["..E$ ","A0BEACADCeACAf+L.BC|F596665666}XC.B(CCcBCEZ~CP666666699996F((`BC(.CCP(3(BCCX","HybridDictionary"," attempts to optimize Hashtable. It implements a linked list and hash table data structure, switching over to the second from the first when the number of elements increases past a certain threshold.","540px","360px","HybridDictionary is used"," in the same way as Hashtable from System.Collections. The example includes the System.Collections namespace for the DictionaryEntry class, which is an instance of the System.ValueType struct. ","DictionaryEntry ","dictionaryentry","The HybridDictionary type is found in the System.Collections.Specialized namespace.","C# program that uses HybridDictionary","\n\nusing System;\nusing System.Collections;\nusing System.Collections.Specialized;\n\nclass Program\n{\n static HybridDictionary ","GetHybridDictionary","()\n {","\n // Get and return HybridDictionary instance\n ","HybridDictionary hybrid = new ","HybridDictionary","();","\n // Use Add method\n ","hybrid.Add(\"cat\", 1);\n hybrid.Add(\"dog\", 2);","\n // Use indexer\n ","hybrid[\"rat\"] = 0;\n return hybrid;\n }\n\n static void Main()\n {","\n // Get HybridDictionary\n ","HybridDictionary hybrid = ","GetHybridDictionary","();","\n\n // Get values from HybridDictionary\n ","int value1 = (int)hybrid[\"cat\"];\n object value2 = hybrid[\"notfound\"];\n object value3 = hybrid[\"dog\"];\n int count1 = hybrid.Count;","\n\n // Display values\n ","Console.WriteLine(value1);\n Console.WriteLine(value2 == null);\n Console.WriteLine(value3);\n Console.WriteLine(count1);","\n\n // Enumerate HybridDictionary\n ","foreach (DictionaryEntry entry in hybrid)\n {\n Console.Write(entry.Key);\n Console.Write(\": \");\n Console.WriteLine(entry.Value);\n }\n }\n}\n\n","\n\n1\nTrue\n2\n3\ncat: 1\ndog: 2\nrat: 0","The Program class"," defined in the program has two function members. It has the GetHybridDictionary method (which internally creates a new HybridDictionary type instance) and the Main entry point. ","The execution of the program begins in the Main entry point, and then calls into the GetHybridDictionary method.","Inside GetHybridDictionary,"," a HybridDictionary is allocated. It is populated with some key-value pairs. You can use the Add method or assign new entries with the string parameter indexer. This behavior is like that of Hashtable. ","Hashtable ","hashtable","Getting values by key."," When control flow returns to the Main method, the values in the HybridDictionary are tested. You can access the values by using the string indexer. You can assign an object, which aliases System.Object type. ","After you acquire the object, you must cast the reference or value type. This impacts performance.","When you cast value types, you incur an unboxing instruction, which copies.","Enumerating HybridDictionary."," Finally, the console application loops through the HybridDictionary. The foreach iteration variable is read-only and contains two important properties, the Key and Value members. ","Foreach ","foreach","These are instances of System.Object. They carry no information about their underlying type.","Object ","object","Benchmark."," Here we look at a benchmark of HybridDictionary. The setup of the benchmark tests three collections\u2014the HybridDictionary, the Hashtable, and the Dictionary constructed type\u2014with a series of numbers of elements. ","Count: ","For this benchmark the count of elements tested is the range between 0 and 20 inclusive.","After the three tight loops, the results are printed, and the for iteration statement moves to the next test.","Benchmark for HybridDictionary: C#","\n\nusing System;\nusing System.Collections;\nusing System.Collections.Generic;\nusing System.Collections.Specialized;\nusing System.Diagnostics;\nusing System.IO;\n\nclass Program\n{\n static void Main()\n {","\n // Loop over element count\n ","for (int length = 0; length <= 20; length++)\n {","\n // Get the array\n ","var array = GetStringArray(length);","\n\n // Get the collections\n ","var hybrid = GetHybridDictionary(array);\n var hash = GetHashtable(array);\n var dict = GetDictionary(array);","\n\n // Adjust the maximum