,XeUX6`9e7`4-for-loopfor, alternate syntaxbreakcontinuedecrements in for-loopnested for-loopsreuses iteration variablemethod, for-each loophas loop overflow errorfor-loop, stringapplies loop jammingunrolls loops

gCbCsBffEfCEefrAX-~~~| G7VZC 847VBCC 9VBCC 886647V G7VC G774VC 5G74VCC 56G75VC G754VB 4G79V~~C 9474749846F55W~ 64646F55ZX

For.` Most runtime in programs is spent in loops. The for-loop iterates over numbers. It is commonly used. It is ideal for processing known ranges.`For each.` In Java no foreach keyword is used. Instead we use the for-keyword to iterate over each element in a collection. We do not need an index to do this.`Example.` This program uses a simple for-loop. It declares the iteration variable "i" inside the condition of the loop. It starts at 0, and continues until it is equal to 5. `First part: `The first part of the for-loop condition is where the loop iteration variable is declared and initialized.`Second part: `This is the terminating condition. In this loop, we terminate when the variable reaches 5.`Third part: `The third and final part of the for-loop is the iteration statement. This is applied after each pass through the loop.`Recommendation.` A for-loop is best when the starting and ending numbers are known. If the end index is unknown, consider a while-loop. Use a break when the end is reached.`For each.` This is a simple syntax form. If we loop over a collection, we use a colon, not an index variable. This enumerates each element in the collection (array, ArrayList). `Arrays `array-java`Info: `This is called a foreach-loop statement. The Java language does not support a "foreach" keyword. Please use the "for" keyword.`Break.` A for-loop can be stopped at any time, based on any condition. We use the "break" statement. It takes no arguments and terminates the nearest enclosing loop. `Break `break-java`More complex logic is needed to fully break out of a nested loop. A flag boolean, or the use of methods, is needed.`However: `This for-loop example scans each element in the values array. It stops (breaks) when a negative one element is found.`Continue.` This keyword stops the current loop iteration and moves to the next one. Further statements are not executed. In a loop with an iteration condition, the next iteration begins. `Continue `continue-java`Caution: `A continue statement can sometimes lead to an infinite loop. Be sure the iteration variable is incremented.`We use "continue" to skip over Strings in an array that start with the letter "b." We filter Strings.`Decrement loop.` Often we use decrementing for-loops to iterate backwards through a series of numbers. The >= operator means we include zero in the loop body. `Nested for-loops.` All kinds of loops can be nested. When we use a break or continue statement with a nested loop, only the innermost loop is affected. `However: `A return statement will exit all loops in the current method. Sometimes flag variables of boolean type are needed.`Reuse iteration variable.` Sometimes an iteration variable needs to be reused outside of a for-loop. We can use any local variable in a new for-loop. `The local variable, like x in this program, remains reachable after the loop itself terminates.`Method, for-each.` A method can be called in the for-loop. This method is evaluated once and then the results of it are accessed in the loop iteration variable. `This program shows that the method getElements is only called once. It is not called three times.`So: `When calling a variable or method in a for-each loop, we can see that the result is cached in a local and not evaluated more than once.`Overflow behavior.` Loops in Java can wrap around. This can happen in loops where we increment or decrement. The int type overflows and becomes negative, then reaches the target. `Caution: `This mistake can cause a serious performance problem. Be sure to validate your looping logic. A for-each loop also helps.`String loop.` This program uses a for-loop over a String. We start at index 0 and process until the length() is reached. With charAt we get each character at an index. `Strings `string-java`Performance, loop jamming.` In loop jamming many loops are combined into one. Consider this program—three arrays, all of the same length, must be looped over. `Version 1: `The first part loops over the three arrays separately and sums their elements.`Version 2: `The second part loops over the arrays in a single, jammed loop. This version is faster.`Result: `The single loop is nearly twice as fast as the three loops put together. And it has the same result on every iteration.