LngczlZ2dKpv3n2UpIalXj8lVE6LZpr2qaVbwnlrIXQuiRMyWvdTQbCZmRFy5xLnmrkNYZGkFiikKDVmoIppnSZn+VPYbZIRyt1QwyxMlSz0uhpNw6L5T/KnsMnEo/lPNkE53dZRKWFNzUNfijPpeU2ACFVekyNjazmpYWABBc))):2Q==%iVBORw0KG;)NSUhEUg?AIw?AB4BAM?ADS7QcC)GFBMVEX:/95cvSaspm/zr6ppPiuqvilofiMhfa6xS0c)fUlEQVR42u3XsQmAMBgF4V9x?OCfVxAdAEdQtwg1il0fsHS8IpIsLob4OvPnKy1V7WXWR9ER8oMs8hbZ6ImZUYTTTAwMDAwMDAwMDAwMDAfmX4T7Tl3V+o1iYieKifLYs5NFLOYxUQrDAwMDAwMDAwMDAwMzA/MFUSx0GveDtlxrtujxRk)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AJY?ACrC)AChjjpN?ADfElEQVR4Xu3cIXLrMBAGYOOcIVwXeCcw7gWMcoBl4WKFPoJOIFbmAxgEFIkKBTQzIp7xjJCJnqW1K02K2mmUnff2J2pK/HWzScdey00glPFNvZ5PL3+OB1KsJudJNeliTUixymPXZ13eVB8bRRxIscpD1Gf5yd2uV2vMOynW+x5mxTDrcPzzcjr36m0kxcqpzcKatB28Kj2SYuXUZ2GjdOfXtVFIsXKewjLWXq+3afYVWBXCLGYxi1nM4rPqelm8n+dpcu5GivXxmf+bxaxBa7D0WLDSDbO2QIs0AqzyrDrm5yyvdS/9b7FyvsUaFYDUbgWoVavXVTe4fic356Zpnr1ffsYatFS6XVlYDts2KWIIwcQfXPBifenD76cxblfY4BQA6L00otmDqs/XwoUg17VPxRoedYpht6pJREgs1f2nNdYKtIo4FYKLvihtH3fhFVfM9vf7eHgBAGJjjamLcIWtqyLRVGB1XVz6rVitTy2PrD4101bXzY3CR7PGVAQ8lMSqIWtfjRm1jpj8LtsHs3DBntk6yZWspkgXAT6xdB1WuGPes/I7pxNL+OezAKTW2hibyorpn8vCr9WcfiWlgtmaLLEfsGx5FQHeDAaL1eIHpB4LFXL/j/PZSi20cdFYrAG/JYaKLBXXDsTORsEWjcXasK2vx3IZsXnN7hLSBGgBxvRbU7Xlg9oMYmcFpyVIPdy3eDVWlxSjBJBDMKF+MgtA6gTwgUIa9FBLQ4fibZ66k2DhXRFNGTrXtZg12XzrCgkWdK04NmVIsJBSkTXZfEWYBOvrG0OChRRm+Zu9DFr1a8t0JFiql3B6KUOChZRnsZjFLGYdRdsBBRZej083L9@oSRYZZiF/UKClW92sw4BJFhlKrKwGiRYB7EN1i7WI4?6y7MOoHsFQlWdzqvFD1czIfnC0nM+pUwi1nMYhazmMWsyRLbKYyjBZ75zHbEGSGhmc9KITrzYdZczJRJsHBcyTOfxafd5BZ3kxNgIaUIDVbmMItZzGJWOVp4AQIsfLgAjhaMQygJVpmKrFQNIMHKe3bsj?SrDLMwhkhCdbXmTIJVpmaLGOsvZJgIeXmprzVjMcFzGIWs5jFLGYxi1nM4gkZb9ZaFu89PnqIBAspH0VIsJDyj7GYxSxmMYtZzGIW7vEgwfq6x4MEq0xFFj42jQQLKd77ZQnfz1/v0W3UeqR3rw)BJRU5Er@ggg==$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKQA6AMAIgABEQECEQH/xAB3?E?gMBAQE)))?QIDBAUGBwgQ?EDAgIFBwkEBgs))BAgMEEQUSBhMhIjEHMkFRUmGRFBUjU3FygaGxQpLB0QgkM2JjohYlJidDRIKys+HwEQEBAQADAQ)))?ARESITEC/9oADAM?AEBAgEAPwD7+AQ?ICUlcxw9KNLcG0SofLsXmyZr6mFm9JI7qY38eB8grv0hKvXf1dgseo/jyOz/wAiNA+9ZlB8u0T5bMBx6pZQYrCuFVUio2N73I+Fzvftu/