iterations\n ","int m = 1000000;\n if (length <= 1)\n {\n m *= 100;\n }\n else if (length <= 5)\n {\n m *= 10;\n }","\n\n // Test HybridDictionary [Blue]\n ","Stopwatch s1 = Stopwatch.StartNew();\n for (int i = 0; i < m; i++)\n {\n foreach (string value in array)\n {\n bool flag = (bool)hybrid[value];\n }\n }\n s1.Stop();","\n\n // Test Hashtable [Red]\n ","Stopwatch s2 = Stopwatch.StartNew();\n for (int i = 0; i < m; i++)\n {\n foreach (string value in array)\n {\n bool flag = (bool)hash[value];\n }\n }\n s2.Stop();","\n\n // Test Dictionary [Green]\n ","Stopwatch s3 = Stopwatch.StartNew();\n for (int i = 0; i < m; i++)\n {\n foreach (string value in array)\n {\n bool flag = dict[value];\n }\n }\n s3.Stop();","\n\n // Output benchmarks to Console.\n ","Console.Write(s1.ElapsedMilliseconds);\n Console.Write(\", \");\n Console.Write(s2.ElapsedMilliseconds);\n Console.Write(\", \");\n Console.Write(s3.ElapsedMilliseconds);\n Console.Write(\" [\");\n Console.Write(m);\n Console.Write(\", \");\n Console.Write(length);\n Console.WriteLine(\"]\");\n }\n Console.Read();\n }\n\n static string[] ","GetStringArray","(int size)\n {","\n // Get array of random strings\n ","string[] array = new string[size];\n for (int i = 0; i < size; i++)\n {\n array[i] = Path.GetRandomFileName();\n }\n return array;\n }\n\n static HybridDictionary ","GetHybridDictionary","(string[] array)\n {","\n // Get HybridDictionary filled with all the strings\n ","HybridDictionary hybrid = new HybridDictionary();\n foreach (string value in array)\n {\n hybrid.Add(value, true);\n }\n return hybrid;\n }\n\n static Hashtable ","GetHashtable","(string[] array)\n {","\n // Get Hashtable filled with all the strings\n ","Hashtable table = new Hashtable();\n foreach (string value in array)\n {\n table.Add(value, true);\n }\n return table;\n }\n\n static Dictionary<string, bool> ","GetDictionary","(string[] array)\n {","\n // Get Dictionary filled with all strings\n ","Dictionary<string, bool> dictionary = new Dictionary<string, bool>();\n foreach (string value in array)\n {\n dictionary.Add(value, true);\n }\n return dictionary;\n }\n}\n\n","Results","\n\n175,164,63 [100000000, 0]\n2001,5116,4898 [100000000, 1]\n544,1101,1072 [10000000, 2]\n1007,1552,1494 [10000000, 3]\n1737,2170,1931 [10000000, 4]\n2422,3124,2395 [10000000, 5]\n307,390,288 [1000000, 6]\n401,427,349 [1000000, 7]\n486,390,386 [1000000, 8]\n554,506,469 [1000000, 9]\n559,504,482 [1000000, 10]\n685,617,579 [1000000, 11]\n746,824,622 [1000000, 12]\n851,780,757 [1000000, 13]\n956,875,726 [1000000, 14]\n1072,951,762 [1000000, 15]\n1073,972,853 [1000000, 16]\n1030,943,892 [1000000, 17]\n1096,974,961 [1000000, 18]\n1381,1182,924 [1000000, 19]\n1233,1112,1048 [1000000, 20]","The benchmark uses"," an increased number of iterations when testing all element counts equal to or less than 5. This is to provide increased accuracy for the faster loops, but is not ideal.","The GetStringArray method"," here generates a string array of the specified size, and fills it with random strings. The strings are from Path.GetRandomFileName, which (as expected) returns random file names.","Also,"," the benchmark defines three more methods which return collections of the specified types. Internally, these methods populate the collections with all the strings in the string array passed as a parameter. ","Dictionary ","dictionary","Thus: ","The end result is that the three collections all have the same number of keys with the same values.","In the tight loops"," in the benchmark, the bool value from the key of each and every string is looked up. These loops test the lookup speed of the collections. The benchmark here does not test collection fill times.","Internals."," The code next shows the implementation of the Add method on HybridDictionary. You can see that there is some additional logic when adding keys, but this amounts to one or two null checks most of the time. ","When the count is 8 and you try to add another key, the third condition will evaluate to true and the ChangeOver method will execute.","The ChangeOver method copies the entire contents of the HybridDictionary to a Hashtable.","Add method in HybridDictionary: C#","\n\npublic void Add(object key, object value)\n{\n if (this.hashtable != null)\n {\n this.hashtable.Add(key, value);\n }\n else if (this.list == null)\n {\n this.list = new ListDictionary(this.caseInsensitive ?