`Performance, loop unrolling.` Sometimes loops are unnecessary. In loop unrolling, we change a loop to a list of statements. We can loop over groups of statements at once. `In this example we simply remove the entire loop and place the statements that need to be executed.`Unwinding: `Loop unrolling is sometimes called loop unwinding. It can improve, or reduce, performance—we must benchmark.`ArrayList.` A for-loop can be used on an ArrayList. We can iterate through the indexes, bounded by size(), or directly through the elements with simpler syntax. `ArrayList, For `arraylist-java`Loops are key to optimizations.` Often we eliminate steps from the loop body by changing the loop declaration. Loops affect control flow, causing it to repeat.`With loops,` programs gain complexity and power. Statements no longer occur in the order of program's text lines. Control flow branches, repeats, changes as time passes.

OFYBXYYFBFJFA {YOFBF?Fcmain(FO[] args) {XYYOOF{FWthrough 0, 1, 2, 3FV4.YOOXF|X (FiiFy0; i < 5; i++) {YOOOFQ.out.F[ln(i);YOO}YO}Y}YYXYY0Y1Y2Y3Y4XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFO[] FhsFyFqFO[3];YOOFhs[0]FyXBDotBX;YOOFhs[1]FyXBNetBX;YOOFhs[2]FyXBPerlsBXFbOOXF|X (FO Fh : Fhs) {YOOOFQ.out.F[ln(Fh);YOO}YO}Y}YYXYYDotYNetYPerlsXYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFz[] FhsFy{ 1, 2, 3, -1 };XYYOOF9FWover FU indexes, but break on negative one.YOOXFw(FiiFy0; i < Fhs.lF^; i++) {YOOOFmFhs[i]Fx-1) {YOOOOXbreakX;YOOO}YOOOFQ.out.F[ln(Fhs[i]);YOO}YO}Y}YYXYY1Y2Y3XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFO[] FhsFy{ XBcatBX, XBbearBX, XBdogBX, XBbirdBX };XYYOOF{FWover all FOs.YOOXFw(FO Fh : Fhs) {XYYOOOF{Skip FOs starting with letter b.YOOOXFmFh.startsWith(XBbBX)) {YOOOOXcontinueX;YOOO}YYOOOFQ.out.F[ln(Fh);YOO}YO}Y}YYXYYcatYdogXYYFBFJFA {YOFBF?Fcmain(FO[] args) {XYYOOF{FWfrom fiveFjzero, decrementing.YOOXF|X (FiiFy5; i >= 0; i--) {YOOOFQ.out.F[ln(i);YOO}YO}Y}YYXYY5Y4Y3Y2Y1Y0XYYFBFJFA {YOFBF?Fcmain(FO[] args) {XYYOOF{Use nested F|-loops.YOOXF|X (FiiFy0; i < 3; i++) {YOOOXF|X (FiyFy0; y < 3; y++) {YOOOOFQ.out.F[ln(iF}XB,BXF}y);YOOO}YOO}YO}Y}YYXYY0,0Y0,1Y0,2Y1,0Y1,1Y1,2Y2,0Y2,1Y2,2XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOXFzX xFy0;XYOOF{Parts of the F|-loop can be omitted.YOOF9Here we use no variable declarationFpthe F|-statement.YOOXF|X (; x < 3; x++) {YOOOFQ.out.F[ln(x);YOO}YOOFQ.out.F[ln(XBx is still reachable!BX);YOOFQ.out.F[ln(x);YO}Y}YYXYY0Y1Y2Yx is still reachable!Y3XYYFBFJFA {YYOF?FicountFbOF?Fz[] XgetElementsX() {XYOOF{Set FU F8s based on a F?field.YOOXFz[] FUFyFqFz[3];YOOFU[0]Fycount++;YOOFU[1]Fycount++;YOOFU[2]Fycount++;YOOFK FU;YO}YYOFBF?Fcmain(FO[] args) {XYYOOF{The mFg is called onceFVnot many timesFpthe F|-loop.YOOXF|X (FiFh : XgetElementsX()) {YOOOFQ.out.F[ln(Fh);YOO}YO}Y}YYXYY0Y1Y2XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOlong iterationsFy0;XYOOF{F] iterations from 100Fj200 decrementing.YOOXF|X (XFzX uFy100; u <= 200; u--) {YOOOiterations++;YOO}YOOFQ.out.F[ln(XBIterations from 100Fj200: BXF}iterations);YO}Y}YYXYYIterations from 100Fj200: 2147483749XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFO FhFyXBartBX;XYYOOF{FWfrom 0FjlF^() of the FP.YOOXF|X (FiiFy0; i < Fh.lF^(); i++) {XYOOOF{Fkletters with charAt mFg.YOOOXchar letterFyFh.XcharAtX(i);YOOOFQ.out.F[ln(letter);YOO}YO}Y}YYXYYaYrYtXYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFz[] FU1Fy{ 10, 20, 30 };YOOFz[] FU2Fy{ 20, 10, 30 };YOOFz[] FU3Fy{ 40, 40, 10 }FbOOlong t1FyFQ.currentTimeMillis();XYYOOF{Version 1: loop over each FU separately.YOOXFw(FiiFy0; i < 10000000; i++) {YYOOOFisumFy0;YOOOXF|X (FixFy0; x < FU1.lF^; x++) {YOOOOsum X+=X FU1[x];YOOO}YOOOXF|X (FixFy0; x < FU2.lF^; x++) {YOOOOsum X+=X FU2[x];YOOO}YOOOXF|X (FixFy0; x < FU3.lF^; x++) {YOOOOsum X+=X FU3[x];YOOO}YOOOFmsum != 210) {YOOOOFQ.out.F[ln(false);YOOO}YOO}YYOOlong t2FyFQ.currentTimeMillis();XYYOOF{Version 2: jam loops together.YOOXFw(FiiFy0; i < 10000000; i++) {YOOOFisumFy0;YOOOXF|X (FixFy0; x < FU1.lF^; x++) {YOOOOsum X+=X FU1[x];YOOOOsum X+=X FU2[x];YOOOOsum X+=X FU3[x];YOOO}YOOOFmsum != 210) {YOOOOFQ.out.F[ln(false);YOOO}YOO}YYOOlong t3FyFQ.currentTimeMillis();XYYOOF9Times.YOOXFQ.out.F[ln(t2 - t1);YOOFQ.out.F[ln(t3 - t2);YO}Y}YYXResultsXYYX109 msX, 3 F|-loopsYX 48 msX, 1 F|-loop (jammed)XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFz[] FU1FyFqFz[5]FbOOlong t1FyFQ.currentTimeMillis();XYYOOF{Version 1: assign F8sFpa loop.YOOXFw(FiiFy0; i < 10000000; i++) {YOOOFw(FixFy0; x < FU1.lF^; x++) {YOOOOFU1[x] X=X x;YOOO}YOO}YYOOlong t2FyFQ.currentTimeMillis();XYYOOF{Version 2: unroll the loopFVuse a Fn of statements.YOOXFw(FiiFy0; i < 10000000; i++) {YOOOFU1[0] X=X 0;YOOOFU1[1]Fy1;YOOOFU1[2]Fy2;YOOOFU1[3]Fy3;YOOOFU1[4]Fy4;YOO}YYOOlong t3FyFQ.currentTimeMillis();XYYOOF9Times.YOOXFQ.out.F[ln(t2 - t1);YOOFQ.out.F[ln(t3 - t2);YO}Y}YYXResultsXYYX56 msX, F|-loopYX17 msX, unrolled statementsX