FPifUbbOIDMpbMVspAQyAqjibkiSCLi4E3JK3FwLArcXAsCtxcYLArcXGCwIuTc.QSQ)ACACAkIBXoJS/NGkK13KRykOwxkv6vrnU0HZjghVc7/bxcfccH0A0SwikbRwYXBNs35qiNssj/AHnPT6bD4xyXt/vKX21n0cfoxvAJfFOVfktwqnwubSXR2BKSWl36yljvkcxV/aM7Kt6U4WPS8i2lNRj+jT6CueslXhTmw6x32onJ6P47FPX6Wp/ZfGW2/wAnP/xuPk/6PqK2XHOrLB9XhD7mUcWKu4BGK3L3MaqEXYSYvci5W4uMTi1xcpcZicMXuLmPMLjEMlxcx5ibk4he5NzHclFIwZLkopRFISVuZW8FIsGVCSEJIEgAg?BBVSSFCUFegkjoJWfnnkziezlHXM1eNXxRepx+hm8DA2mp2P1jImNf28qX+hmbwCXhOVDSqfR3CJKXze6op8ThlpvKmvy6t7m5d9uXvum0+W8k+lTdHMSnofIpKyTFHRRRNhVL5rr2ujePu+lGA0+kuCVWE1CJ6VvoXr9iVvMd4/I+dck2g0+GVdVjeLwqyoge+mpI3J2VyySfgnxCH1xFWybLdfcQq7CLlbkpxFwilLhFJTxXIuVuRckxbMLlLkK5CcLF7i5iWQjWOJxSs9xcwaxxKSOGKthFJRTXSV3UWSZ3UhFGyhrSc93tLJOvUY1XapWjLHM5nehtMe16XapoEtVb8dpUdEGvHUJwebCKlr9B?ACpBJxcaZpE50XmOSFjdut16Kt+rLsUlZ1yF4Hk3VGntM1ZH09JVNb9iNVRyp4odXBMehxqmdKxixTROyVEDucxwS6hdvAqnAsn?V2FlKKSlFymYm5jcSvIXIuQc7G8cwzR7DpcUxadIKWJP9TnLzY428XOd0IhK2Olci5ytHcepdJcJhxijhnp4ZnSM1NUxI5mOhkdC9r2tc6yo5i9J0XO8CRLnlACYpUgAljoSQSFUkkElaJJIJK0CSCSoF2SOjXYuwoWZG967qfEgbcczX7OnqBWOna3a7iAMhy6nSHBqSsjoJqyNtTIvMzJu+/0N+J1FRLL8zyWIaBYBX4iyuyOi3s1RC1VySX+bV9gS9FJiWHRRulkq4WxtS+bWN/M8poi5MQxvG8Wpmq3D53oyLZZHu7af+6ToJoFovmR3kq27Oserfqd+CCmooG09LG2KJibkbE2ISlMfFTIUjTapdQKlFLmNxK8UKFjXmq6WnkghnmZFJUvWOnY9yNdI/Kr8jNu8uVqrZOglkizl2LsXr2cVPhlDyhVemOKUuC6TYfQVWBY7US0MeHxZlr6GTbHHJNmXM1VRy76InSqKlrDlJg0zZpfVT0qYvvtpv6LyYXvUzXNtr46pn7zs232X3T6xhei+DU1VHjsmF0sOPSxN8rqoo25ta5vpVavRdb3VNqj1F23J1jW0L0aq9EsF8z1OIOr445ZFpNxjEihc5XNZuNarnfac53Suw9AWcu8QSnzoFjG+eJnOcl+7aUSui7KuXwJUraSMujU6jTTEmdhfEt5xh7Li2sdbdkLI1Oo1PONP1O8CfOdN+94EKtZtesMrmStzszL7U2nTgkp6huaNUcnzT2nnJno6Rzui6lGTSQuR8Tla4rR6xIo+ya70TO5OpTUosajfaOq3HcM6cF9vUbjt965N5OKW2laKF2sc9d1LmaOm7fgbDWo1OGwqMLKZOL/AzoiWt0)BVzdhi1a3M4Aw6pesJF3mYgCLJYhSxVQmKKY3GRTG4tGT5Yzyumeh9NpRSRzRPdS43h+aXB8RjcrXQzbHdGxWOVqI5FTgeqKksnsx5zQ7A8TwXDpvPVatZidfM6srMquWCKWS2aOma9boz6rtsnBPRLwUFJHoyNznEpzpifI2Nu8poS1L5L/Zb3FZZHSOzeBiUhFLkXBlZR1MnNjW3fs+pKlYrkZjZ821nY+aFVw6t9X80DHWvmIVxm8hrfUu8Ci0VZ6h/;1VhVSiqHKt+pSlyLQVTZo8TqaJ24uaPsO4fA1URXLupfqRDq0WA1E9n1K6qP8AmX4dBUdqhxOmruYuWRP8NePw6zeNaloqajblgYnvLtcvxNkg))?BBCkkKEqKUUylFQleVhUpYyqhWxZklYzn10u8kSfZ2/E6VjgyyZ5HO71C2oUNY6RyMam1Stzfoo0yazpdw9gRWekpo4l4Zn25y/gb6Gq1crk7jbbwv0BSpQlAiFkQhSlibE2JI1V4mqX9Zl9931NyjwaqqrPemqi7TuK+xDvwYZSwSOmy55XKrszttvYbgQ1KTDaWjT0bN/wBY7abYJI)))?IJAFbFVLkWJWlY1KKZVIsFpWvKnon+6q/I8zmPWOZmare5Tx77te5vTdUJ1bkyZjtQNTUx+6n0OBmO7RPSSmjd02yr8Acmaxnhk+y74KYgQra3kQshqRzOZ3obDZo3dIVtZLEkI5vaTxJunWQqk)))))AIJAFbCxICVbHlMYgWnrX9mTfb+PzPW2OdjFCtZTbieli3md6dQNeUzHQwqrbHIsEi7knNvwR3/ZzFvcXJTr1ypt7wcahxjVtSGrRXM4NkTnJ3L1odaOaGZPQyNf7F2+HEhGsgAC?ALr1k3XrIAE5ndak6x/aXxKgC+tk7SmWne9z1Ryraxrmam56+wDb)))))AefxnB1crqulbt4yRp/uQ88fQTlYhgcFWqyxLqpu7mr7UA8kSir1m1VYbWUirrY1y9tvN8TUAuk03rHeKl0q6r1z/vKYQBseXVnr3+JPnCt9c7xNYAbaYnXetXwQumLV1+en3UNEJxQD2TY5MrXZV4J8ydXJ2VNyH9jH7rfoXA0Mj+yvgZaZFzrstsNo))))))ADXloKOb9pAzwspsADQXBcN9Qniv5lVwPDfVfzKdEAcpdH8O7L/ALxjdo/QfxPvJ+R2QBwX4DRW4yfeT8jUlwqmZzXP8U/I9SAKxp6NnuonyL))?f:Z%iVBORw0KG;)NSUhEUg?ANY)3CAM?ABHJUQ7)MFBMVEX::7/f7y/f+38v:6en/1dX/tbX/xcXl+v/U9:G9f:qKiq8P+U7P+e7v:lJQSDb6d?AEaklEQVR4Xt2Z27KiMBBF050bN/X:3aQiBvZoeMZHoYz+8myKYtFeuWCDomfcY30n3EXTXh8xtnp7p+5KlbcYYXGYE1rCpZeFCvtsBpdOPiSFe6qXfjYJTWwlgBt+AVqteXSfgnQ/MXVSl/Jpd2Svu/6oUQvrVZ24zdy6RrXlUHrr4mFMcosV2Pc+jnXxArAioZcRj/qldUaPwjtSEzPi0RnMFWpFrcJIea0qpvyZ1GEfn77laieU8tZcm2IQ17ZRVXFKurzi1VZZAzLWEu56G13XN0VPO3ktNvZ628lvUP6W4mHWkBhuRgrJDA4ETGLQusHCERFSgvDafwknvaMNXRbrAEIhDqwWo7lYiw8+tAsLsyMheF8Um3Jq90hM5ZXh3QvhLtDbq90rJYpV+3G7KKNlYo2i5nCToO0YA0OkZVBifRWUYvkOoFFHVoFL/bBbzgNtQrWpIZctlok11ksfWGllOKcMCfDrtdw7SBKALpiddX5gUFZLVMuaqK43LlRLB22T6xgQS5Wa8XqDbkMtYjSwsrhxaNyUFzXNEcZ0fUL+o6C1HK6YEGuDYU21aKeJCwwoaAq9aKUHQgNF83m1HN0UcHy1so12GoBMx1hZdnte7mI/WLXMRY8qn9JU9dCBayaXJOhli1XvTu103pxhlqwXBurIpeQWndgcdMJmpLVYs42lhxhPY8sNSzMhcn4eVILWDRF0BRCallyHeCWNuPi8AywQsRed4dFcrFaHlgkV0stksvAkjaW908sLVv68cFJhnGkFrBYLlstastjLEFBD7A8sIzdU02uulo7LIVchlqP9M5IpIyl2j3dKfaohSVExVgsV9gYr1Usd3/LBbUmqHWcaGAtFs/xQ3+ANc1Y5XXA2MJiufLGeJ2pgFWRC2oNEOY4+RjrSdXCWmtxA7LsC2HRoVxQq2BNwCK5DLU4LBe1+3T/Civtl2rCIrnkozOKWpjlSK6KWlZCC+tuN2FRawQFY9XlglqMxXKxWtnEiuexeAlhLJZrq5bTwQOrJtdeLdg8pm1ILsIqE6EvC66FxSXG4pVlhKkL1gQslmt6q9XZG6XMcrE+iJzDYrneH2TFmqlWLJbr/UH2agk9NiI4jZVbWLDw47F2dSzMf/5IrfHgsUULCzFmQlmVQS0kPiOw6VCr9wXr7hBsBBFWKxvn13NYur3ZGGJODyRL+0/RdXJ63raQXIipFst1HiuaSwjLhQh2TrhxlqupFst1AgsLl43FcsE9wiK5EG+oRXKdwPpiuIIhF3ZOwLLk6ltqASH/Pdb9NVzmoh8suXAoYSyWC8X0CtuSUwmwrKudVIoz07C+ognb7hpzCKmOJTgY4bzfa+dvVSzxc96d6P5BQiyPKYZCEmLkR8TLmqis/8L7OeoQ3slfO5m8NjNArSuHNbVzx6HkwuG38XYUr9IuHajF+cVqpZ+p5f9PtW7/pVrdL1EL5/2vgvP+tTP+TK3pd6gVfqaWXlwtfk1jhl/TXDsxlcQvsXxJ75A/ZMHNEnLfXgI)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ANo?AB6CAM?ADu370H)YFBMVEX::S5urp7ezj7Ozd6uvV5+rZ6ery8e3:v7Y5+nW6Or+9fD:fz:PpU3Mpw5daH6Nyx7eX/+fSk6+KW6eC/8OXh8+r49O5D1bvu8O3L8OjW8un/+/dCzr1C0rpBx75qyt4h?AHsUlEQVR4XuzZa3LrKBAF4F5BN2+9kpn973KsFtIZB5mKC67LuuXzy6Fs4BOosRW6JQqPFwxLpHq+ZLxs5KtKk/HCkZosjpdObFi0Cy/beO3w30sbP7Re+dA+tA/tQ/vQPrQPzY8IyzvRxBjDDW+faYZsIv9GtERE5vm3Q0ZkISPy/Wlib9FBeX31cAQOcbIdaJBNDCfgHWlmBeve8Cs9PaJZIupAQ2eO76VO/gjNaf8vo0khWTB0P1pQcbgB3MtoU+4LYYembjSrtKjGF9F8OY6O7rg7LRENuh/d+kIjcSCiYZaNcYv+nTSgsXVEbj6mZBaHj+09TWuTI9CGzCzs9g47acdttHV+sg7od7t3lONP+jtofvWi1vFSPjiLhBgsUDq9MYafNSA10xYiK0STybRASKjQJsqx+RZCLEofaGjzBU3XUmBYFMAttEhkPdGyEpWGe5rnfCXtLSslWc1BIxqs1/123LXJ+qhLLjhPgjFhAM3pKEUiLgj6lxZa0hXTG04yDRVj9YTHZUR3Iuery24/IOV4tYKWH2VEio1W7lOcsq20bSsNur95mxAfnviYNvC+D802lwHTcvvG5h80r32WYf08Yh0lbqdFUoPR8WVlGs3qSY9p4f+znjFlyXvJ5kUDDR2VOZteMy3PJdMMIXWaAe2+elPR9Ava9Edoo55o7TTTQku9aVslnrfNdNBcOhKfoIUWmutO0yGNtbLRgtLSiDy1IXGv8bO0rYwgLF1ocNpczZ+mRSKaVgWKJcpIwJF9fuXKQyESJe5M02o+n9GWGi0c38t42Iolir840LiYBq6HLc61zjTtddHtIMFjqDxzc07T45CscJj2n2O8iiZhrzIyqIShpC2KP2Kbv42YkqaDaykZCBdOcpsjekALhJDH/DQTaFj/2ontFWB70mJ+DqMBDdM8p2E2mBI6omRAk2I5TqvL1JfmdoodMmNA5z63uUe00aQdMubwrJ+wd+PMJ8vGDl60NNAqEeODMUWbMTJWwiYEw/f95AZE3O5EFjiKQnWRp8flAy0cF2jZ6+wwvh3tny3VJyUTV9dR8O3mTWiQ1Xj4bQeZvXOhzL4RDbBzHTDxBIriRoMZ35H2nQNdacOO9FkGeUpW4HkbGmQ1nSQGxce3:8aZP9qCl0lV6EprK67Pq3UXZ9W012dVtddnVbXXZ1W112LhtrfoLskra67Pg084Jpp8mLa9+91v/FJhRZfRcPce+oiVSIvpnXVCdXyJS+lMfMIXKNOvqieKPwamso0o9radCzxv+7sYMlRGAYC6AbLCjJw4UJRlf:znVLozW7DszsxQH6NIcceNXC2J5fH844D8+O0uPxiBy653NZns+1C8TxsZeYmCiEbsWvh3mep3Hs+xpwMtqCmE0kxuvqatrGRsScgIs5V9PVtPUPrQs5RCxJmNV4oFsr3flo6MBet7VDgCOCUaLWdw1dTSMUAByyIl1A1MgxirDs67pKdx6aEBRozoPBhAxGYmYi0tE81g2n0PVbWmIKyBa3ujXb0E35KtQ6PpnOaVabBraKZrOJEhkV7+poo3tBdwYabIyorciC0yDLVJ/JY936eV3vNCRqbLBUpu8abP6HLi0kbjvWPU03qa49sH8VmvEe0ddzk5GKILP+1JZizv/p2tMmp5VEsSczGZj2iVOa2YgROdDJh3WgzUtH7KqCgwiyHKWR0mDTCjMYQLdZice6aQKuLW0N+og1LoeYjRbMZsHionAUZwpmx1U6tK2619R/aImscUQsMP5N0+IswIkwAGCqZ0eH7maMZevaYKtxObZkakX20vlUIrAhASHG4iKS4k53ubr5NbaTYY2E7f2SEKMtmSEU2ld1bkNKg0zeXqVD6csAW8PahueK59r9FEcdOG8HNqWpsWhh82MCUk0mUZd7m/q2tgUPtq/zfYrhbCaBgtBi3wTDozcRln+HPPGXrW9rw6Me6GJMSeRL5zWBlOO0YG6l2WQ6ygPbMEPWzDa+Mq7W1T7jqcDbUpu1uD3b6ZqZqskOK2prapsyLldX62oecFRsm+XSZIEEtLcnIKFuGUBrieunaf6pLglvl0vYlFZKs+uIeiOdMJGvxrSMQ3U/1SkuKMbK8y0KPNYPbPyONo+/mgc6dPej905I42cdpzknktVWvWxOO4OOv/silAPQlsaA2nAihbbMEwCn0aW3OMT2mAgKLEPIVpv+gjkVmi2RH9SNte5or4IQKY2MJkaTGP0mrKKdXxcTEwKiarY0Bk2/A9sPG2wn0M3QPTFvB5OZBKEykfGQBsBldIhz/DK62pmciea611ZHuzp47P1SZaHRX7QRtLPo+qJbTSfvdDHZ/srPr8pMrLRY0U6owzdsT2fDJ1H82khs41LTTqkbDnSAbGjECcqcaiCvp9O1MlpV2p+vJ1LRrqfDrgqgHMhAsy3X2WnIG119j8UMc1lQLkFDvj8CxWRco4WKdnGdn37w2klFu7iuXEOnmnb97rJNJFbftbvoYnWldR9d46No+4uV1IrW/mLFabDdQpcKjRrR2l89CHXr4AN5I12MiRtcsTa/eiDwiIL/9/BGOr+nxKt2cVp9sbIiz6XFq9b+gJcD2QjafXQTdMitZKU75G4y2MBDTHZDHow3z2+JRIM+/Jm0sw)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AM8?ABwCAM?ACOw9TN?ABgFBMVEX:/8?AC0tLT/vhr/3IXU1NS5ubkTExP/vx5FRUXe3t41NTUmJiZsbGy1tbX/3orZ2dnFxcX/wyz/wCO9vb3MzMzt7e22trb/4JSoqKj/349WVlb5+fnW1tb/1Wn/4pt4eHj/y0j09PTp6eni4uLR0dFiYmL/5KKDg4P/zlT/9vz/6reMjIzl5eX/xzn/yuubm5v/2HTBwcGSkpL/0V3/2n3+/P/x8fH/6K:7cOwsLD/5qj:fn8/Pz/4/T:v:bhv/+fv/qBz/5Nb:vv/1sr/lHz/x6D/pKf/z/T/jDD/fkL/zZf:Pb/r8L+/v7:v7/oNb/TbD/VrX/hMv/j8:HJf/G5n/2O3/yOf/csL/wOT/icz/LaD/Qan/xOX/6vf/y+j/uuH/ab7/N6X/s97/rNv/z+v/5PT/fcb/0+z/5/X/JJz/lNH/7fj/4fL/pdf/7/f/p9f/9fr/H5r/8vn/9uL/3PD/yen/+Pz/89f/+/7/8Mv/zOr/mtT/x+o1H6di?AL9klEQVR4XtTYZZLkMAyGYV/RGGRopsFFuPrK7a+2s+P8noreGzylREpFrLpULLTbiaU6n1h3iRFxslpi6sRnVu5ZAslkAZQmobV7CBR7FkAdF08MkglADD0ARR6A2HkAijwAsfMAFHkAYueJQP?xM4TgeABiKUHoNgDEDzuHhcPQPDEoM65V9+6PQOlP4KyfNCqAugKwEEprbVaucdQw8cJZYZShHGUPQbAtfQNnDyq/8/j7k+YCSB48hMfz2lv+pkH70tZEoilR5Gin3le4Slty9KjDUAFLQmjAufkFecWHptXfDyDAUgmzkFzIo8HHcW2CvHx7I1vb4R0DprgsdaW11TT1MZx5OMxJuiMBCd47L3z9kyx9CTVg1NVQYPquubncW7GqSw0v30cPU6fwal8Fpg/xJFKKXb7QL/JGWfEaNKjpLTW3Pa1fBEPD+0z0lAHkeoQs3sqv/l7mue5DpzRa+QXIa5kLUsz8PEocMTXkgqeuiaN54h2s9lMk8w5fY8GjsjgGb1HBo5oJ9/znoMHqcCBJ3AUOOIy9dTGMPLoF/HPY8njOQoccen7oigmy8ej34Ds8nzQdeBocMQTaZqmP7P4HwIOumFXe08j0M76QyQlDw848OD0BA46EuZ2e94w8IAz92A8hXh4JGFoY/PwECfygIPaZ8LQjuPgAWfuGckDDjwbwvRFw8FDnNhTYxToMnlNljHwgPPwVN4z4+D+NFn3a7tuDzixB5xHT32RddvDYd0ecGIPODNP0RAnTdftASfyTCLyNNn2sH4PcWIPceK6+3h2nwX4vgR4f19U/PQJnyVOVEGcuJfdsW0vPz7L85cYO2hRHAnDOF5oSqQAY2InBomRqEFCUI;tnQPwy6zx/0404CdD7/vU1WZF53anlv5vwleflR4YjkMHJ5d7GLWQ6S/P5AOj3q5ODyXNL1c1rk3jwu0GzpAt6FJe1wgNXKAvqXkIZA3D4EcHgeou/M4QGo0Oq4fPfnGgDx6GMQegL72MIg9ALk8qVcPg9jDILcHSYfnJVo/eghE+fQwiD0McnuQdHgeQfkeIM8eBrGHQW4Pkg6PBbFnv6E8exjEHga5PQxiD0DHO1C+3WuRZw+D2MMgtwdJh+cOlKstRHvvHoDYwyC3xwVSc3hwQAmD1kqpLeXZwyD2MMjtYRB77AExaD1VOl+ewnQP6gJdcQe60ddm1pMkSfQbaJNE0Qt5AJI5P2+UP09gGjKIPee7E/og4cl6pJTJoE9ZT7pcLiN7QGprQfmG2k+n/j0oYA+KGQQPdfjdE8m99UjjAUj1oBzztl0uPXvGtuDOU/IoWE87e/TMKwkQezRIAWQ8lJLSu4dB7Kl5FOBB9aPnKKm98Uh4NEivAED5llJV5d9ja7Sn5EFA8Qc8uvjBE8ketEkS9hiQ3QOVJL48oWnWFwcNPOOeaUHtR+8pHjyJ1E2FUJP5fD5C8EA0XYtLFEVJ8jxPGYaN6IpZG6DD2IqK8AMe9OCpJKoGEh6AdFOTXK+rqoqoZ3lqwjXwhCF56rEFFUHYuT3QQDeRasKgqU2lSimfnsB44r4WuqyGi0TFWAcP+sozmIwmDCIKd6R8edqFLu4L6EMYlvEpROeZBf3ZQyBkQcvllHuhfHnOiwz1nBK4t2sZl6HuMDMi8jR/8ERTA0LksaKNb0+mO9hOZHt778qypmOiyhlA8HTYg8P/70GUqwmDlrZ0TZ6RR0+QrVDvabPs9V10WbZAYXiaUfB0Ah48d+69rnKhBgbEnmov0pHJm2elK23hijjwWFE7M6BOGE98DpzvU/VNv0+TyIqkhCcV4hIhf55wp+s9q4Y44rbKkBkKgF6F9QzrR8+x54iUXPAgiYgj1nBV/jwL46lNBTjwUEZUAtSIX55Z6/g9Co71DNgDjvEk87kvT/amO5lWPwS67X6BTuRpBHuGJXtMETjsMSDDgQcyj57Vq67Qhe8G2dR1WRhRG8eNYI/rPleBwx4tAucpnl2ja1H2r0VeT3VdmyMKwPnSE+WC79sja9Qc9kwmvjxnbvUuek9xIhHNAy04OLpu7Po/hDm019xW2NKJye/9B+3A6T09iDjsGbPHwWEPc8gz8OtZ9L0xR3RtQSKArsLpcXHgYQ57TN72wIahZs+5bTUIHKeHOZxizvM89O6hud6Bw3WBATHH7WEOe8B5oudVd/1xh7yFGtSJB8+YPcxhD3Oe52lQZzjsWQDEHLeHOewB56meK3WzHPZkBLqJrz3MYQ84