\n StringComparer.OrdinalIgnoreCase :\n null);\n this.list.Add(key, value);\n }\n else if ((this.list.Count + 1) >= 9)\n {\n this.ChangeOver();\n this.hashtable.Add(key, value);\n }\n else\n {\n this.list.Add(key, value);\n }\n}","Internally,"," the ChangeOver method is a private void parameterless method that uses a loop to copy all the entries in the ListDictionary to a Hashtable. The Hashtable is initialized with a capacity of 13 elements.","Generics."," There are measurable performance improvements with the HybridDictionary on smaller data sets. Despite this, there is no collection that has the same \"ChangeOver\" logic in the System.Collections.Generic namespace.","Depending"," on low-level implementation details in the CLR, a generic HybridDictionary could prove to be a valuable collection. It could entirely replace Dictionary in many programs and result in an overall performance improvement. ","Generic Class ","generic","The benefits of HybridDictionary occur with the fastest lookups, particularly those with less than five elements.","However: ","Few programs will have severe performance problems when using five-element collections. So the true gain here is not dramatic.","Summary."," We saw the HybridDictionary in the System.Collections.Specialized namespace. The collection has genuine performance improvements on small collections, but suffers measurably on larger collections due to the overhead of the internal logic."]

%iVBORw0KG;)NSUhEUg?AIw?AB4BAM?ADS7QcC)GFBMVEX::0hHKambK+vs74sKT4raH4tKr2lYU8ckip)fUlEQVR42u3XsQmAMBgF4V9x?OCfVxAdAEdQtwg1il0fsHS8IpIsLob4OvPnKy1V7WXWb+J9pQZZpG3zkRNyowmmmBgYGBgYGBgYGBgYGA+Mn0QHTl3V+o1iYieKifLYq4gilnMYqIVBgYGBgYGBgYGBgYG5gfm3ESx0GvePshxrr29cII)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AgU?AFUCAM?ACDeL/w?AC+lBMVEX2+fGVlZW+S0hKfrvw9e9Qgr3u6N3b5ujmzsSqxnrs8e7z7ufgt7GYuVQ?AB2nci/VE/h6s6/UU3x9efY5L+Us9eLrdDm7uzG1uLFYV3DW1ilwmqdvWFhjsTW4ufNdnLQ3uXt8+Lx8efW3rXUjYhaicD::s2NK2x4Obu1nq0szq8d7H2aLOfHjIbGjQgn7kwrxlkcTt3tawxtvZnZeqxXGgu9alv9jbp6Ln79iGhoa+1JQ6kNvbkDp6ocqivGPfsaxqlcXVk43A0t/F157Kcm3/tmbXl5PaopyApc22ZgBmtv:25CErc7J26ecr1O1ytzQ3rG2zYbSh4KbuNTO3q64XErivbfc58W5z4rC0Je6zt7HZmP:7alpaWqw9ndraeqw2+2:8AZrbb:+Q2/86AGZ0nYW3TlDTjDatY2OmZWQ?GZmADqUtVurgk72sWD:9v21oc6?A4jM/T+fFm?BbiqRmAGa/Y1i0UVOKg4OUOgCeqFI?Dqvd02KkH1Re7RUha9PgrTGjI64sXnDvo6bcG+AhYu/e2SOY3y0ZktairQAOIeTeXmZcnGzakx7o3uK1vGxWFWZtVOCqHU4OIcAZKyesFiqmlr2+axxbZPOkYOltGDNfndmkNuLrGl5aYxaga690byVaH6hoVI6ZrYAOpBmOpCrtGqw+fG2Zjq+x4tvmpucupioVV6MlnaDdJTM2uymZHCebGtsmI51g5UAOjq1xtf2+c+XtcuCp5W5zqq70KeQpMPn7uSvXFqPoG15hZJ1nqmSp2Vgjp7szMvmu7rb25DCdWbWpJfBhGvCj3O/k3C9nXWStG5OfLfCrYW7zuXl2sqmpVvHpYTFt46wZADKo4iQ29uxr26KOACuh1aJrY+jmlDNz6Wzfleerse2clS4a1O6YU9ncZ6ll1E6OpCsU1o6Ojq9qXpmZmbV07Jwg5qQOmY6ADq2tmaKioqQOjq2/7aQZgA6ZmYAOmZgdKbFydRmtttmOmakV2FznLy4z5Izxxi1?AXdElEQVR4XuydY7Qky7KAY2VW29i2bZtj2zq0jWvbtp5t27Zt21jrVWR2T3Z1Vc2+Z+70m+rK+H70qq45+993siI6oiKgd38yeaAXkRfy89Izy729j7+UfOXdvf6HgN139h685w7zSl7Iz0vP/YNpwcFP4U3/Q8DKgd7H/wn/j5cXxa+7l9ERPSwgYH/RAnmx32IBXkouLy7+42LlIC579ixAMxSLUDmI2x8X/Pld5pW8KH7dLaJDlEADC8gCkQhgRCgv5OelZ5LJh+7YncRPDSwgC3b05KYtIMgCgiwgyAKCLCDIAoIsIMgCgiwgyAKCLCDIAoIsIMgCgiwgyAKCLCDIAoIsIMgCgiwgyAKCLCDI;pBkAUEWU.BQRZQJAFBFlA1KemdLeAaA/wQFRvC4hoC+cpzc8CIsV5IKS3BcQs53xL7+iQaOec1+idIxChHs5ThtYWEEaK85460NoCooZz3g5aW0Bscc5nQWsLiFCA81XQ2gLCmOC8Jaq3BUQt54F20NoC4ijn/ArobgHVkPghqixTDWnC8KgFrtuTbq0FxD5RQ/KoBW7bk26tBcQVzvlR8KoFbhtTbrkFFBTUgGctsG1PqoAFRJ2sIVXvWXB58UuG+Czn/M2e3J4lLxy3J1XkLKDGEu+eBTfYnnQrLaAaEnWiUw0pBWQBUGOJ3hYQNbKGRBZQDUl7Cy;2AdkAVBjid4WEIdkDYksoBqS1hYQ9ZzzWtDaAqI1wPmGAXbG2+KaWEDUtXDeEgI704xl9bCAMDY4D7SCnROMsTFtLKAWM14PNmJtjLGRmBYWEDXOfefBi4yxbj2iQ2KKO7aY9aUZY/P65AiUI66CjfEsY9kzWmeKlCOuM8bSg6CzBZQj7mGMNUyCzhZQjjjGGNsVA40toBwxtgt/JugEjS2gHHGygTG2R+s6AuWIg5ghroPOFlCOeAYzxHHQ2QLKEecZY419oLMFlCNuMsYuBkFjCyhHjI0wxtpioLEFlCMGR7F81AkaW0A5Yh9miNNad5xRjhhOM5aNg84WUI4YzzKWDoPOFlCOGMfyUR/obAHliGHG2GgQdLaAcsRw1pQgBjpbQDkiStAQBJ0toByxT0qgswWUI/alhQT6WEDU4/YLmwTpIOhjARGy5YhBlKAPdLaAcsRgg5BAHwsII6VyRCVBdhA0soA4VD7YNIYShEEjC4iT5TlibFRI4F8LiHDbHmvkf0GNK1ESsDD42AICu0j3xKx7D1YNKAEliIOPLSCuMiS9N1aSI05EoYQRIYGfLSAum;ID652Fjdi9YTKJViHKrLAeW8WfuJ8/OSyzQIizFg2GG9gJo1XCzlie7kEe6GaLLDvzVKfclcGWWB/33QTnwuNzKQhXss5vwAldAsJqsoC264c9Yki2M4CIsgY6wPkqngu/MXH+JxdguqywHFvVuHm7uSX31W+N4l4kLH3FS5ffPA+4cG7FhUPMMYeWHzZXPbqWSCfC2VnAZFmbFzVEd8qPGgLQ4G9cmxVlZ0Ftr1Z6nNluffSw3fbLKA0sbETCoR6+Gs+z5CRPosEVWaBw94stT3LniMQoyXTyaITOOw82M2QsUkpwUgnKKiO4N80EQqsFnLEyTGGdF+VEvjdAmKs5MSvVRPv+0YYIiTQwwJKE9Xag5MlFSZmMtoJvreA2MPYqBpXYt2FFB7FV9P9bwHRyNgZNa7EYXW2/y0g1q+niSFsM6yDL4Gh7UhXlVpAaeJeNa4kBDdP5lzChCyoQgYxTXQfaXk2spSBL4qumQSyVJ0WUJp44vq4kikoY2EgkUis7SxCx/BaAunPU1xQhQSzjA0Wc8QaKCeSQHYSYWEJZUkMLC1QdFiVTMs0sW7Vce3BYTzim3YQIR+RohzOVW+OQGliHKC+h2OO6PQ8OA+wcN5dhNwpKUkkT5li1RLHNDFay01OGk7Pgya86yrCkHwUJPBmNVtAaeJ0+wTnfKIdbBwzD4AMIM4inO2X37c7qI5QzfQxlv1DblIbBRtDAyrvs4tgHLsmLq91GVRHqG5OMPbNnPOeekBcngd2ERTHM1RH8EOa+Kecr9YBOD8PzgLiJkLz+SGqI/giTfx6HjgKTnQ0q+eBowhNx3JUTfIB3/ECY59JhcARM/Jby1FN0e9Eaz/G2Atz4EyXeB6QBT6nvof/N2OvB3B9HpwDssDfGCc5/3fGWBCcMWvEax1kgb8RPxR9nrExcCZvZgB5IAt8zVyAc/59WdfJJB1r+DwgC/xMKMW5mR/Oi2qi+/OALPAzW3gQrNZ1NjJ21f150AVkgc/HmQbmAMYZS3eCEznzedAPZIHPJ1luhACgDZcjO7KUSDR3kAV+ZrbQZ9znmiaeFc8DssDHtBdfQ9x0TRPN/CACZIGPwdFl+4rVxHG358HAEFngZ2o576krzK24CE5kzPzgGJAFPubC9RVIrmliEz4PyAKfJ4k1gIwzlu10fR6QBX4mxfmEUZxhucfteXAYyAIfMyd3XhTSxElw4BrmB2SBz/fkzl2fWzECDmyb+cECWeBjjAnOUyCIYZro+jy4jRZc+oq7ei89J8dRHvyy4t3dOKcU7+OAuofuEN/VP5EFLzNJDNRdH2/Y?7MJBIzhqcsUOB9lGRFKiBv0FnwMqkvmW/d4JwmDovnQWUt+KYW7kbLLxUt2H/AdODgvz6TNAeV/uWTd5o+mMMqv/0etADn16If+5PIAfPSvFruNf9j/HzSHGlp/kUS/54ssFPXo9bfYJoYA3AaVTAMFbaghbsTEDNJkw/h4Pr9B3BoqZhebhohhthKC/BfxHfUxZTFvJL/mTwaVpbNS/H3ZIHjyuyWqJpbscfteVBpC65wd2qKZ8Gl5/75uTswLvhq/P8eLVg5IO7Ls0B8L1qAV0KMx/9OxA3L5qX4e7LAcVtyO0gmxXjDcnJm/SCB+YEX4oKVvxZDqy89jBZYzgKMBx3OAmmBacRutED8PVng1FkyWzLesM0+kKbZlGAbPGLBwb+/GyMCfNSjBSIu+Lf/whwB9xrI78kD+zEukMtvpAUHn5RnAf49WeDQWaJGVITtaWLHeTGFIGLcVgsUap3Nzf/9DfcmYRxZkmMuatVZggQbGdsFpQwtFd5AB/CKBSvL8uLm:7Ge5PEcgTFoladJcguxhqDoFiQDszk4dbT6+FdKZpZoDpLkG7rtuzM8QQSyUAF8O7epBUzIb1THwtUZ4nanbmuHIhYJlFodBYs46dO27P+lnP+bYXrdzLGHlws8A2PJJAfefVipbjs1b1J5kXp78+LunSWqMiw0zqvdggqgNf3Jqn0QbCoR2eJLTLsEjNpBhwn0lBl2a+dJdbI8JSYWdysBtSRBZp0lqjIMC8dGM6BgizQorNE/ma4iRKgA2unDF.BXp0lqjI8KxZP26yDqokC/ToLFGR4UKzKUEOLJAFOnSWqMhQSrBDYuCNjjN71xl+lZ9kwU10lqjIcMhMEJsXoLosUHfIgp1pbUdmkZoUgp0llsgwd010FnreAtE/aH7cKdoJRS+BvCVbEbHt0PxGFljYauEuzFoiw9yMKcFZuK0W/FgDc6Phx4t9h6I2jNVh2U4ozwLZUij7inYvozBkgcKo4W4cMiyRYb8YX3d7LWhg7mSLZ4FcjL8/KdsJhQXi1vVWxBUpSxGyoC7FC0yk@OzJnPtSMgaGWIRuQtuswVXmTt7ChbI/kGMEn7iugXiVrEVUfyrgixox4VHtQa4oSLDpYRqNPd+XJBcXsEeQmEBngrilmpF3C/6A8gCtSI9MAWuqMhwe4fuUqojVCvRQ/hKTyu4oSJDuRIP/GcBWRDCYcapKLiiIsOuxA4jDMmCap5hOgvuqMgwjxIY/rOALMAEMbAFCvfIECtIMzlwgyyo6gQRZ5juHBnuWEEiC6o4QZQ/Cu0cGe5cQSILqpIpDAmuALJjZFiBChJZ4AEMTBB72tW5P9KGbO5FwsigigwrUEEiCzxAaAMTxDooMphlrqxXoIJEFnglQaxRIUGsgbmyaVSggkQWeGKyPQ9cAMUYY9nxsMnVvUgbMsoEI503UUEiCzxPNFX+m/E6YywOjlSggkQWeIBW7CfZFwXFZJaxbnCkAhUkssADHLX/ZnyRsYud4IysIFWTBfaxlvJaQRYcxZCg3lYmmAQ7mczwdkRUkKrKAjXW0mWuJVkwa:NOC4bSBQLmWPDxyMDiQL9RvVZoMZa/udLcq6l02DLO8VkTK0sUBJEAcqCgjFAcpn88FKkKWElkgOvWZBpSrjRlO+1jLWUZwFeOwy2xJumCLpZcBJXYRpQHhQ0xADykUQ5kcjw4UwGwHMWoARuDPSWjrVUFjgNtpSTLXWzoLZcAtVV2pVQXIucH85nlCyes+BUwp3t3tKxlsoCp8GWcrKlZhagBPvKJDjDxFDrYRSgOXJuuCszBDaqLC6wjrUsNKM7DrbEyZbaWKDKR7VgJZjGo?lUB0kVWnBzU+21MoCY9VBAtgl;JtmQloaMHKsi6ZopKgBsrYI4KCpQpIQHUEr5YOZqGMccbYXiHBcQP8bgFZEN2QEtiDgjbjXAV+IiYLvCrBlHMvWX8FJCALPEioRU6ytgcFLIwSnIfKQBZ4X4IwY+ynIhXoHSALPERwuq17siBBoN6xwbxtpgISkAXeITzCkLbx1oCjBNDG2PPXxIJ8f1pAFsTmVTPp+z7zGicJ9jJ2eq0C/YRkgUcY7M4yZFf8BEPue33QKSg4/YkKSEAWeIP4LoZkNzEm+I+33seQsbAtKDj94R2nVJEFN96e1bvbm5Pxg9Nphlxcj4FJfYD/wjc2yDvxTktQcPrIjhKQBTfenmWWsP/FaxaoiJCdCKs+05YQhMcYkp4Oqq?JWiugAQ6bcwxJ6Xt95YFKiJsnA6qPlOUwCS4mZZ6DAIymH3bkYqML9Vse9Yy3vTS3qR3PlDICN5lWXX02TcvSl78lhfkv7/JvH7h3e83efVidXDZo2fBb74kFrars8BLEWGR+vI+0/E2hjTOj6EETeIk+M7fTiaforPgprZn4U0PPRHiKiJU1AesEiCTMoV8FUowBMhjH4InPvg0WXBT27M8ZcG0igitErTUQTnB+cbTjybUVJIn7vmqx3xwFlAd4YSKCBWtMjuwkzknmow7oMBjyXc8Xe0WkAUxfNiPxOCLk6BrxvKeCT4R8DiobgvIguBF5vC2sSgg2SToGF5LIP15de/+p+CjD7+3qi0gC/owLpx3WoQaaAUrC0sDqMDA0gKU8NFnqj1HIAvGs4xlz9ibSmwSFF8/Wzucg+qCLHBHDSBJDzpK0A4l5E41yXAgD9UGWeCOahtsmIQyouWdRUPyUZBYygD4zQKyAEtEu2