C# : .NET

[".0s4*0|collections;datetime-format;collections",["F@eA","FIBEECECLG","OBOBOSTUUUUTTUUUUYFGDHDHDFOCCWBCSTTUUUUTTUUUU","wrkr.",".NET","Array","Dictionary","List","String","2D","Async","Console","DataTable","Dates","DateTime","Enum","File","For","Foreach","Format","IEnumerable","If","IndexOf","Lambda","LINQ","Optimization","Parse","Path","Process","Property","Random","Regex","Replace","Sort","Split","Static","Substring","Switch","Tuple","While","Integer Digit Count."," This method finds the number of digits in an integer. It avoids the ToString method. It is possible to determine the number of digits by using an implicit cast and several if-conditions. This approach avoids all allocations. ","Int ","int","Example."," We demonstrate two methods that both return the same result when passed integer arguments. The first method, GetIntegerDigitCountString, converts the integer to a string and then accesses the Length property on the string. ","String Length ","string-length","The second method,"," GetIntegerDigitCount, uses mathematical logic and conditionals to determine how many digits and characters the integer would have if it were converted to a string. Both methods count the sign as a digit (character). ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","br","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.6\n\n","C# program that counts number of digits in integers","\n\nusing System;\n\nclass Program\n{\n static void Main()\n {","\n // Write number of digits in the integers using two methods.\n ","Console.WriteLine(GetIntegerDigitCountString(int.MinValue));\n Console.WriteLine(GetIntegerDigitCount(int.MinValue));\n Console.WriteLine(GetIntegerDigitCountString(int.MaxValue));\n Console.WriteLine(GetIntegerDigitCount(int.MaxValue));\n Console.WriteLine(GetIntegerDigitCountString(0));\n Console.WriteLine(GetIntegerDigitCount(0));\n Console.WriteLine(GetIntegerDigitCountString(9999));\n Console.WriteLine(GetIntegerDigitCount(9999));\n Console.WriteLine(GetIntegerDigitCountString(-9999));\n Console.WriteLine(GetIntegerDigitCount(-9999));\n }\n\n static int ","GetIntegerDigitCountString","(int value)\n {\n return value.ToString().Length;\n }\n\n static int ","GetIntegerDigitCount","(int valueInt)\n {\n double value = valueInt;\n int sign = 0;\n if (value < 0)\n {\n value = -value;\n sign = 1;\n }\n if (value <= 9)\n {\n return sign + 1;\n }\n if (value <= 99)\n {\n return sign + 2;\n }\n if (value <= 999)\n {\n return sign + 3;\n }\n if (value <= 9999)\n {\n return sign + 4;\n }\n if (value <= 99999)\n {\n return sign + 5;\n }\n if (value <= 999999)\n {\n return sign + 6;\n }\n if (value <= 9999999)\n {\n return sign + 7;\n }\n if (value <= 99999999)\n {\n return sign + 8;\n }\n if (value <= 999999999)\n {\n return sign + 9;\n }\n return sign + 10;\n }\n}\n\n","Output","\n\n11\n11\n10\n10\n1\n1\n4\n4\n5\n5","Here we explain"," how the GetIntegerDigitCount method is internally implemented. First, the int parameter is widened to a double value. This allows us to convert it to a positive value without losing information. ","And: ","We test it against zero, and if it is negative, we set the sign variable to 1 and make it positive.","Then: ","We test against the constants (9, 99, 999) to determine its positive length. We return the sum of characters in the string.","A summary."," We computed the number of digits in an integer using mathematical logic only, and also by using the ToString method. The ToString version will force an allocation on the managed heap and is likely much slower. ","ToString ","tostring","And: ","Performance depends on the string implementation and garbage collection specifics.","br","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","br","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"],"url()","url()","url()"]

["url()","url()"]