z/R8foLz13fx/dNkPatsccf5Sf1Dnr+pn/Awh1PMcXj+o91eVtuIwSgAa1VCV3mArlJKYTbeTXdx3ZBLL/RCKEyhgLKJhhFINkLViGHaV+9/ItmS5cmQ0OYAwgaZXx+6btyHCMcjoN+lyb+PjazLDjYAat6IcRRO1RGgddtKyZX1y+Ax5uzsbGMG5o0xlhI9l5fnrdbOsZiRcvXu6OgtpScAONwJVNd2W/z39fU3jG7Og3RzHqSrJz1G3IyIEI2PnlNwuFIbkzzWGA8PEj2/Ls9le0qeIfOMH+48H+Ehju5jZPKAU3jYs7DXMk/P5zyInvLUYrH1dE299QSOtUFYVRvjKayiABQ95zx4bO65+vT64uLiMzzPX9j+wHO77ic8b54jJ8HTjEk86WkEWjHl4X3wCPJ0KngwPXZDHBtG7mMGj1Rbj+dcSqm1U9Ej4LkRoQRDdOEpR1cm/tT3SPIcdKjv7eAW5NGEgKdNHrYkjyk9AVQFj1FcKksevedZ8ORpdhRfFp/zsMKDyId5Rnhqxmp43JwnJXoseawhj/uy5xFFsboYLiJnPQbtWHrK9dbtg6MXHijgaZLHWnh88qxKz1KRx3h4zJ5nUXjY4zzl/ik9SfgYj1LwDMkzhDZ5Bnj8Eh71/zwpPANSeOnp2JRHlOst91TswJP2j4dnYPC0mcfBM7Pe0ujmPToDznQoPa7PzoPT5OHw+ENPOt+swvnWwuMyjwfn8DwoRzedB74PWIc+k2AODwKPSvcPswQywVNR/PJuZr6m+2ejeLx/XOPT/cN0/8/nNTLnCTV86Zm5TyV5CLRkiEGy1oIzgLP1qMzjM499Io9Ey0vP4Xsnvd9YpQi0yjyYGc927zeviCPJBI/MPExnJfTTeCxaV3rueY86TBBbcQLFnYKwFa26VfxMaTpx8+P9y5Phz+3ten18fLzz+LwE:6T/qXVOPsKyTx/a63j1jphKArg10IdeeaOCc+OEAdBqwikIPO/B/v+X2s5XhujSNhaeoAre8W98yO3ofTvKSTKlckHEk7/rdl0QvgWorWuKnUTU3u7m9k8Nf0fkpSS+tf7J/O8+Mm5hmarVFVpTRLe/u9DmWF7kqR0Ct/uh3O7nAexOQ9iO/EgiedlnvyyzLMx9038iGkEtKwcNjSpg0cXkj718MHj3wHmfz1FmfMgPvEAtHraxblJRHMp9c2eZyk1gTM6ssLZPLf4zYcydeIZio94WEfxtYcVprryPI8M0OQDaXklZEbq75gPQoQz2gGc3VNi11QY88GjEo:kId6eUTPGUydPKKHYsw4Mv8mqkGqCVkQahcfQkjQgGPNdjzb6wtqGVn1tG25ezhS+nO7jCdVJAd87SmOHrYB1BK1OCV5Z0KolQfCwlHCiR6Lo1nLdwePTtvEn57aZT03TH32nPfN7h5snHiUtXaU0s45QhzymDEFOELDK0eBI54OEjNgDse2mW3JeLK/P6nnvMICeveoIJLSzEwI72kIsSHKgFMt4IhHJKL6tCd/v6FKeX2hnz2sQrBv1o6jJ2SMWcS8rtq9CtE/d4+RqxqTE4/DyO1bbJf3eMqfcDFHoIDEM1fBY4geNsRI/Zi7eBQyrFdBo+OrXMToxNNjHO+Dk+fzfx+QDUMlHoqpqxC1pdnrkw/DbR5s2hs4+mW/HnWx55a09cWn72sk6/GYfQQmnm4ESEzcJh6D+UJIhZDcbNGDO+iqLfWJZ/gij8EsL994HbUWEb9RUv+OWW+eQCEOHLd7SjgUs8XTp2V8Usp/jWfAdNdvdL8npbWa6o5Szw/MhRCN0BNu8dVTxKY3kuNQqadPS5Ws0cUNZ89fcGEBkgbGb70)ASUVORK5CYII=$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAF4AyAMAIgABEQECEQH/xABg?ADAQEBAQEB)))AQIDBAYFBwgQ?EDAwIDAwYJBg8))BAgMEERIFIQYTMRQiQTJRYXGBkQcWIyUmM0KhsRU2UmJ0syQnRVNUZHJzhZWisrTR0v/a?wD?AB?I?D8A/