L2bmOrBGf75aMAtyH7zQKyIIZdBGOdThJwJcGxawnkGm5B9Z0FZMEk1g/3QDnGRmm38eHmBHI8A9ULWeDOIGaI607vIioJFkRa0Hx+CKoYssCdM5ghjjtLMAWSwxgTNh3LQTVDFrgzj5WDPrCBEsyWHAQDh8EHkAWObGIVOeg8qWS25CCILIBPLSALYthb2BZzkcBHBwFZ4E5wFMtHnc4S1ProICAL3OnDDHHaZY5hrQ8PArLATjjNWDZ+IwmO+esgIAvsxLOMpcMuEuAcw45+vx0EZIHTFKKGPrBztCBBV7N/DgKywH2t4WgQ7FwREvjzICAL7H1FDTGwEd2HA64N/x0EZIGdIEoQBBvtLShB1H8HAVlgJ9jAWLoPbMwFMDsw/HcQkAV2YqNiSGk50VWxC82PBwFZYAclCDvvSU6FTvn4ICALFFg7OOO494TX5K/59CAgC+wvoa07bs0PfK4/4dODgCywl5L3Oj4N/ud/RWvpMfAtZIGaScc2nRYg8a/DgGBgOwf+hSxQy29POD0NvrZZ9JYOga8hC5C42HcNtuEEz/48OjCTAT9DFqjiwS6rBEYN56/9gAgIukADyIJBrCDFoJRQir/uXnRgYNgADSAL+uzFg60A/9ZHUIJzHaABZIEsHlgkMGr5j34aHYhkQAvIgpitghTaeFYGBHnQA7IgZiseXHj7e3QJCMgCtcaClUpgfNe9IiBY6gBdIAuwghQHRd13P6JKBnpAFnSXza36HuFAUx70gSyYtr59khejCJpPGaAPZMG8ZYxhXgyrfOR7tXKALMAK0ggUyESEA7/7/aARZEFsTFWQ0AHk3lnwFrQ3SU5Gr5QF4UY1vWzhuHTg7VvgNWhv0sFP4c3KWDDNTKY75ajCBPKe122EwHvQ3qTeSlkwieOtG8N42VFw4LX8kAHeg/Ym9eJHJSyYz+IYwxg6cF6MLP3AszwwBZ6EzgI049Zvz3rxB5jJm/DyB9+PDnz6Wc75Dy3qzWWv7k16/KUDFcgRxtMYFk4C5IZFS2HkhznnqTrwJrQ3aXcymXzojltrQaxbhIUAQ/JZMPO5AL50AhpBdYRBDAsbBmHhXAKZyc+KVxBBI8iCeWbSHTsbKWwyEFMJJkKgD2RBECecp+NdM8Xx1a0TnPN9UdAHsiAuwsLhteuLjS5gSHAF9IEsiJ1gJm+QtWOxzaKGi6U3+kAWYNng9EdEWrB2KideP9MtQSQLphl7258VNpqo0RS1BmgDWTA5yt79BcuCs6kA1+o3Y7Igtjf9qlckkHML19864bxHo5CALLj6/KNHZFowBIh+IQFZsF5woHm4wzKfpAZ0gSyIP/+oqBo2lbQVX9HqN2OyYPwnZVrQ1KXuGYc45y2toAdkQfgthdQwb3kRFUOCKGgBWRD+aXSg/N3z9oBYe6QFZEHfz8ifB/oztgGWgS3QAbIg+LMFBxagFI3KyGRB8OcKDgyBhZA2ZWSyIPhXRxLI1wyBlS1dQgKyIFZ0oAPKmNWljEwW/KJ04I05KCOKZWT56tETTyZf+V7wK2TBL/8KKnDkjQaU09rCecmrR/d/CHwKWfCreBB8+NfsDkTnyjrL7n8KfAlZEP5IwuQNnVCOcaXHWkb+9eQ7ngY/Qhb8xivwIPgbsDHVw21l5Cc+6EMNyIJBcRD8VgeUc6GFm/RcMcDnFpAFsY+LbjL7QbC1wU0CcxYHHkv6MEcgC8K/gy0EX2k7CNpTwoHZKPgdsiD28d9LmPy+iwM1GjhAFoz/wRE8CBbASus+jtTUge8hC4KfFE0E22AlVMuR2hD4H7Ig/kd4EKxlwEKddGCfDg6QBcFPPpowOW9AKdGagHCgFTSALLj6x/hDUfNZqwOzwoFUO2gAWTC5S7SYn8tBCaGTOjlAFoz/CfYTDXSBwjia4sjGFugBWfAWDAv7O0rTggBHWi6ALpAFnzAlOKyigakUFxzSyQGyYLhkpU178RiYqwMtoTpC3dQERwKH6kFPyIL6Q1wwMRUFLSEL6uZaOBKo1TUzJAsurHJB6qgBekIW1PdwJKBzwYgsEM+C1QsGaAxZMMt7ToZ?8gC3KBltUA7yAK5QUtvC8gCuTXn/8kC4v/aO2OchoEoiCoX2AOhdbvFmiuYApkOCoSEUnAXyiBxMFoKDoCiqdD7v8ACJXZmii2eVj879uR7o7WUM01B/5GCm6t/lbVbSy/AFPLleHnxjSzxfPcFH/Nlp8Ap0D9oXXQKnAJql/HleHnx7S3xtCmwrD9KgeUUWE6B5RRYToHlFFhOgeUUWE6B5RRMzzU9eICun4SpVsaodimqjjKHmX;ReWxllLTJdKN3qwC10isQsTyCi6vwPK61hRM+8/wPr0ezyEjDSGe3r7GiM7h5AclidLJJw5EQzxUYbrRm1XgGoHlFRhexeFVWF5X/ERoNcRpCsLp73c9TUFemRpY5XhHWw0XMu1vIzd6mwJcI7G8EssrOb22raZA1xHqauVBNHryRBBG5w+DoNsKNX1oUPw+TEH/ZQri2fIKLq/A8rq1FMhp2rP55OY1yFt8RcbyRoMGn/aa5b2gj8D0Kg6vmL6hFDy+jISwitQk08niL31Mh5rtJHoN3IQbiTwFodc8BfC6hRSwr0qtZJj78jwFQzKde3juPPlLg2s5zKEbbfrJNQK3kuC4irwCw+up9A1TM0VNv7hk4)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AKE?ABJCAM?ABimLZr)GFBMVEX::zpsv2wdr99Pj50+T74e386vLvgrhS6vXp?AB3klEQVR4Xu2YS24DMQxDrZ99/xt3URRCFgOOGjYMinDNyIHwxnjwIib2d2Jxk2eUjSf5c6eaeT107YyyrtKTcuE4OMZ3d88otq7Sk2LhGD7pZ8w+94L3E2jNj12c+isMbeHUYB08DJ2FYWdzMbQeC2PPHWeAeIghzlU3otIA9uAojJY93Y0mz+ZHYbSc0PUmcUw8RqsI3ebUp8RT7uvuYqgNUDzI7pGEbi9xiiFXGxxXTswoJmtD4jWfPaCYj2EsDOKeYUjWhjudGlKMtYHVbcGZUYzRInWjOSTf15vUbQ7F2oC/5dBqAy4dtTbgG1usDdh+jK0NNMWwRkGqDdh+UqwN+FMutjaQui3ZSm3Yr8QwBmzE6L52sjY4Sxu8/UynDX5nz6bUhrqzwmRrA6lbvUKtNuCXu3xTbbCmUKkNCRqNtVAb0KuSS18bDtDCi3Glvq/TTidGFPMxBC+bTZpGG3As1pJgGLM/qNEGnGZAoQ2jBWq0AcZ6jkQbQCyj2xptuIyZe9GO4tsrjt5ecfTagEPFkHDhKuw1B125NuDwtYHc1dsrjvS1AUSuDSm5r4N+4b7pawP/50l8bfhP2vDRhvWu2lBvrw2u1QZC96MNtK5eG/yl2mBCbeBjaL/G8AtqQEnsBU7ZMw)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AMg?ABDCAM?ADu8bq3)MFBMVEX::/87L/99H/63he:Os:jR:v/507/7pH:fX/++aO:b/5C/p:0A:D0:4M59PN?AC9klEQVR4XtXa627qMBCFUc+M77nw/m97dFAreWscJg2BOPsfpTJdEp8SQd0QW5sFd8FGgqzdxS4grt2NBrFPC/eD+C7E3w+yGuiRIXYk8Y6QY.yMMSOxN8RshrmcSF2JPGeEH1euCdkUpDpcxDf7GzIeuA3L926N5J4T4iOJNwJEjxEspWID6ND4P2zLY5ueMhjKxIgPvZBmIlE0vx/STJxOQNQmJ5niuCBCHFeRaIT8c6C1OeL6WX+63VkbkbOOc7qwD5k6keCT7yGUAYDTuobkEL6ZCldSBuJ37pjjK8h88slPgyR1D2wdiAIWxrH0nINiLF6FIJDiYZMcGQvkelNSCrnQmYpPUjoRYI+A5IsST4ZMpOGY.biRgQma3VkyGpKAhWvfQTeRtCJ0NmUhAdiU7kfYicDUka0o8EdfshSZ5TF8ezIXPtQBYdCb7fLAgRM3MBXM0YyWGIPE9X11xSEIzk8eN4IE5D7IGED0ESsftdyQDJCoKRRH3HOB2EMMR5CELbKYqCqL9a2Q5C3NkQhki62epIPFjHgDjB6hCiIlGJjAMhqK4HCRAJJhLGgbABwUhUIscgzHwBBCJRieyHVCbKItIIzoQUQHYhU0ND2LQXUgla/ATEmRCMRCdiQygB4DLI0hyLrmUPhIFxGQSj8OqRCSEAXAnBSDARG8LzKBCsIsIDG1LSSJBHc26byMOG0DwOBLOARGxIJ3QRIaJrIKHBQYcWhNGQuf4KL4BgJI0p2hBSH51dC2l8HpwWRPD06yHTqjf9EZLcAJDQgYQdEIh8BEjsQOIdIc4rh3e3hOhIJgOiLyNDQEI/ETv2ZrwFyV+ELAqy7IHk/jchhQme+CLE+W4i9gURJMTM1PlSkb4ImTYTsW9R7Al/DRJXXDQgULs9+hqkIQLSgOTxIBiJ3wmp40E.MJOiKPhIBhJ3AspMhrExXbOgNiSlFoIfw+CMyAg6QWf2VUZHaLGGRWZCvz8E5APrVKW9Pt/WmCkLAKQc/YPKd9C4FftKeo)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AL4?ABaBAM?AD0j/E6)GFBMVEX::yQmNChfJfX1+Q@C4uLjV1dXq6uomAbS5?ABZ0lEQVR4Xu3aMWvDMBAF4GuJpbX9C/0FgXfZDYoze5DTVUNMVi3N72+tUI9FB30Qt3qz+TDo/DiB5dUSWfL8Zsj2/RepzdO3L9X5Zb/5zW/+cVyA2LN89DIlCXuij/7v+s2/p/mP2D/N77BEE9fHgewjUc+3Q0/1Df3TfM75sudz09+XpsfoN5+4vtPE9e9Na/fnscr3gCZmP3wAmom+dAEA9jRfdlzfBarfAZpJ+9s6PzzfFZ7oayL3zz/dP29r/9Tdxm3+HNbzrbyNG3w/B8D;zf506LjOLL8okOE5us575j+KEL1h6vFv8fiAxqJ/hFLpsTy5RbZ93cXub6In/qN9qcbrgbfnQrQ7et9QN/rfZzKEmfyAT1X+zjki2k+SztDK/fbACiA0XK+c6yffx/Lyxjnx8X6+b9AE3F/Lo8afT8H8HwXg2E/tPabj1gyJJLvVp3l65CJ/ePPeSv7Z/Ob/1Pa/wmfEePG6VyNvUw)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEX/6Nn:/+VlZX29va5ksB5)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKQA6AMAIgABEQECEQH/xAB3?E?gMBAQE)))?QIDBAUGBwgQ?EDAgIFBwkEBgs))BAgMEEQUSBhMhIjEHMkFRUmGRFBUjU3FygaGxQpLB0QgkM2JjohYlJidDRIKys+HwEQEBAQADAQ)))?ARESITEC/9oADAM?AEBAgEAPwD7+AQ?ICUlcxw9KNLcG0SofLsXmyZr6mFm9JI7qY38eB8grv0hKvXf1dgseo/jyOz/wAiNA+9ZlB8u0T5bMBx6pZQYrCuFVUio2N73I+Fzvftu/FPifUbbOIDMpbMVspAQyAqjibkiSCLi4E3JK3FwLArcXAsCtxcYLArcXGCwIuTc.QSQ)ACACAkIBXoJS/NGkK13KRykOwxkv6vrnU0HZjghVc7/bxcfccH0A0SwikbRwYXBNs35qiNssj/AHnPT6bD4xyXt/vKX21n0cfoxvAJfFOVfktwqnwubSXR2BKSWl36yljvkcxV/aM7Kt6U4WPS8i2lNRj+jT6CueslXhTmw6x32onJ6P47FPX6Wp/ZfGW2/wAnP/xuPk/6PqK2XHOrLB9XhD7mUcWKu4BGK3L3MaqEXYSYvci5W4uMTi1xcpcZicMXuLmPMLjEMlxcx5ibk4he5NzHclFIwZLkopRFISVuZW8FIsGVCSEJIEgAg?BBVSSFCUFegkjoJWfnnkziezlHXM1eNXxRepx+hm8DA2mp2P1jImNf28qX+hmbwCXhOVDSqfR3CJKXze6op8ThlpvKmvy6t7m5d9uXvum0+W8k+lTdHMSnofIpKyTFHRRRNhVL5rr2ujePu+lGA0+kuCVWE1CJ6VvoXr9iVvMd4/I+dck2g0+GVdVjeLwqyoge+mpI3J2VyySfgnxCH1xFWybLdfcQq7CLlbkpxFwilLhFJTxXIuVuRckxbMLlLkK5CcLF7i5iWQjWOJxSs9xcwaxxKSOGKthFJRTXSV3UWSZ3UhFGyhrSc93tLJOvUY1XapWjLHM5nehtMe16XapoEtVb8dpUdEGvHUJwebCKlr9B?ACpBJxcaZpE50XmOSFjdut16Kt+rLsUlZ1yF4Hk3VGntM1ZH09JVNb9iNVRyp4odXBMehxqmdKxixTROyVEDucxwS6hdvAqnAsn?V2FlKKSlFymYm5jcSvIXIuQc7G8cwzR7DpcUxadIKWJP9TnLzY428XOd0IhK2Olci5ytHcepdJcJhxijhnp4ZnSM1NUxI5mOhkdC9r2tc6yo5i9J0XO8CRLnlACYpUgAljoSQSFUkkElaJJIJK0CSCSoF2SOjXYuwoWZG967qfEgbcczX7OnqBWOna3a7iAMhy6nSHBqSsjoJqyNtTIvMzJu+/0N+J1FRLL8zyWIaBYBX4iyuyOi3s1RC1VySX+bV9gS9FJiWHRRulkq4WxtS+bWN/M8poi5MQxvG8Wpmq3D53oyLZZHu7af+6ToJoFovmR3kq27Oserfqd+CCmooG09LG2KJibkbE2ISlMfFTIUjTapdQKlFLmNxK8UKFjXmq6WnkghnmZFJUvWOnY9yNdI/Kr8jNu8uVqrZOglkizl2LsXr2cVPhlDyhVemOKUuC6TYfQVWBY7US0MeHxZlr6GTbHHJNmXM1VRy76InSqKlrDlJg0zZpfVT0qYvvtpv6LyYXvUzXNtr46pn7zs232X3T6xhei+DU1VHjsmF0sOPSxN8rqoo25ta5vpVavRdb3VNqj1F23J1jW0L0aq9EsF8z1OIOr445ZFpNxjEihc5XNZuNarnfac53Suw9AWcu8QSnzoFjG+eJnOcl+7aUSui7KuXwJUraSMujU6jTTEmdhfEt5xh7Li2sdbdkLI1Oo1PONP1O8CfOdN+94EKtZtesMrmStzszL7U2nTgkp6huaNUcnzT2nnJno6Rzui6lGTSQuR8Tla4rR6xIo+ya70TO5OpTUosajfaOq3HcM6cF9vUbjt965N5OKW2laKF2sc9d1LmaOm7fgbDWo1OGwqMLKZOL/AzoiWt0)BVzdhi1a3M4Aw6pesJF3mYgCLJYhSxVQmKKY3GRTG4tGT5Yzyumeh9NpRSRzRPdS43h+aXB8RjcrXQzbHdGxWOVqI5FTgeqKksnsx5zQ7A8TwXDpvPVatZidfM6srMquWCKWS2aOma9boz6rtsnBPRLwUFJHoyNznEpzpifI2Nu8poS1L5L/Zb3FZZHSOzeBiUhFLkXBlZR1MnNjW3fs+pKlYrkZjZ821nY+aFVw6t9X80DHWvmIVxm8hrfUu8Ci0VZ6h/;1VhVSiqHKt+pSlyLQVTZo8TqaJ24uaPsO4fA1URXLupfqRDq0WA1E9n1K6qP8AmX4dBUdqhxOmruYuWRP8NePw6zeNaloqajblgYnvLtcvxNkg))?BBCkkKEqKUUylFQleVhUpYyqhWxZklYzn10u8kSfZ2/E6VjgyyZ5HO71C2oUNY6RyMam1Stzfoo0yazpdw9gRWekpo4l4Zn25y/gb6Gq1crk7jbbwv0BSpQlAiFkQhSlibE2JI1V4mqX9Zl9931NyjwaqqrPemqi7TuK+xDvwYZSwSOmy55XKrszttvYbgQ1KTDaWjT0bN/wBY7abYJI)))?IJAFbFVLkWJWlY1KKZVIsFpWvKnon+6q/I8zmPWOZmare5Tx77te5vTdUJ1bkyZjtQNTUx+6n0OBmO7RPSSmjd02yr8Acmaxnhk+y74KYgQra3kQshqRzOZ3obDZo3dIVtZLEkI5vaTxJunWQqk)))))AIJAFbCxICVbHlMYgWnrX9mTfb+PzPW2OdjFCtZTbieli3md6dQNeUzHQwqrbHIsEi7knNvwR3/ZzFvcXJTr1ypt7wcahxjVtSGrRXM4NkTnJ3L1odaOaGZPQyNf7F2+HEhGsgAC?ALr1k3XrIAE5ndak6x/aXxKgC+tk7SmWne9z1Ryraxrmam56+wDb)))))AefxnB1crqulbt4yRp/uQ88fQTlYhgcFWqyxLqpu7mr7UA8kSir1m1VYbWUirrY1y9tvN8TUAuk03rHeKl0q6r1z/vKYQBseXVnr3+JPnCt9c7xNYAbaYnXetXwQumLV1+en3UNEJxQD2TY5MrXZV4J8ydXJ2VNyH9jH7rfoXA0Mj+yvgZaZFzrstsNo))))))ADXloKOb9pAzwspsADQXBcN9Qniv5lVwPDfVfzKdEAcpdH8O7L/ALxjdo/QfxPvJ+R2QBwX4DRW4yfeT8jUlwqmZzXP8U/I9SAKxp6NnuonyL))?f:Z%iVBORw0KG;)NSUhEUg?ANw?ACNCAM?ADrVuTh)YFBMVEX::4x9v2s9D85e761OP97fP++fvEwIH0msH+8/fe2HbRy3zq4XH71I6VlZWhoZq9vKWxsbHNzc3PzKXi4uKxr5Lx8fH28bD4+Pjd2anp5a3/+rP06HCa9NH/9Gj/9429Bui2?AD/0lEQVR4AdzYa4viMBTG8bwr1OE5J9dexul+/2+5GGZhbepYY8Rn+n9hQAj05wnWal5REkmXNYgzh8sBWWWB0RytUWxGOag5Xi7@Vjz3j5fkfq8+Ly8r5fidDowTubj4gZ8/grcMHnVGKOqn3aMI2bcJL8AN6ngqujnPTiv7Lghy4rED3dx0XPjBsWtxN/DYaLGTYIfkpsXn+EzZmLcoLiT/oTzGHhxg+Bucfv6ccGpfNLisq1Sl0cqkQlXYQO2BAM0v9DiIna2QZgvb3penMfupsIWIaqyH4f/+3qiP9eZ7RL2J+P1Vot/2dHsqhluPbntLB7Irv5iQKGjwgU8VLi50xLiLFA3ulEKNxsuAZWjc4WbDueAutGNWCd0OIvK0TkUseESUDk6yz85h8dL26cSyoazeDx34w6S2HCoKB8/3TCT4RJyFV8pglXWsOEcarLFp7L/t+VXERkOyYTSRoezqMoZVz4tHAUn643BHAeH4oGAESeoa7XP8ePq0yPjLCXOEkyOHecoce7IuIAmJUpcQovEUOKMoEGOFKdoUCLFhSZ3ORpc+3MZaHGuweBocO1Hl+hwQa3knrY5Q4ZLFq1S86bWuOW7s6BVcXmu9rjY0EaHQ6u6hQ/XoU39Qohb+oink+68EOJy54++P526rosxijwKi6ePJUeJKztfuP3pG5zJcgUSiTF23akvJsaB4+tvu3WX4zYMAwGYpH4wfmhP0Pufs6VKrdiFoZdULjadeXAUmA73A1aUiSOOOOKI+zK47zl4IcdwL+Rv4YgjjjjiiCOOOOKIIw45xBFHHHHE/Y84HuLEEUccccQRRxxxxBH3ZIg7hWsKmJX3xBk874kreGNcBdBi/ZY4+ZK4CkANsCqe6/e6iwiA2tRgGHFfUYzKdNcXpuOZq/qzxeuqGeJ3vMG4oX010Jp7ncRFdG0vWBNBZOFmrfV1NxYpVcQQsfFQeqwhkns9gEORPpqZX25wF2Z0h4OIYqZJvWfnXkdxpY8P9av1OUGCph97Tr1Uun/0ddcfbNIwfqdrGqtteEaDS4pXyxX/Fb3kXj9O4uIsM7/o3FB+sdJFconG31zibtSG3PfR+Br5wMksKGvwpl7fzuJCMIbAr0xcTdNyMha9LsHnoqqGkZobIA3e1esxXORVnCKyx0Wex5UXcA1j2tcXcAf3nGTL7Z7b4nzdY71wt3vu/CEerTXmoQNKxt1Pyz3uusWtaZl7PXPOlfXlBpfPuS2uzCPMkRmXzrnc66E3FN3h0hvKHrcIQPkT19JJ/xwu3i2LGmBW6x1Oms7KPa6r+Y8UtU+49W6Zex3FSWvyL3MW91iII46450PcPsQRRxxxxBFHHHHEEUccccT9BMmBXcwVjbcY)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEXZ7::/+VlZX29vYl5th1)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC!F%iVBORw0KG;)NSUhEUg?AP)BDCAM?ACV1Xh7)GFBMVEX::r+vixvbyJk5Lc3NzF9vGv19NhYWHPSHDN?ADzklEQVR4XuXa25KjMAwEUFoX8/9/vElmoEsIORTl3SWkHxnF9ilzsWGmq8QM0/cEMj+i9jVgnX/yLWKZf6NXBcAweIKvPMUmOnhk8xpxXEwrGqZiPPhq4nn+q+Dm7tcFY/hNa/ZHcE0wBg4Nygm+IphDG7zwaH53MIPWmvv9wQx8yXRrMOP/fIJh8ooZhoJfzdrROcahYRreUOzpsHcLCkZVAkCXsIBhbSh+GW1tVzJFtxHsDo2dYB2nSqmlJQzTwk0yJ01snQ2YR6GprNuq7gGEf7NQDApqC0MwZ2Ew2Iq6s+CtBWVxDWbNeLAVfZ4EZ4wW3j7YCoW7AwfB/ggSWHMl3oDZTgZrNgiLe5Z4n1UCVB5RXcHuZ8F1p3gH9gyus6lWSlprugs2DtvXNNEIliVskZHWA4s0oWipi63qETB7DohQSdsrC/nJX9atQu9O0tKATYaUYIU/Ey6U1KjLYbCAkEck1GsaHNv9DXgW+HAwvS5hw3seLCAkX/SBFxpuHTBeGQFm1/F3OAHmhNY/sG0VAB4iOJSBPmADBo?RgjB2QtlLxGMZ/rg7PVGsDs24OakEOe/g9TQHAZsHghuvDIIJok5BlZOk/XBPBq6zVdIm0aChSd7BOMcmN53YPJyt9jc820EOJ9afIKdBiu9EewEB106VDzXxcaCiy3vWTCmAsyOqdM8XO5oGBWMA0/DwPQmcK5EvhowUZwio8AYDJ5qMC9PbQ7C8hNI5hzFeDCWDAdniKoS4wTXu2YdDM4ZD5602ieloXiTbbF8HthKb27YPZkdnwOu70Zave+Gv8zxTPgssFRcVmWyazgVPgmMta6JPiPUFgMBtptNFBi5IFiqjX1/HJCA+iCwstuON0d6KF00FwSzbhNgYkQ2JKym1gPLRcE8M4EfbBaoWPZyAVrvxrF86zkFhq1ZTe0RewYnT+n4ijE0FKtU+f6QogzGzKwfm86Bbe5Ezt60clQQwUXUCe7UXwiMujUcALd9sF0V3G/R3oG1VesT2QUDGAsGcBy8BB1xHyyd55ftVw8Gs8VTa+mcRSJZrOJrii/OlwTTK/qT4jqGiSwlwvUnvSloItt6nPmXDXgn2CvsHOMXKqb4rOVFDg30KmBJ3vqzVtVhHVwODMJChGD+GiW3Di4Gti0YP6pWrf7xzFJKbSdLPVj/35LP6OIxfp9InOH0aJbbgnX/0dzuBgYfQLLATHjQbwTOa8a87vD7gUFdZyt0pxh99bvpWwWyzxWn92bBm63QDeNt/WdCvoq/7QT3F6sEfAUZBHwBGZjuHYBoBO0fPVuHt+o3PUI)ASUVORK5CYII=!F%iVBORw0KG;)NSUhEUg?AL4?ABBCAM?ABYbu5j)MFBMVEX:/+1wv+jqv9siv/p6:W3f8zZv9gb:19v9NK/8zAP999:S:8z:8zzP+z6P/0gInF?ABg0lEQVR4XtXXy1ICURAD0H7c96D+/9/KQqkhlEKD0iTrWZzKYtJXbou2s+jvn1Q55f2mfAMOb6Ec5D6+c/ObcvOdm98qN9+5+a1w842b3wo33/6Dv2H22g3zCL+PKF/uSKDsGL8pN9+5+U25+c7Nb5Wb74R8h+ki41eYLja+Qf1k/AL1k/HF4XIg4ytMFxl/X7/z8aF+Ov6A6bqR:FTnswXa2B96LmyPZtfoH4yvsDlwMaHy4GLj/Xz8RXqJ+PD5UDGh+ni448O08XEh+lSrtUVnC6qm+ey/krGx+li4+N0sfHh7Cfj43Sx8bF+Mj5OFxkf67c8frF+jJUovzRIBr/4+kovMb5YPr/OdcrUGL9k8FG/Tw3xxbP55/o1R4hfk/m6IBbii+fyJ/JnjK+5/HWRGuJLfzG+xvh6lX89f8m3GH90ar7Ya/FrkF8y+XNhRpAvlsi3+H8fUxP5A+svYb54Hl8Uy4/zNZEvCvo4XzyRLzrhXg7zNZMvw/o6ptsQpvDnE+wJyVGQ5SG7)AElFTkSuQmCC!F$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAHYA0gMAIgABEQECEQH/xABU?E?gMBAQE)))?wQBAgUGBwgQ?EDAQUEBwcEAQUB)?ABAgMEBRESEyEGMUFRBxQiI1JhkRVCU3FygbEWMmKhkggkMzSi0f/a?wD?AB?I?D8A/VI)?MYk5mMbPE31AuNgaLLH8RnqYzoviN9QZwryJARdYi8bTC1UPjT0FxnC7kZxpzGYUc9DGf5m2EmylOm1yGTlJUa7y3T1jH3NeqNdz4KYVDR0Tk1LQAMEQ))))ABz0mdd+5fUjqJ1yXar6nJ9pL4E9TWWudJGrcKEuA6fVnX6oW+sLzX1MZ/mc3NUZqm2EnyUOjn+ZjP8zn5pjMGEzknRz/M1z05lDMU1zF5mcJnJOhn+ZjrBzs1TXNGE2yDpZ/ma9Y8zm5prneZnCbZB1OseZjrHmcvNGaMJnIPQ0VrLFcyftR/2h3YpGSx443I5vBTwGcWaG0pqOTFE7s+81dymjoytPQYtWaKe4BTs20YK+Pu+zIn7mcULhEclzHMXC5Ll?MGo)?AVUbfiVLk3qpxLR2hp6fsUyZ8n/lPvxM6qSRxPlW5iXnbB4hdobQ1VJGJ5IxNAb5Slv2dLzQhNw1pJgJjqqpoCXAMBg1xEVwJsBjCDGIhNNSxhI3NMmyOK95G4mehC8yhK00xGuIONFBsbYhiN?b4jKEaG7QDsWOxuXm3d41/wC7imiHpqStR9zZbsX9HnLHT/bO+tfwh0mkT01OVVNR7lRTvA0g/wCCP6U/BuQnLABTqrQigvRveP8A47vUzvMtYr1uahcOXXWzBT3ti76T+vU5tZVz1N+N3Y8LdEOe9hI1hfho275DS0a+prL86RcHgbo1DnOLcjSs8mQ67GtalzUuIgZANjsMaS4QxNEJmtNFKTnEaMM4CW4zd5GLyPERYDGAmu8jFwvGIruaRPaWnELzKEjXFSQrvLchWkNkLLFK5GettiwWy4pqJEbJxj3Ivy5HlJWOje5kjVa5vlcqBrkduNYZ2TJe00ABkmCEjSNCVgBage9qdlzvkiluNz/G71KcRdiMEElx66j/AOpB9DfwR1NbFDxxv5HHWsmfCyO/CxrUb87iMgwnJSm1vcWKmrmnv1ws8JVuNwblhqI1NCJzSvIWnEEnEyhMxSjKVJC5KVJCRC4zcR?G53mcCZCKMmQjU57jZEABgjBhUMhdwBo4geTqQvMoSNKshWkLUhVkN0LbD6Ac+1bKgtBnb7E3uyXa/fmh0AVkU84x7mLiatynzu0KCegmwTt+l3i+RVPpVTBFUwuinYj2Hj7ZsKWjxS098tPv+n5/wD0mbJfvO1TVrZey/RfycUlYRkj.vFqLgXISnEXIjUgkLTNxKhEzcSNNCo4y?amruJXl4k7iCXiZQkYUpipIXJinISIXWbiI?3O/GTIQM4EyEanPcbgwhlDBGAbI13hX0MpFJ4HegMaEKkTy31eb4T/8VMdUn+E/0CKbI9qcTmyIVpDrus+p+C4jWyqv4K+qGyOQnbOxN6oeqABXOCAD51P0ybIfqaCwKWprK20JqzqDerUr3R5yKiObjVEb2cSX3KtxlEvNmtV249Na9gMmxTUSIyT4fB3y5Hm8h7JVjex2O/8Abdqea6XOmqXYzav9O2LYrLUtFlMlTJmTOZvXSONrWqrnXdrhonEpdL23O0fsDo6n2Zq37P1W01TDFPmUzJZIcxrOz2091X+SrdwJGvOjBVSsbc5L+R7tkMjXo1zHYvlqp0GUVT2e5f2l00PknRptNtbV9FvSJn189s2/YlVV01DU5SZvZj91qb1v1RNeWpxP9NH6mqdtfaFs1O0fVn2c/rPXY53UzpcbVTvJVuzONzW3InHnlXEjqhzkVbtx9xse07FtG2H2bRW1ZtZXwo581LTVDZJGNarWuxIi6XK5qLeec2P28orc2X2kt20+p0dFYdVNFN1R0knYjYjlvxNb2vpvTkqlDoW2Dm2NtXai1rcpKOO0rTtGV9POx6Pk6q92LCqpwxaqnyMbD9GbLD2F2q2btq0WVMe0FVPM99Gi9y2RiN0Vyb037vsakCucqqdbo823g26oaysorAtyy6KFrHwVNowoxlViVU7u69HXYdblXeh6Y8t0b7Cw7BWdU0sFv2zbGdHHExlbJ3VOxl6okTPdvv114JyPV4TKG8e40IJCxhUie02QnapRlKch0JWLyLNJYc9Tc6XuY/5Jqv2NtE3ljOZGnaW44NwPZJs7Qpdfmr54gYzCH2hD5+h00p4fgx/4obJFH4G+huCucTEvMwjU5J6GQAY)))B+ONgrA2ki6a+u2Ns2/I9vVE2Ktop2x0dM6TtuxOXLxKzdde7z4H7HBkkjkwX6HgdsOiTZPa7aL21bVLVddfAlNLk1T4mys/lhVOGm/cetpbDsulorOpIqCnyLOjbDSNexH5DWtwphxXrubdedEA1xu5mEY3DhuT8HPraebXvHvj/?dEBDLH4VvOFlGcs6D4u27TibRxpi3IbYiznHOyhlKdXAnJDOXvGI1zzkZRJHQPl/g3mdSOFjOH3JDGIwtQvulamooafXD2/EWQDW8rucrlvU?G))))))?ADXCDYAy?D))AB/9k=!F%iVBORw0KG;)NSUhEUg?ANM)8CAM?ADLy3+8)MFBMVEX:/9/frjX1+inp81WUaW6udfGx97q6fIbDJDr+PfE7Onc9PLN7+zT8e/0+vu56eUR9Hoq?AEp0lEQVR4XryXzQ7DIAyDfc0fe/+3XTeph4YGI5D4jiSo2HMQA+TzRNDhzw7FD30uOjr6JsMf+czj4PATI1GozqsNYDsVpzS1fGQiOuplslOOaUIkN4nmVrhN3XKc04ScraFkq0JrzKx2UpMla0Zma10hXhlOaoIOJipSjZRqq3BWkwy8SSUyL7VTdlgTvHTcipngRUnJXNMkWCU7TmaiqMbAJ1nTZFgnjwabCV5uyaUlTYoNWuG4FmbTmYGNYlnBHiccPhpSu8YadCVCvpU84njwn2ncIao5lBwjydu8z1u/Fnyb48b1B/GbvsJ28V5A8E/AX3uaX6gq8Zv8M9lG+jts5hPy2iRxcYuS1SfaPpEl2FS4463LLv6i5g8n28PE45yyIFPbvqyX65brIAiFQckFCfb93/aUkIacrprRzuwfNWp15RPc0cLWMiGtK2EuO1QdzLzyVFdwx4PP3J@ekEqCpBoPfSw7JOBLCmuzlHjfl6014P+Y6rLiUSWfL2ZV1ybS+GvxN+duySYNmU0minNGbNuW2HoUd0OIlUxVfgzbS0muNWVSSxCFaAyi3YvuOh2EjHzONJ4oLjLhYNpAYMypgpgDQBR+uO04Eq5Qs30LNX4ffC0ZLr0vPCWbAmAE8QUqSLtM+49r4fcMuZBXy0XJtpzz5lUoMWUyep0GAqKqAXp7IgecFkt6jGFVabrsqWGMY9ezPjCNPkrYWIRhQbTKTrKSUy8fuhxBlwJ0erzyUTnjOTtyRrv/Dyk3RuxlE0EVxeK8A0TJdyLeTYu5JOJJmuJHmeYk/1E3bnRa9navciNNBo/S/LJpMIzORQJ3DAtsBypkqw0JuZrS3pf+JSz1YMJz83m7WjTdtmEDDimMQnX2WOV75jeepiFnenzGHMM13VZXE6TwKPVE6guY63XQJmVGxWNMJlqk6k6UTDF08slskV16rPzrf9sE0zgrzfE1IhT7JgELSZzCbL/1M7PLncHyo4CSbjWM8XDYNOvmMjft8mU3QfxLkzjx345woQrTinlsCwMD/vAVJ9yJpEGU7jK3GRa1l3z7W4av3EeTJH4tJy57rplkqeaTL4wuDaZYO+j++PouE3IzvQIpAQu8mr+yPTKODG1PSL5HNRi8hDmlnsNfnVDvp/m7GsaDnQc3KYPTM6yl6rK0GSChGYSYQPvTHVtOIQ+GuKB5FMx9YxgET319aUpcg+H7k+llynuQB1WqbqFylbhay2GRPUng9DhQL3cfFcHk4FcxPC1cpx278Kkb3urh8mhXAo/SQInBgwrrBX/NWsGKRCEMBAElmWJ0fj/3y7McZQapCeQ/KCwCZjqR69r99vYgRcGppzb1+/6si2znvPidJ8fCb4A4Xo+n2886xpfLEN/l6mBj0u6r2zSYQKTrjB0r+EbzCYzcXlGH85CbDinC0ypCoOzwJ2i@jyk4cGPUjz6kzn2lb3NB19vM50QxoG85amMeoU6UxjJpc+YMFBK0xh8pnCxPk2WLo6U8wUJt6sjYIyZKaWw8RhMBb8KtNMY8J40UP1uky0BhjZKjNBV5eYW1Um7i1xNr0yE3TfUR5GdaatP+OH6rWZ/usREj10r/sZ)AElFTkSuQmCC!