qk)QKTclVAoVybiyFkMu4XMsgzHcZrkMxzHkO4GwGWQZAI0AgeQrhYoVxXFcLiKuBIguIsCcgyC4y7gQO4XAsCHOaxquc5Gt6qt7Ih82XX9Ojk5faEnl/QgRZPwGB9UDh07UO2yzx8iSHlY/WbO3v4eHQBgdwhkqpKgJSHDcYyOMnOGh5P4WKyoouAtRqKOpmpps4GtlherHtvMxq2VN+l0MPiOzL85uKf8AM3f9HL8NEn8W+qf3lN/yIz1zpO/7RZWQ0a254/WeFOwaPXVUPEfEvMggkkb84uts1VS+x6XhGolqOFtHmmkdJK+jhc971XJzlYirdfFTl4pk+jmq/skv+xTPgx/0T0T9hg/dtKR1zTA9Jktuo2u26nNnsPPoVcMTyXM16q4s19mlapHFHSOgxpqmPOJ2USKu6bt38x3fGev0784NGqIWf0qj+Xi9aoneanrQw4fd9NOLP7dL+5Q9UxxVycTn0nW9O1aPPTa2Go2+w7vJ629U9p9K54qOOGL4UU5MUcfM0hz34tTvLzmpdfOp7G5KkqhtcVyLiRdyFUzL9pGZMj+8ck9QjXgikKqIduY8jgZN0NFlS3UY73OvMrM+d2pDZkm3UpCkPPaJp1PrNTqdRqfOquTXzQxskldgxrXbWbex6ulp4KWPCmhjiZ+o1G/geW4JlTla5df5WqU/1IfeqNTpqWPmVU0cEX6cj0b+JYzLTJPpHrX6rYPva4D5nCuoU+pcScQT0UrZqe1O1sjemzXXsAyT1hClEOuZuAlxjL0NL7GEj1su3dOd6jQ81x5oDuJ+GKzSO19jdULG5J+XzMFZI1/k3S/k26+J574vcZ/a45id/g0X/s/QJ7cvPwOFyuzbmid7oGVjdu54uo4e4oqaaanqeLo5IpWLG/5rY3ZUsvRx6nRKT8naVRUXM5nZoGQ528rFqJe3h0OpzFNmxfJ9PAtFU12QGKl13KyTJNwSNMMreH3lsjTFuxo3clzkPH11NrekcQanqml0lNqVLWrFnBzuXM1WMRuyr3V850UHHej9o7Lqrp9HrP5rUI1i9zvJVPaeoaxt3beNkM6ygpNQi7PWUsNTTu8qOViPb7lNLGOZ5iKZkvwtQcqRr43aE9zXNX+sN3RT27VS/U8roHA2h8P8Qu1TSKaSmklgdA6JsirFirmuVUat7LdvhZOux6h9mvbt3fHchxKuKkcnnJY5tr3RF9ZnUWa/Fqe0x3IsYudY1kf317x8+pajLYr1OvBThrHpdG2XZVuU1phK/bc0i8lAncuw6RUe1G2XYdVE7DKy7F2G1/cuCtTs/gXRu2ccvO+Swsp10Ma4Ltuo7GjJEc5LHj04b1mGor/nzslDVVktTyqWJOZ33X3evRbW6IfXoeC9FgYlRUQSV9Vb66tkWZ3uXb7j7ldE7lo5qeT1Ijqf4OkeK5dBoD5cXLkd+nNZHCkcTGsY37LUsiewC6FitiuAFs8lDqM3r6DQlxm7coyRFxOd6OxVmK+s61JsYOYCKc08Kup1a3rY4MJJZYsmK3Dqqn10JczcMDRrjglZuSxu51SN3IazqaYlZbGK233QnwQU8TGNduuXgOFq4IdKRoiZIc6yqq4qZuXc0iX0mEv12IN7kqG6RpY51lW52paw+7fqhg5VwUlE+TV1yOUiiWRTpVu40ZuRTv7iHSxpk6MbXZEY7kuhZe+Dd/QdGK3HgJEsXa5zNia1e61PYhasN8dysQKaljkWBl/Ib7i2tN1YLECuhOOw2wx38hvuNG9CrAPr1G1AGgAUMSlCEqAQCl2FYhWgQpDjWwrAjRnO5plKncdt4HWpCtGiAp8Zj++rpUX0IdMCrIi7Wsd+JOJu6RHeBi2NW+J8yoY6OVH2FGx002WK4n1MAwLSXbpuZrDv12OOWFXRr5zlydy1jxU+tgGHoG2S2yidFfdDkpo1YxPP1OtiFYF4kOdfcbWWJxNMR2KRDM1RCbDshQCKsTYWJYrAFhWGiD?G?Aw?AY?CsAhF?EWFYs?zsKxpYBgZ4hiXYPEYibBYuw7DFYiw7FAILCsUACG))?AD)P/Z!