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAG8AoAMAIgABEQECEQH/xABp?ABBQEBAQ)))?AwQFBgcCAQgQ?EDAgIGBgMKCgYL)?I?QMEEQUSBhMhIjFRBxQyQWFxQlKBFSMzYnKRobGywQgkQ1NzgpKi0dIWJTREY/A3dIOTo7O0w+Hi8f/a?wD?AB?I?D8A29C4eWL1x+dly9TT/nQ/aZeqKulUJseIUMfbqYh/XH+K4DFcNkfKFXEXkYv969yF6rou3NKn23XKaVuMYZROxVVVHFnvlzPxTEtLNHh/vwfMT/UKXGKQmZxAn9jpmbsxFd+91MoUI+l2AZc3W/3JP5F4Ol+Amz5Kly/2cn8q61E35sv2V5duanEKBfTHBPzh+yN:CSLTXBb/li8gb+Zl61PN+bL5kXVjQqy+nGD3+Dn/ZD+dPsK0jocYnOnpQlEwB5PfGHmw+iRes;JRZyIHsvLqYQvEJJC6DtMlUkHaZKrguKXi7PtQhCFyu0IQhCFRZ5Rjd0kNRmfYyc1kNNCLy1R5AzMEfe5E/czMmD1s8WLRYZqmo4DZslRJl1kr+qDF9XFPWkF22Nd2a/zJUaZ34va65xKWOmgOeqLVxAOYiVDn0uqhP+rW1AW7RsxFfn3spfTmOp18cW+NPGPZPvLn47Fnz555miDna6laKICiYzsWbbbuZkhIAsbi193vdWqCrqK8BmlIpp5d6Q+e108GOOEc0rtm9VKUcY09DBBTj6Pm7vfi6XiwvObHVFu+qlyNm4exMSbMT25pg8py9kXyd3JP6QHCHNZJVdfCcw0UAMICTDm4MpEyi1TBdt1rLgi2NsslAHjyTYiaybvMN3XMszZst9i6GILb3EkMvCdeATyOrboKxe6c/6Avtgq2ABH2eKtWhT/wBYTbPyL/bBIVT+8n5IZXhCEKFXa6DtMlUkHaZKrguKWi+9CEIXKUQhCEIWbxVmNe9xVsLUeR8o1FnO9/ljZnUzDhtbUVMVZVU1PPURDlCrlifMzXezxjfcLbtdkrQ4hWlTaytgEpL5ZtVfK3IhzNdNJm0sw6SabDpRrIZG/s83Fn/w9tme3N7eC9dyYsuwPNSA@WIScm42ZUPTmWsLFCp6usGXKLMO6wMDP6OVnfb4qrxYfHEwmJsXkrHptiFHNBH1nDZqbEc+apnMbX2Pui99t+KY6BV2CFJN7sxPIOZmh4uA37za+1T8E2SlE3F91rWZm2v7FHvEZzEwvxe93v9N9qnMOGOLD4tm/bv83TTEK6S2WN1OaRV2DRUkXUnCec771NYYha/p+Ph9SqsZFXTjB7SJexyawc7i43d+KbHE4m47Hs/cl6DD3ntUzllC9/Ne1AzHIWod8i8qDnp21UV8vgk4uvVBMOVxB+bWXe2915lZcxDJrgz9m+8pqU4wiz27kBDHDC0dvlE/F14TQyxSATZstu/zXDmzIcXs7vwZQ5Vr63j3rQtCCYqg/W1L/aBUZqCmzNufS/8Vd9DQaOslyjl95f7QJCoLNEXkuXMW4M6vCEnnJGclGZXXOtHk6WDtMlU1AyzNtSucua4IUvFKOXv4pVCSzlzRnLmucq71vmlUJLOXNGcuaMqNb5pjTy04vHTnYWy+x370ubFC7F2xUWAxS5QmFiylmHmzt3s6l4YyEGKJ87eq/H2LmaEhJ+9SdNMJizNsdmsorEsFw/GAmirIBI5QcM/+eSwjHMBxTQ6vOE8ssMlyjMezIHyb3F272+taz0gaUT4HRNDhLEGKVLt76IiTRALtmchNibe7LbOb9yxaoqq2pMpK6WSec2+EmIjN/1ie6k8NgmyORW1Z+i/F7d7cklUSgxNl7bcXb6k6psTkkohz8SZ/ZtdSOD1jRX9cnUJBGA00Yk+9Z91/N08opWp5c9k/drXZkxJ2d3d+at2vCzSSMyTPE6YCbfa6jzlGWDNdRMxDfivG5O65YXfarPPVxlAUmbKNuKYYbMUmv2u43Hj5OowYZp42bNu9ylsGpitKPiP1OvHbY+1eSvaN/Z9akIu1wVx0UdusybPyT/aFV2KmEbc1ZtGAy1Un6J/tCm0z7rptxF1aRZydhVKxbpZ0Dwaulw6orpaiogJ45uqwlIAmPo57gJfq3ZOukLTE9CMAjxSKk65JVT9TD3zVavPFIes7B3fc4bF816KY7guA1U9TjOAxY9rAYIYp5XjCPbvFlyGxO/Da2xRkkjs+xSNDQgcetlbNm7LX7l9fxEJtHIHYkFjHnYmzJVNjq6Wno/dCpMaSjigaeUzewRR5M/JtgssexX8IamhrDiwXBOs0gXy1NVM8ZyfG1YAWVvMr+S9Imb5klDSGZSZGyiJu211tSFTNAukrB9PBlp4oSw/FacdZLQyG0maO/wkMm7mZu9nFnbx4qY0x0j/AKI6NVukPVeudUeIer59Vm1soRdvKdrZr8F5mayHppGkaK23uU2vVidZ+END7n0x0GCD7oyOfWY5piKGJs1gykIARkQ7e5m8Vt0osEhD4uyGJnXs1McTMR22vbYqwxSATpKrrq+ankpYJDp9YLhr43sY39IX5pz3pQYm5KRZw2XZn80ytK12AyHnZVuHR+U7HWVkk5l8JKbM5l5lzUXjGhJTM50ErSl6krZf3h/gtDijC3BdHEGXgy7apMSu3zWay6aM7Xc3fxdUfBqGvxBxwfS/DY60QiYaauyC0giL7B18bi7bPbzVT0p0RqNH6sQgJ5qWZnKE7bW29kvFrttWu6seS4qaIauPfJ+HpbV6M9ju7WF+Itwvzbkk85jfK2Z2fY17MsDGrmibIkTlIizK/wCkGidHGUkw3jIm9C2VvG1lQ6mlmpTcTbd9ZuDpzZrZ22tzTiGpGTda4u3EXUjhdXFZ45S3vRvwVjw5xtJlfvH71RguT7vFTujs5wlPrHvvCz+Gx1wT7F1K24/sVwA+asOjEjHVSfo3+0Kqg1Aqw6IG5YjN+hf7QJtK26Sbu+67K4VBF1Ks2v8?S/YJYh+DqRdd0h2v8BT/bNbfMJHTVEYNvnDIIjzcgdZP0JaLaRaOVGNy47h01AFRFAEGvHLnITPNl8lGm2+KkqMvxKbbtbN3+Cn+mionh6Pa3VF8PUU0U3HaGfP9oGTToEoaSn0Llr4RHrVZWShUyW3ssYgIRfJ9K3irppFgNLpTgNdo/WE8cdbHuS/m5QfWRSeOUxa7d7bFhuEUPTH0bSVWE4Nhc1TT1R5s9PTvXU+e2TXxnG24/y7eLLmTYfglaJ2lpNWJZSu9/nuksIhiwbp36phXvVP7qzQ6v0dXLn1kfyfqWsdMv8Ao4xj5dL/ANTEqv0XdGmN4fjh6a6Y+94heWSlpTLNNr582sqJ8vyisPG73fgrn0oYViON6C4phuFU51dbKVOUdPH2yyTxmXzDtXjM+V0rLIL1MIs7O43v7VQugbRfBavBK/SCvooays649JT9YjGXVDFFHLmjztZiJ5uPHYtrd3J1n3QzgWMaPaIVNFjdHJQ1MmIzThDM29qygpwz+WYCWgroG2JpXG7zON7s1rN3cFk0OkA4bWAE0+UZi97Er5W8H7mV1pcWpZhHeYJP3fnWaY/o3NjJtFTVbUkeZsuZnIWfmTd6UraQMFeGok0iaSmiZhkoo6bd4Zfhs5P2tvBNaervtA+HEXv9Ck6mlbNYwZrt224rXNUdmLuddOBZVnWD6S4t1cJ6SuCrpo9zLJE43H5O6+zndXWm0ioaimYqshpZbem9h88yfR1QHZlHSUlmIxfMLJ3kdetltxXscmZ22sQv7WShxNbN3p1fmmTRi93ZlX8Xo5JwLKGZUfEcLngYpCpnyePD27Fp5mNnUdVv.EJWcbO21O6eoIN3LdkylhEScxK3Nli2KQ6sNdTwN8YWK33KJpNIJaB5ROjcsztxO1rX+KpnSk6mgrz6qPvHHmqtPiRz.ywqQkhjcWK+W7X4J9SMRxNnFjF+/NtZTwabNs/FG/3n/qtC6LsbfGsYqYdVqslKUmbNm/KRjbg3rLCz7W6z25LVOgki/pJXf6if8AzoFG1WyI7cWbinb0sOV9z6XW7dW+N9COr/H+hLoUPrCSfV4vV+l0j1f430LvV/GXaF45k69aGMeDW9rpPVfGRqvjJRCMy91Qf5dJ6r4yNV4pRCMyNUH+XWPvLvv5pGowLB8acYq6N+L74E4u3xm7vnZOnopc77O/myWjwquv2P3h/iq9EUwFuZla5NUTb7j7Uzj0ExLR+cpcEIa2gy+9HMblUhdmzDkARAmvta3/ANbR1eKU1XPh+MxAMoFaLK/a2d/d4qx0lBj9KX4uxfJzj9WZWGOCsxHDpaTF6TcyPvRmGbd3my7+wvoUlHI5u/vb3t3qNKGON3IZBa/Fmf7lTKeevooSPD52pKi7nqZXc6cvlDfdbxC3tT7R7pLwLGDHD62caHFMzRas7tFKd2G8MnCxPwYrOvavQzGTwsZ6SrkkksWekqAgGXIe6MesiPVg4d7te6zaboc02qJHIIIMvHenG/3qWpJN0mlLZsy37vamFRDEb7rsBd7jwfzZluNVHJlfYq5X1QwsWsJReiuj/SrgWqoq6WjrsLBmDUVE5PJGH+FKMebyYrtbY1lNaR6E4ricgS0U0Uex84SETW8soEn9PLBm35BZuahqujkcmYNrc22rOMemjkMuG1ViSGE77FpUnRRpBO39spf2pH/7aI+hvFvTxKn/AGTf7lLjiFCI5XmF/nf7krBTnGNtqywqaPktG6FoRj0jrdn9yNv+LCpFuhiu9LFYvZEX8ytGhWgEuieIzV0lcNTrYXgyDHk4mB5u2Xqck1rq6ikppAjkZyduFn/gnI577bq8IQhVpKoQhCEIQhCEIQhCEL:2Q==%iVBORw0KG;)NSUhEUg?AIc?ACHC)?ZjBXW?ABpklEQVR4Xu3bwY2sQAxF0ZuT03FizskxOIhKwP8jNCq1QJrNiNc947tkddSL0oMG+ijcwPso2D1wxTz66HCUASIHYHU6EqQOyMNRAJ6rFa10gGrawLJ1pYE1yyFbWQJF98rWFrGafove1TEOM2t1EQHQ6oAfcoxjHOMYxziqqtW5++yPv+GYPbYyjkq7xyo4w0O4P4IdXipH8JKVxhFwgQgcxSVXOJxr+bxjcZM/70juWo87grvyTRzx4b9HVQkcP7nHirvW8/vDueaC/ZFcS4Gj48JwzR5zXrMl2mPBDnzJ9lgaX1lI7ysz3Mw88u3ub8cxjoz7nnYE9/0yxziqSuvYe0zn2I1jHN/tMbkjIj79HMuIcKljl3rHOMYxjnFAVWkde4/pHLtxjOO7PSZ3RMTsj7/jGMc4VmYG1/J/JX0etDO94/MdVaV17D2mc+zGMY7v9pjcERGfdI6NY/4nHMc4xjHv88/76+OY7yvnPB3HOFZrWwAG2doSDAdvbQ5OQrQ2g6Q9W9xya/osl4ZQp+TLkexOAI9cwV73h6sc5KvDRA6LE/APOHkbCvNB8rk)ASUVORK5CYII=$/9j/2wBD?cHBw@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.n/wQARCADNANQDACI?RE?hEA/8QAbgAB?IDAQEB)))?ECAwQFBgcIE?BAwIDAwUICwsJ.)?AQIDBBEFEhMhIjEGFDJCUSMzQVJhYnLCBxUkQ1NjcYOSorI0VHOCk5Sjs8PS0xYXRGSBhJHV41VWdJXF1uLk8P/a?wD?AB?I?D8A/SI)?UFVUEKtiQhW5cEJt?BY)?AgkE?Ak)))))AGO5kMa;8IvAyGK5kvcBi3JABFy4ABIAUFVUEKtiSUKX8pcEIo?L))))GN6uRqq210S6XTMY1SZURWyRbUuirC537Ygkzi5oSQ1/UqaT8einf8A9QjNHmmN/wC0cL/5PV/56VXN4BsO6Ucljj4NXzVEdRFVaXPaKqlpKrRa5kWZmSWnkbE98j2MqKOWln05JJNLW0tWTTM+I4tQUKR8+rqOi1Vdo87qYKfUczJn0tZ8efTzN7345Gp2kOZdDeuWa48+3lLgz+hi+GO9HEKR37Y2WYvQP6FdRu9Gpgd65jWUq1iptOyTc04Z2SJeN7JGotrsc17fqGxnQNkuZFMtyMxizEXVTMi3MLn9hkVV7ShALGFXXLoWQqmwm4Mjdha5NypILopYEISC1w?SACARckEXJ4gX?BJBjiXa9niLf5t/Q9aP8AEMpo1EmjJDKuxjnNgk8jZXdyd+Wyx/PPI4Em8ACSDy9WnMsapp+EGLQOopv+Oomy1FE7+8U3PI5ZP6vSxDH0WKGDEmI7UwqdtYuXr0mV8VfHlZ0/ccs8kUf3zDB8GdHHqB9bh88UC5aqPTqaN18rWVlLIyopc3ma0TY5fhYnvi98K0FZFiFFT1TGrpVUEcmR6bzNVu/HK3x496OWP4XOasyK12ZDIzaljqo5HIjmqjmuS6Ki5mq3xiinE5POWOnlw56rqYXO6jb4z6TKyWgd5/uOWKCWT32phnO4pL+GwIarkyyo9PfEyu9Jm+z1vqGUiRquavb6zOgQ1UciKnBUuYL2UlyXQuBYu1qLt8BsscarmLfYVRFUyozylksnAsZrktiROJTL5Rl8pcElsqFLKELkKBlCAgkAkEEgkCwAJKhFDiqgxqtlMgCe?yA1aunSoglhcqtSRjmZk6TM7ek3z4++G0CHJclDgR4rXMjZrYNiEk2VupoTYTpPky77otbE435JH961I45Srsbq04cn8Yd89gHr46d+xGUpvk7Dzvt/W/7tY3+X5Pf9wGtycbVtdiTJsPqcPpX1rqqiZVSYe9+Wtbq1UeWhraxjNPENefukkfcqhkXvZ6vIhNiqtc7Y4m6JwPNVkdTR4gzEKajmrGT03M62GmdSMn7lJq0U/uyqo4MlPq1kcsepq+6GfBmy3Fah3HBsSj9OTCfUxOQ7ljG5pVWORLIMycTntq5HcaKpZ6TqT1KqQyQq7fuxzEzXajlbm3+n0HydfMbFhYwq1fCSjgiXMnAoCUWxKIa02JUkL1ZNVU0T04sknjY5PxXvMft1h3hr6P86g/fLW06lH+Cdum78JFnfE76DpY/oHQQs1fOCpY1qavpanNzepgnyZc2jNHLkz9DNkfuG6cfELwzUlZ1Wv5rUL8RVOYxjvm6lsH4KJ851WqZ2rZSli4AUyFSASAQQSQRcAs?SQpQspVEuDG7apkTw?GQ))AFHFiqqRYrfYVsRYsCqtIRxjK3LOUxXNd7S6SFJmq5ionSTeavY5m+wzRSI9rXp1kuVQxLSU71VXQQuVVuqujjdf6hRqKhkzIpnqadlRBLBJfJNHJG6y5XI17cmZvnmDDZny07NW2tGroJ+r3eJ2lK70JHt1IvinsI9q6H7zpfzeD9w2oKaGBuSCKKJl82SJjYm5vGysNhNpU2CAVuZLkWJuVV6IYXyI26nPlqUS91CKVVbHQWZE4FFmXtOI6uThcllTm8KFjXerl4HbSod5DO2ZHeacpiqu1LL8hsNcDCksjFs46BKIYGScDYBtscjku?DI)?ACAQpVVMauDlsar5Aak0qNM+cZjT1F7S2cGslTczuccqqrXRKqIjVt2obqqedxSRcz/AMX7JRW3I1tpr1HKOeK+VkK/K2T980P5ZVSLbSpfoyfxjzOIzKl9p51Z1R3EqjDdieqn1iDlTUyWvHTJ8jZP4x6zDat9TEsj0aio9zdxHZcuVj/WPitBUrdLqfWuTj89G9fj3J+jiLmwd65Rylzj4zPoUVQ9FsqscxvpS7nrGNyl@qprX28DytbXZb7T5liVtp88xJLqtg0hWn3CXFbLa5uUmJK5U2n5TqY1VV2H1P2PqZYKV8qpZ1TPe/bHFuM+vqmVCqtP0RRVCuttO21qPS6cfAp5DDHLZD10C7EFwrEcllJaqps8KG1E66WNeZN5F8ZBE7fTyi5pMdpyZVN0AEm+)?CqljGoKuMD1NJ5vPNV0fhUhVOXUMV3A1Ll2qpdW+QlEKK41GQuRSTzWLJ3R6eRv2WHqmoeYxZESaRPR+ywI43Y4NtzwNexVueedCt+B6+qjRbmi2luvAuhvMblNKkjVFQ+u8lEVKF9/vmT9XEeCp6O1th9F5OsyUj0/rDv1cRJlRTuqeH5Y1KMiggRdsjnSOTzWbjPtO+ge4Pk3KupWavlRFu2FrYE/E33/Xc4orSyKeBr3K6546sgVyrsU9xLCrr7DWXDFf4AjbC580fh7nLZEVVU+1YFhK00EESJZY442r6XX+uaGF4BrVkCK26I9r3bOqzf9U+qQYejbbCVBbD4VaibD00KWRDTggy22HRbZqXVbIhRVJ4GKpXodu8YI3XexE8ZpimkV7lXgnBPRMlIiulv4iFkU4j5dSpajevIdcAFjsgAEg?AhVKKSqkKDG5SuUxubc2LW2FVQqpGmljTVgRhsKhFj.kKGOxya3CVqJHyJPkR2Xd081t3J4/mnbseS5T8o1wnRiijY+WZrn5pc2RjWOydFmnneGl1ZZNhgl5NeHnfH4j/WEfJxG/0n9B/rHPwXle6uqGUlTFE10mbTlizeLuNc175O+b3dPQPYI4zIc2eeSN1s26aEOBtT3/8AR/8Amduipkp41Yjs13Zr2y9VjPVMcbzZa4sZYp8ybTPc8TU8jlnkfI6v3pHOe73L1nuz/fR7O5cG0154FOQ6JtWuv/df/aMzeSLWf0nN8xl/bHuflK7AWVVPN0WCspXq9H5lVuVN3Lb651mx24pc3dMqrF7CqkXcm0wovkNKuqUghfNIjnMjy3axN7fcxnX9I6SsVfApz8UgV9JMipx0/wBYwpYo5rpNi9E8jU8rKKK+aGsW3YyD+MajfZNwalbldS4m5eLssFJtd+enGxKgveyHhK3DFVV2FkQmOljjdna3ePpzvZjwLhzPGPzei/zAHxObClRybPB6zwWM5+x?S?ADGqkX2p8o7TGq22g1nOsbJVULIqLYEWNlDGqAuQY1aWKnyP2SYK7nWFVFDTVM72Nl3qenkqNN0UkT4szWMkZ43fO+n145uLYrSYVSS11dM2Cmhy5n73Se7IxrWs33vkf73GSjSjj4CtTyhq6yKtqqSu5zDp5Jfa50XenZ2dCljY/Tf8JGfW8FqqmejZJWI/nGaTPqR6LulubuSM8t/Otg1RIjGQYjkzd8dDB9nnWfJ+lPX0ldBWwtqaaVJYn7M3neK5vUeXQ4GISO4Zd34Q6sbjab8pz2Gw1ykmGCXY06DbGZppsk8hl1FXyfIDrxTNRDO53YUuYy7EVy+TwgyZ1cpmamwkkA2k2EGvVNzQvT0ftMNkq5qORUW9l7CLFrniquhR19h5yfCUVV2H1B1HG7wu/wAW/uGF2GQdr/8AFv7gIPj9Tg6I5mzqes8H1iXA6aRUVzpU2W2Ob42fxPOBIOw)ADE/YphU2XJmRe003XS6LxBpzplUyxSIm6q/IpsnOMjZ1bsXeT6wKxVKN3Xm6DXSqi7VaVdWwt6yu8mVxFjYWphRO+R/lDaPkvsy08s3Jxjol+5cRpqidvxWnUU+Z3z08R9DmxF23Tbl853S+icx8bZ2yxTsbPFM1zJo5W52SRv6eZr+mSc+bFoczcjc/wkh8QwCo9j72spOexVDcR5v7q24lm5zl38ui/muTP3r9Kel9jeoWb2xhjVzoWrA9mfpJndKxjnZOvkb9QzV/IDkdDOzXrVwx+b7l9tKaLU3mbuWsZJP+Tk659FwDA8OwylRmGsZpSLnWVsms6V3jOl6/6oEzM1ur0zd0uCFmsXsNzTLtYDA2kNdpmairwRVNhqGQG9HTW6xhbEqmZEROHAkA22MRv?AFw)))?AY5Y0dw49pkAKuajkspzHorVs5FQxK467mo5LORP7TUfRtXouVvkXeaDmzUcidDfOY5TAdB1BIvB7P7czSEw568XsT5MzgcuSjqXLbRk/wDvnDnWMGIvlhw/EZ6dF14aKrkhVEzWkZA97HfTPQMoGN6Sud9k21iZkWPI3I5HNc3ta/pg26TDHte18m5k+cPy/wAmuQEnKSGpqlxOOmkjqHMex8LqieRz2sl13d2j3JH++e+y5zqckErOTHLH+TzqttVS1eaObSXuWq+k5xFJpd00Zo8uhLH8F82d7GvYnqXyvfhlVTaD3Oyw1SyMfF5uqxkmt+Ek0ze5GexfLhOJRYriNTBLLTJJzenptR7NSVr4tSWV7I+9s97jj77773MHbyn2DKTYuARkQgkAFkQ?Eg)))))))AHJdj2EsVUdimHNVq7UdW0zXZvpnznG+XFTT8pcKosPrKOqwyrkoWVGgsFRk5xUvp5W68OpkfGzLJp99MOI8gkqKmpl9sFZq1EsmXmubJnke/pc63zlRextp1NPO3FNsFRFMjeZdaKRj8v3UAfdw)))))f/9k=%iVBORw0KG;)NSUhEUg?AL4?ACXCAM?ACcCRFR)wFBMVEX+:/5zqPy1sPGxe/v5M/9p3z6uZiRluWJ2PiVw9X+l2OU3PiouO201fPx6uDa4+fm6OTm9/3z+/7w+v6Vy+C93Pbb8/3i9f3L5Pjp9/7A6vuU0+3+yWzu8vLO7/z8/v/5/f/s+f72/P7Jl+Xn7fDX6vjh8PP17+vd7e7T1/Tu8Ovz9faf3/nE5PG6y9O15/rU8fyDz+7I7fzN6fDx+Pq3bt2cuMPN5OzM2uCIyeP5+/up4/r/ilH/wFJ/1fdrZtz9k/x4?AKyklEQVR4Xuzc53LjyA4F4GVUzjk45+zJu3vT+7/VBZuQQJ3phuiWNKqp2jNrWzU7Pz5AYDOY1B/HzT/5J2ceObpYN6l/jTmS3KP1gP61NYBas8HLcnUcXn52sByuBqYf0L6W778Cf7t/Bfu06/Rzr2wfo/3g6bvK9uXzT22K9oG3upHtnzNXFTsXYMOfHzC2AnZqfWn75eVl9sWx/n9O9rJ0Bf4ThHireffoJRjEHlrvA/cvAt+AHaeeOqLJ+/JNT+EfajVQs3baArjmtV7soO/vGPBf4gStId5j7xqa/t7iGiLPDSAvV/TY+P4mfeCZzRL68haAnzV+esSXd19wylchBfj5UY94B52ZF6XCZTlKwALA76WHzoPbM1gFvAMeftArdpTPZvSVh35C4H+Yf70RpQLwl9FbW2+1u6i9n+IoyV6B9Q0o46f6cE/1Ex7@CMdcvVQfVQj1PBTAbgPI1vZ5js6j10vmiYlU6wD3wXHO6C0X9Nj64t2Uftmswb0C7+sXzZb1INdgXsWARWgXzbfUs0/Qz2liEf7eGz+KxH+pxvZLGCAfs629uOqI3rEF9w7pVABFgBrKOnZrzQf8BRsPdsV+fsqrr/AFCoo+nE/sK39rMfe2/Eg/niwAiyA/hT3yOJ38PEIWfS8yQpekXvXgAXM6A+HCyC/rP9681FfnHk3/bRE3CUUtgHzRTl5bLfjMAjSNA3azOe4Jh8nx9F6Vf3BOuANoEx6k+t2mCZJUqf8m5LcEd/4eRXSm89rDurFDvTPH4ilBFyJrsOE2JJ62Dd8YwM/NB9GR/SAt8A9irAVMI4TYxd9+nXA+wCC3cV35Fc2XNBbWq/I59YoNbBfEiYGLUlOLgZ9nugnemOCS/bL7LhHh/WAV8l6oAIsoIv6eji7yFef/uAupaFKhQ+zg6Mjk2PHz70DBaxzT0Dknxg/gdpmrKD7ODqox9Zr9jdHtAoK/vvQAMGfhI8XlJMwycsBPjS/z3wefObDzG83l6kEFqOu4LGA9t2qsuTOwcfRAb20HuQesVZA3XWlTuGX6Vfi22ZH+FY9dJ7t3hE/J2Sgnno4IH755qNesf9LiVJBro+l9yq/XYqv61W1HvtbMO/o+vXw1APDV2aHl/we8AHPdK9YCkjrGj4J4jBNZPaBrzcf9WL3D/jV5teDk+wIum1KTJ6Yj7ODG+6EAnon/rlU3AWo220yox0X5YT8vHAKH2cHm2/XK/LSNRT8yqLJRz2UwVNQ1/g4O9J80IvdK5YCOqlth5tvtOkT6Q3ua5ikTwU+vbCOPuopoAd7o9HIvhr0CqJWIP55JztFqWdhfJIGlDBsPw74kNMcMF+eF/gc5+yA3o5vlIxSwDzLl043DMMgX4XqcXYK0OvRVmuaz0KCUsuBb52d4uTPkY/2j5eAfEp+BHHDx2ao52QT4x59PliT5q/5Tjx9bw0XpQuxFiD609PYtD8lvtFv8PlcHfn67EDvofOtRWNRqVSGjWq1+qECgL8+AQjqhi96CusVvj472Hzp9qLZbFYoTfLbYikL2g/8+yQbHtN8AvWNX/Dbu+9qfo4HfbXVaAwzf7NV1QN+Cvr57KWb1JOu8C8dfMuWa453ND7iGfZXk6a/ujVYAPKNnvxByKMP3aeofJwdXjVlclDPEXvZArD9hs/+8djodf6Zk4/Nd0xO1Ss/zz+2f5zzrd0XPxwtG73C1/X/dUb1y/gAn7tPfuZTVL5j9EkPeA7i9Vj8Gt9c8/Tiz4Rvms963MkCfntUv0wP85XuK+smdJ+bn+kfoigatUBPdMBrqa5L0PnSfWXltPBlnyuzQ/qHEfW+dfXt27erCPSA1/PpE/TfOT3MJ38JPqW48EyQH11FOZ8SaXpG6lksrO1H/ubKea53Hzbd8Saf2n5F+tz/XEU94v/SMhwuKFWVLwun2n1tp4t8krOf9Arf4GurrF6Zv+IMTQXGr3Vf+P0d+Vej59Y38et6gn5fp1Z7Ncl+cujv2A98ys58Xjdh06UmRavxuXpQ+KS:aOQ69f85/fsJ+ep81obanxZOX35uOybKW3SyhO1Wg1Fr/Elf:JfsvSs38++xvRVbbuV3V+7Vrls/9V+M+H5Yt/9MCrptp9hS+h9v9SvvHjHvfjs399wj9/Nd/4uQDgw/TQgpMbX+kV8L9:zOfHjP8h5h9XHmk/VlKtL+m8KUe4Osrj/+6b2t/VW9/zZu/392WMj2aX+V3YXj897r6MQ/y9emRqPzrJ9l0dzrm0Y84FT76db6ycB7iiHNmGx739FR9+Dg7/sf7+tkW89X2Vz34f78S3/dsq/y5LnbfcZ3hg/ynTo302/i7X2nA4UG/xMWvIV8OmA93paEnfNIjX/yYFX9YYyudm+DCyXjWK/ye0v1yV9mg+apf8umTxif9AvQyO8DXrrJRtvNFD3ytgMWK36oNa61Nvmm9co2T9Qq/7BVm4k+noyjKrt43m60RXOTk2P1DPqml1DYiZ7kwOsroA1+/vi8rz+lDpfK/dSqR+PF6G/LJT8mo+UuJ4I1e48/0dRP5feb31vwp6zlN7ZdypG6I3xVsPephdjx+u5I1f8yjD/5Kc1TiN6JV8onVgZfeu5r/oe7L8M8yPO+05uTHAp7VAvQw3t384uzglit898p5cdGbRJXohhf9EfMllRbPD8fLLnjWC1+fHYqDT2F+k5DRlPSfI9GLf8RbgGTX36rP4TdDODvIV+5pIP5DPiYtwYNfuR9DMeu3BIifu8964GdmbfiJfwNsTLTfO0rmwjd+WDZdo498Ss4fPyAYu7/n+3k44odVX+Pj8NPK814xTIoFH70xYE93U3G+dMOAEsbt7q0MD8wO8ik4/DOensoU1n1TUTTa971srA+W/zFZLoO24Rs/8inIx+nJ+ZWb7GaSKEev1ny27/1Owi9xQHL2x+/rlXMwYD3w1enpjSukf88yjZpRNJ22Mn7rzRYvOuKXWes5YWH6B47Z0fmTZuVmLLeU5Dvfyot+83JJtWNuJMH9O/lv20Hs4KvTM8j8nZuJyeqEN+NHbN/XPcyiZ7dMz+1tHCyXxLfPjt5+PuikyDljk7bkz5R930FOf2LqPfgp9P2xJ3xovnb/Pp/wFm8DPp1GU8cDH/54bsd9gH7CU8IJd/9c43PO4YSdK5BLJhyvpyfQz3bOaTcgsOCDOKaKlm3mnyuzs+XZFbyN3P/ZFQOXi4Ec7sjpPYEzeZaAmnUbED+bnT40X/ilnxxiv9+TQ8J/6YRpGr4wn/HypsbU8Pi+G8ftMeU2WD5C82F2yj63JY9teT+3lfljc59vPY2Jv7a/S1duqOH3fLhJeQxPQA+zc+Cn5rCwH/ndsclbzi/YuTPxMhhTVg+PnlwAH2bn0M8sov8lyPxJ+KPTyfSC59zGbYOXJ49Bz7NzhCdGc39KCYI07ZIe7BMeml6P6XKoDM0/zvO6mT9+efsxnwch68Vugvi+pflHe1raFGDS6Rg94Htm5Fkvx8nM5xzzWfXVZrKBL35cAONFj80/1icFYKHqJwWIHped3+ZzGhBv+Ef+lAz+/qFPySAQNP93/4yS3/8TYo7/+Tz/b+8Oag?YCCE+Xc9Dfs15BBS3j5PQEdq2lS+DNZ12XwVr2sS+iJk1+P0NdSuRetLwFmH2Vewswa5L8BX/X3/frD3BHD+2HcFuN7sOWQcn/bbWusA15FS6H9LZi8)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AL4?ABQCAM?A.5D9d)YFBMVEX0msFwTFuCzMtMbm7lkbbMgqKrbog4ODuU6ukmJiZuqqma9POTYXaO4N9ejo1SPEVmnZz4u9XWuNGi9fS7+PftocX96/M8UlL1osas4unl/Pz72Of:/+90eDzm8L0nMJFVwVy?ADH0lEQVR4Xu3Z2W6DMBQEUO82a/a12:/ZQkTrP.+lrCwpU8T35gyol6sYxgn+9zPx6aUA7He/rCeyL7Q9/Qck9fiOUDQ+WkL8Tzj2TNMX0hnn8gaw7pC/H8hp70hf/GL/zCL/zC7+pZBEnTbeWlkn3dhfjzOwixOF9Us9QEvut9YRvkz+9ga7c2v5MvBenofBQW5kv7YFyklJbEd3LG2Yb5KMhnr16Mj8hpaCSJXwPTPRdVF562sSGeP7xfl2+BQREcIh9jJBPxkRAfk3x5+T9E8vtV+d7sn0kyH8+8SMG/yCGCzK9f+I7GRy6iScBHovieJah8PPE58PuX4elofL9vpuDLekiXdvb7R9O69Xce7PbbyJ0HVbEqv7lM0+MspiGSX9eVWI7vhBw5QlD4mB5MG36HdaGCe7IF+FJWIsWRjcjHCPsI8pFNuqnj1uS7F7+tGzq/2U6LFfk4QyJ918Twm6196MXqL4tO4M2MWvARQpR33Zz5hV/4hX/eXVkop/2t8bntTxkUrrvzg:xwyj5/powX9+ZFH4+PtkZGALnBswto8KZ7Rg1e2j2GRV27ErWnKA55VMAnhpoMinEB3vVCoV8+YVf+IVf+MrMQ9FoX1BEjTKcGzUWVajgRf4++j1fV7Nwisb4gqHxWxSMHSo6UPAi7u9jUvFbCl/xymdxPrcPx4ZzviHzN5PFUvhtFcfn0LfMPFfgvwmfpsBQ+agAE+YbsFuzCfMRf51fLcpXYwOoMB9qgyFKx0eos28Zho7RRpljmYaP2eea0TeSFiMd1mB2DKZ6CJVv9BAiH6HywYarJfDnBBofScDHDOAJwPSsz+dmiArwAxthAn6KR9fO+IbEb1FVAKTZODnnb0Y5cMwI7zx2hCv8/VX3/RbmqVkp0r7PB4Qelu2yfKVHRKu1bil8pTfj5YqhgPVfGl0h1g9b6A64TvuVWu7IZipEz3Ys+pnHJjhxpuV7P2bo3/GZbp8iQKL5q78sKm2MVuVd95/yC7/wC/9KvxKarAoR37Z20GRViPiyeIYmqwK+69I+oiJZFfBVnfYJG8mq8Auf8D0EMfeTQ)ABJRU5Er@ggg==$/9j/2wBD?@.@.kLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwv/wQARCACIALQDACI?RE?hEA/8QAYQAB?EFAQE)))?AIBAwQFBgcIE?BBAECAgQGDwYEBw)?AQIDBBEFEgYTFCEiMSMyUVJykgcVMzRBQlNhYnFzgpGx0hZDY6Gy4iQlRIRUZIOUoqPC/9oADAM?AE?g?PwD2hbcCKqKvWneU6ZB5xyM9lUlkTPc5S10pfKc67XFRytwzqVyG4bpiKiLletMnZ9Mg84myxFIu1q5U4npS+U2mkzrJaRFX4q/k4uV9YWeaKPCdt7U/EhLp3LjkfleyjlOoyMkQbzJq8EsjJEDIwSyVIoSKoU?Kg))))?82sqvPl9JSzlS7Z93l9NSweYyKvMk9N39R28adhvoNJZU3WhKq3U9F/5ONGbvQffyeg/8nGVpqr0+p9qwsXE/wAJP9m47QYJA9DwchkjgYJAYGSmCoKKChUEclMjJXBMEMjIyMEwRySGSgABU))AGqfo1F7nOVrsquV60/SQ9o6Hmv9dP0m4BhrQpKqqteJVX6DTIS3ZTqSaT1jT+0dDzX+un6TIraZVqScyNHI7GMque/7psASZSqMcjmwRNc1coqMblFKOtWHNVrpZFRepUVwBr9TsyVKrpI8bkciJnr79xzPt9e8rPUT9Jj29Uq05Ujl5m5Ua/sNymF+8Xa9GeyzezZjOOt2DtgcT7fXvKz1E/SPb695Weon6TG/aCh/F9T+4v+1Nv+H6/9p2xFTB0yzJbqtkkxuVyouOru2mcpto5GzxRyNztexr0z34U18kbo3uY7vauFx8xFQAVAB5Q+3xnq/EvEdHTNZ;19MfWRkc1KrL2Z484R61JH9lzHeM43vBWt6rqa63S1N8VmxpNtlbp1diNhtI7m+ZiLmM5W521rOw+PwZXBTJ3ZI8w169xTZ4vj0bR9UjoR+1TLvhatadu7nSsf7pXll8X6WwyuGtY4gh4lv8AD2tWa2oSRUmXYbleKOH5LMUscbIvlfkySFFPRgcFx3qmsadFocelW0pz39UiouldDBO3bMm3xJ4pezv81u8npml8dwX60moa/Ut0mPXn1o6NaJ0rcOT3RlRjvNd4xUod0CiqiIqquETrVVPMeE+NLOtcS6vSnX/BzcybRvBsa3kVJORJtla1nN5/u/a37Nk8fMAPTwWLT3R1rD2Lh7IpXtXqXDmscqKeSQcaau7hDSeXJ0ziPWLFmtTVsMGWJHalj6Q6FkTINsTNrW7o9m/wkng45AD2IGDpkF2vQrR3rS3LaMTpFjlwwpJKvj7Y4IomNjZnbF2d+z3TwgAM4GHIqo93WRRy571LCzIiqm3uLqRqqZyZwKJ3J9RUvlo0+ue8H+mz8nHDHc657wf6bPyccMcVxD7+b9kz+o6XSPeq/aO/+QADRG0O50P3gz03/k02xqdD94M9N/5NNsei0PeNX7Jn9Jx9v31P9o4iADJLJ4FdpcK3OMeK/wBoLTqzWS1ei7ZXxb/A+G8Vkm7b4M632N7TXrr9KkqzaNTtx+1tl8LIZX83mrLHI9rI3Tua1I3bpG87t+E90jjj7qfQNCtzST2NK0yeaRfCTTUasssi473SPiV7uz5xsIK1epEyGvDHBCxMMihjZFExPI2NjUa0rkpg8m4h0WLX/ZCjpy2LVZPaBJWy1JEilR0c82zxmP3R9vtNL3sa162n3deoWo1br1aXl2Z5JXyOs00Xwbot/wC73bXO2+Ox8En2fqPQqi2ktrWrrbSPlJZ5UfSEhzu5XO283l7vi7tgShRS2t1Ktbpis5a2+TH0nl93L6Rs5vL+juJIUU839lJsD6vDjbEroK7tZibPPGu2SKHY7mStftftcxm5zeyOFo+DNP1aN2ncQ3tQt2I31o61qzzo37lZJlrG04vCN5XjbvE5h6Rc06hqLGMu06txjHb2MtV4bDWOxjc1krHta7aYtfQNCqTRz19J0yCaNfBzQ0asUsf/AFGRI8qUNHx5q7tI4buuiVelXMUKqM90WWzua9Y+zu3Mg5kjfpsPJ7Dtf0Krwxbm4fk0+LhyTwtxtiGXpMVuRjbTZIm42Osve7b2uxzj6As0qVxYVs1q9lYHpLAs8Mcywyp3Sxcxq7JG+c0uT14LcMkFiGOeGRNskM0bJYpEz3Oje1WO7XnAFixKyfTp5Y1R0clSSSN3wPbJC5zHeqfOuicOalDw1DxZUsPfb06zzq1bPg+gVppelt9d88jovkef+8nPpKOCCKBkEcUccDGcpkDI2NiZEibeW2NvY5e3s7dpbr06lSBK1atXr1034ghijihTmK5X4iY1Gdty9rsgGJo2q1tb0ynqFb3OzHv29W6KT95D9pE/sgyalCjQi5VSrWqxblfyq0McEe5dva2RsY3c7Hj?pIiq93URRq57lM4FhYUVVXd3l1JFRMYKJ3J9RUiqo1Mr3EOazyqXVc1OpVRC3hV60Q1+ssc+i9GoqruTqT6nHFdGn+Tf+B6O16P7iZqL2kx6hMkyzKzDGswjc9xsKuoPqRrGkaO685V2O8816NP8m/8B0af5N/4HpQML9m4/wDiX+o39Rk+3T/kWev/AGmq0ZjmUWNciou5epfqabQqclxBxVHoV2jVSha1CSzFYsSR09jp4YIVibzEhdjm73Pd2dzPEOggiSvBFEi5SNjWZXqzg1MkizSufjCve5cJ1951YOSocc8M3npGt1KdjuWvqDH0pWL5FWfEDnejI86xj2SMa9jmvY5Oy5io5qp5UVC7gh1lQSABEkAVK)))?AFqXxF+sxDNe3emO4s8hfKhjyxuc7KJnqL0bmomFUQd7vqMktRxqxVVVzkul2NFRiIpbeqK5VQ?mRB4lqeoLa4n1+81csppFo1dfJyPC20/7p57BqV2PTdPu3ZPEq1prC/Pyo9+37x8+1+ZFpddZVVZ7O+7OvwvltvdLn0tr2mNbk2QrjvXqN3oFVLOoR7ky2NHPX+lP6jJnuRWsssxRTs8ksbJET1m9kt1Yoar9+m3L2lPzlUp2X8h6/wASvI57Ht+iatVJxqu7vNSyxKxey49Bs6PRst8JCxVx37ev9R3CcV8U6PUkt2ZdO1enAiOkdKx9C7hXtYxEWBr6+5zn7fcz1ytK+etXlkjWGSSKOSSFV3LE6RjXPiV+1m7Y5du7aeExV3ajd0DSl623L7J7Cf8AJ0E6TM37/Za099NzA9z40c7vU801SvBVuyww52s25y7PWva?Lxrg))))?Yr3vR64XGDKMKRF3u+sszKqNTC/CXI0RVXPkCSPz3qZidyfUYKIuTOTuT6kIwqq7sqqlZERMYOC9kOz/lFTTGuRr9Xv1qblVduyu17Z7MmV+K1sbWu9M4PU6b0eqNTDU6kRO5ETuwe0alpGmaxE2LUKde2xudnOjRzo1dt3rFJ48TnY/duYcZZ9jqkxFXStRv6WvxYeZ02mn+3s5d/wC8WIOe1EzjBs9I1RNMkc5Y1ej9uVR3WiIeVvge34FLtaJXSNRU+E623wzxZS/0tHWIvOqS9Ds/W6Kx4Ld9GNxp472n0ZduowXdLm61SO9VkiSRUTujlRr4nbviu3MNctOVq92U+Y7KPiahNGvb2Ox3Pbt/n4p03BNXpfEeqXV9z0ynDp8PkWeyvSLDm/SY1jY3emesnE+x/TfX4chsyp4fVJ7Gpzf7l/gvu9HZAdsbdjdrWnndiXpE80vykjngAEiy))))?CmE8iFQAUwnkT8C3NKkMavVM9aIiJ1ZVVwXTAuLukgj+dZV+74n/kCqJlUTyk23Yc4ejo18kiYT8UyZTXsf1tVHeiuU/kapXKq4VMp5FJ1mNWy5zUREjZ17ertO/tIo7JckjViZznJtC1LFFPG6OWNksbkw6OViSRqnzsc1WuLoJFohHGyJkccbGxxxtRkcbERrWNam1jWsb2Wtb8VpM))))))?GFNXldK6SN7c7Ubtei4wnzmaAE+Y1KpKxcyQux50fhE/DxjJpNVI3vVMLI97uvyJ1In8jNBRERCTnudhFXO?CpE))))?:2Q==%iVBORw0KG;)NSUhEUg?APo?AChCAM?ADZe1I7)MFBMVEX::t9PT/+OH/8cf/3nz/++:/vlSkpMDAwP/wQOArKuox8jJ0sb3+fnY5ubl7u5WDST4?AFP0lEQVR4Xuzay67bMAxFUYEv2U5u+/9/WztOcvyi26FKagMZcbRABQIMlXYTKUmTceS0ctizyWHPJoc9mzypnSHPZuclGUfhpX65panTM9bpGev0jHV6xjo9WZ1uZqF9vV6vR8xMRGqm+W63/llWLBudP/KSLk552js9pd3mFjrLbJdU7DddzORy70YuQG9G2rgbdLE5ubreRFye/wchoabhiNgM9i3eZPToNLp0EtH/Qq6vLu0qo0en0aWTNEwHexfs4Dk+vhnJnLUt14vedshHIUYK+XFkW7mQfiNtV05zO7uafXkIezbxRyznGpXTt6+dzRb7lU/+Rldpnw74CW9L5WOXbVxgP4yobO28rS064LtAv3lRdz8yWdKCGpf7dimu3VknN06HnLlWZtg39MIO/f5BAjdMV9CZeRqGiZkPa38rQD/bubh2bX7pvMpXO1+svTC7APFHTO3SIX8Mrx6wgx6r49Kfw7sn6KrB6ZDDnoFOS6sc9v2Jjyg3LH3YhbXbUmj6cCgPfTiVhM71TK+cgg75pprkwK8915ttjeLSy7/TS0R6p9OZTgno6tMV9Jh2nw557BMPOs57p8e0K+ygQ66Qx6XTlk4Z6LAT6Du5lfhrpw+dgi8ddNhXOuTB6XZHt/h0PdMV9NgnXo90xXkPmsEOOuSdHjKDHXTIk9AVdE1Ch11XukIOeng7zWWR+w/nLD7dsVseul3LrWSwA6+WQO6/jL6n/3o8Y9nRvfz3VGud4tp9+U99FXrvDmCq9bH8Slz7n3LNbcWVHIai2y+zQdf:9uhET2mIERVfTpnqNJ6Cq?C8mSIwevSdIAUu4ubWb6hXxBsu/tSgJGBm6O8kjjXerISvqz3E99IYRMQPM57l0uXQEEvwggyIe49+outJptNCBJOp7jLl3cqnCDVeqf4d5nvQJcWCjGqCOq1OOJ5pS3HQ5SJZ9Cij3FvKlhF+oueQALjzFXfatuJLOCK+ZB5oA2WadgT7YnmXcZjYqCsPL/q6zEaSIuxvbm5W5vI7PUGfhdUs/7BO1qbG8O6KvQJaILVfIOoarh19XPuwepV2N7c+CF1eIXWSUv9pGTnnrePUjq1djeHPjn1U6GpOwhuD6jrnZeh+JXYlvz1zgpUmEuFf8hdTU/rUNZF2L9J+auQa7vFuf6ocGWWvhpHUpeiF3XzSvPe6oXn1PXdVqHjAuxecl8q6+mt1xivSL0mzxYvkK53a/G9uYu3zlOkrQ91f8cbUhs2GA/itXuwh67ZAS/WPLaEed1qD+K1TcVrKV++BykPUQdqu+O+A6Umg5QwyMKvscDxdrF8oA217OUFD+e/DsOt+vmflhWNR3uTleaHjmcj2xOyn0usj2LVK8NJFwBa8xv8/Olx4WOVSVvVDTc5Edr/6TmsuBW7Y26mnN+j1VFj9LqEltI0x1vs6DqWSRTdprXX3tjyY+vJXv1Y1tIUgwjsG1eeGIITpKJgdRiQjCPfYebh1JcSDoAs2HujqySTzIwhYi9ldHgHPWU2mzvE6+jejsdAHyUOYzccy1lTpd3Vwp04FxzEaECNdcGsV8jFkkZeH+VvXqdRFZ3H1nyVhWPNSntoZr7HRVGwwyWVIfb76iBGTgL3VvbKQhJIcnYJT+DJGUh9t/7A1PQko1Ke9AwTR3CmmyYg7ASbbM6nDlg3wNtknq9q+X+X5gNMiejhpsuI+mT5rl5pX3cNkrWcS81KOmJIkblHHlIcwbmEP+pO4YRJMuchmGQ5axkDnxLzmrvPrDiKTLyJV1ZKOYhY80BE5HA/8G:wN70b2bHBk)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ALQ?ABYCAM?ABrlS35)MFBMVEX:/8?ABdX14uMC/T09ODi4iyurafo6FveXX19fXk5OTl/PHO+uea9M2s2MXB8t0JhuDf?ACEElEQVR4Xu3Y3W6DMAyG4Xy28wtt7/9ut4XGYhnqitYqoPk9isjJY+AgintD+C33qgx9eZShDW1oQxva0IY2tKENbWhDG9rQhja0oQ1taEPbVe+L0WAmSj4GKdmdJazSAYKUg6Nj9ImIGRp0Au/jMdE37XoN9wEY2qHRfXWAdCa09g60AFEBEZCToDmfEI34BFqAeCg0yhnR/nxoBsrp0BHwW+gi+RFahqKFgNKjSwIAblAigImouFqODIB9HocWgDp0YSz59amobWfCEpdhaEeANLSaOcbITR09QDHGUgGkuzwOXQD6hvaAb3jp/um6pnx/4WEUuiJljSYg10Wo1g7t9YMAaRy6ALRGA+Rqua46NIHdEoPGoZ0Hwhbadehul4CB6MLgPWhZ2oO+XD435nmepuk16OoNz6O1Pejv6QB/QGcGvx+93fIJpp3o9qp3/B7an9HaTnR71c+jnTYU7QLAz6H5CGi1oKEZnNXaFr4x9YCVveTB6ABF+7s1k24D3NABSHWRAD8Y7RjrA1MS.SQboKC5DrKsg4JgIxGC34eTSnr9QLWM93zbjRaj6jVpeam5tVMVMkc3AD0o4qIlP5J/rkLJO9juA5E7w8aM1NKOsCR0dv3vNxuqg+J1nKRsDHAgdF9RUKdgJnPge77n2hDG9rQhja0oQ1taEMb2tDTPN9ut/Oge/40zV8TjEN/AD/rn6UZ3dpn)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL)A+CAM?AC802HE)z1BMVEX::z+P+p0/8kkP+j0P+93f/Q5:E4f/q9P+w1/+k0f/d7f/5/P/p8:0+f+Qx/9Opf86m/9xtv/W6v+t1f/L5P/i8P+u1v+63P+32v/a7P+/3v/V6f9grv+m0f/b7P+ezf/u9v+Avv9Ko:v9/+hz/+12f/9/f/s9f/M5f/4+:x9:G4f/Y6:2+v+Iwv/n8v/C4P/R5:T6P/+/v/l8v+42/+r1P9vtv97vP+y1:f7v+o0v+z2P/O5v98vP+UyP9qs/+Vyf/k8f/7/P/5YNTZ?ADhUlEQVR4Xu3Z546jMBSAUV+b3lt6b9N7L1vL+z/TEmXuQCjBk8kCK+X7GSnxUSRsuJB4k6a/TFEMUpAu02WSBKSyrAYVog5kKxdg2i6LGkzNSry+kEjJA1CWSKrC2xB4wTarA7gp8IJlVguwyg12agFWBF6wxGoBlrjB43qADyInFd+aZAIGkdP13tLLB0den2wu8lJSXRNur16tN33NGQUAiWFAsCp3YbEIIKPXI1XmI7hRBKAItusB9rnB9P8H78F78KFxcmFB2OR3X783SH46tT2HLfM8KkMCYIwaKp8TOrZDhES5donltIBm4yHQ5FG21hw7bL3nAOACESN5CUjjaGoD7UxZ2E7AitRuaYKgKmkujFlGM3kFtm4fBYELbI5dxnYGnvfF1lAIk5Je3WHZ/QoRf/ROMOQCmzbydwM+7ffU1cpy4jsuy2t6d3LUv3551ArByN05OH1W6i7L7xLg/ritfikCD5C+Q/D8Vmxp6e+Bwza1ABidfX3UcsHYrsGapXxrBwimRs6aA8/z3DjAvQJFElvDD4LFMBWVqvheapPSvTAHAbOfYU9PXliHHB5dIzh24Zkxnv32aTOYRYAfACP5hX4MvO3BsQCwDknUsYBRI7WkqyPDALiM/8X3xw+BJvoKJ9ij0tZg9KYnMXiAOGteBMfFAcx1/YhzvjQYr7BbgxNnsUERLG94mporAFcuGr4bd0UroZaaSNgWbN3lDucSK7oQMa78ULxgGCE8YAe1nwKfkERWYqLhZT2cvJ51AboMkzjAjoyAz4GN/HFXlyxzUdUhUaP2sQkwQwzlAHtkN+DDFFheBzNMJ1Hdr2evAM/lgb+8gzf8irx+zpA4WL3uAiwiTB3A2gbwudrzTysBa/njGO2BhHUyUect8XYOMmKcfw4e8oBbuGAm+GYSgVktwEN1AzhoS0d78Fp78E0CvL/ouLe1JoJ7OJjN29baiBnU+qTDgyNx0u2P5upvfkq6vXSqub2s/gYewfV/REqDK38InZYKhpNPP+Z3SgWfnkOmV+AepDAoF9zv3SgrhjVSI28DASYrGFXZpGywOhQORFGkQixqEWxcMAw0qwCn4h+3UlIHsMw90J6SOoAPDBKvk+8dQNlgfBMTr4Hewv/4Eki5YHzXFU9tpgFgZ3Fn7QtSMpgaZuMhiIO3eLHICd5VoH/rrfZfUfSbFverW/NTgL92xHNM5cAOXQ)BJRU5Er@ggg==$/9j/4?QSkZJRgABAQ?AQAB?D/2wCE?YEBAQFBAYFBQYJBgUG.sIBgYICwwKCgsKCgwQDAwMDAwMEAwODxAPDgwTExQUExMcGxsbHB8fHx8fHx8fHx8BBwcHDQwNGBAQGBoVERUaHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fH:BABEIAL8AwAMAEQABEQECEQH/xACO?E?gMBAQE)))?QIDBAUGBwgQ?EDAgMDBAoQBgM))BAgMEEQUSIRMiMTJBUXEGFBU0QlJhcpHRByMkMzVTVGJzgZOhsbPB0iVkdISy8RaS8BEB?EDAQQJBAIDAQ))IBAxIEBRETURUhMTI0QVJxkRQiM9Fh8GKBobH/2gAMAw?AQECAQA/AP03LWvb4aN1VOTfgtulA1r2ppbr1kVbI7ezI7VE5NuK26VBZ1NLlepuhslwIUCFAjMAuAzATmAlAJu)AE3))Acepgke3h4Tv8AJQ5GvtVlIp4JGN4eE3/JAaC1WMnXDrqqBGYCmYCMwEZwGcC2YCzXAWuBKKBNw?ABNwI?S)MT6eB67zE9AENp4GLusT0AJ5mQwvleu4xN4Dly4/kere1ncfHi/cGlLaFjsyoxr2QfyrvtIv3BHSWn9dFFx53yV32kX7gdJWPVRHdx/yV32kX7gnpGx6qHdqT5K77SL9wOkbHqo2qav2y5XMWN9kdlujtFVUvurbmDZt3Yzp9td7a2nlDIyMeBkuBZLgSigTcBcCbg)BNw?CAKqBoY58E1f0bgPJVffMvnKHzPU/kl7sQYUhKUCywWdLDZPdf9uz8x4e32L4enu6zZQ6zPE/iBsMcBk5gCATcBcCbgSgEgRc.AE3?VUCqgc7HPgmr+jcB5Wr76l85Q+Z6n8kvdiDCXS3k5wMNLiFDVZu1amKfJy9k9r8q+XKugZJQlHtpubIQ26ST3b/bM/MeHuNieHp7umyTyh121A/iBstcvSBla5ekC6AWuAuBIHmsa7IOyGlbV7HDF2EKOyVmdOT4+VUA7uFVElThdHUSr7bNBHI/TwnMReHWBtoBNw?CUAqoFHAc3HPgmq+jcB5er75l85Q+Z6n8kvdiDC5fZRRVtbgFbS0S+6ZWbmvHeTM2/zm3QM2nnSM6PDex/2P49TY+2qnp5aWmiY9s21arM+ZujUReVvWX6g6Wtvww7X04OQzRP93p/Sx/mSB7rYfh6e7oseHXbtM9NdQN2LL0gZ7N6QJSwF0sBKWAnQDwvZPJjm2n2eM07qVr19wxzxwTZPFXTVetQPX4O5ncihyNVjO14srMyOtuJZFciJfrA3UAkAgEgAKqBRwHMx34Kqvo3AeeWmkqcSWCPlyPXq6VUPnPAld1GEe2tW3ifY/NRU+32qSsumfTKqfeG7r9iy08M8sufk5sUbpZGxhybdvOVItipw98Ee0zI5vhacA2r+i4cct+9qhppav8AEW/0sf5kge52H4enu6UQdhtRcAN2nenSBso9tuIFmgXQC+bQBmQD432fUeBf8iqJKKel2szXR1sU752uiqMy5pW2XqS2qeQD6tgEcMWB4dFDIk0MdLC2ObWz27NtnJw4pqB0LgWQ.LI?qoFHcQOXjvwVVfRu/ADgrNPTYis8ab7HrxTReZUD53xZ2tRnHyq28Tx2prafYbHZMumfVXX+4N3X7Xuai3hjjz83MidLFI2TKvoDkW8oSpLc2Kmtmnj2ez87jqG3f1UrkcdzUyP8VfQGl18ko3+Ip/Sx/mSB7nYfh6e7oxB121FwA22AbDAMrQLATcAB4rEPYwoa+srayaqXb1Mk8sXtTdzbsRtn63fkXebq3UD1uE0PaGGUdDn2nakEcG0tlzbNiNzcVtfrA3ALXAsBZAJAqoFHcQNaojbJG5j03XAcCvbhkMzmSVFRtvEbLJ19NgxcCHpp8KJh8MkbZGzVKZk+OkRfxBwLfpp8MEmHfzFT9vJ6wcC36Wu6hd8qqft5AcC36afCvaTvlVV9vJ+4HAt+lnhgyLy3yOtlzyOV7rXva7tecMkY/w3I2hLaiaBssTUDOwDKgFwAGKslWGlll8Rqgee7p4j8e76kT1B5Hp6/yh8V/ay1+KNtmle36kT9Av03qPOMaf6r+xMTxH4933eoI6dv8AKPxX9rJimI/Hu/8AfUDp2/8A4/8AU91cS+Pd6E9QT07e5R+K/s7rYl8e70J6gdO3uUfiv7ZqTFq/tmNr5Fe1zk6OfTmDb0O1bt27SEqR8+fL3emUPQKOAwv4AeWxhWMxKbd8Frs7JcjuCJwW/RwQDoUyZ6SJ115Cau1XhzgUkjA13ReQCmy8gGRsXkAzxxgbEbAMzWgZWgZEAsAuBrYl3hUeYoHEw5rO2EzdC5esPBaLdxHQq0Z2u/N0f6DqanuV3uUHFWyBYyBKQnFkpme6YvPb+Ib+y/ER/vlV65Q9gqoGNwHk8ZlSLFptY+CcuPNZUYlk1ReIHYpM76OF703nMavDydAESRgYXRAV2QFtnoBlawDK1gGTKBewFkAm4DiBr4j3jP5igefaHz1lVXu5Tld9dwy9de2qcgWxXyBfFOQJwNmE4MlOz3RH5zfxDd2d+eP95vUB6lVQKuaB5vFWz90ZmulmZFZr/a0RzU3U3rXTnA6tNHmpYt9ZN1N93PpxUCXQqBj2CgRsFAbBQMscW8gGdGKBjVNV6wMicEAq/mAqBIGCv7xn8xQORSUklRMkTP8ASdIeI02mldnjFv1OCyQRLI16SZeVpZUDpX9lStxypXJp5A0cV8gZMFsgWweJxH2TaGmxB9NBRPqYI3K19RnRvBdVY22qdaoHRhsyWPXV7LCqunroaaspnZoJsr2ennTpQKaS1hfp/G:AMeoDvoUAB5rFFj7pzZo2SatTferfATmRUA7NEqPo4XZUZmYm70XTmAyZQK5QK5AJygSnEC11ApbVQF1sBDrgQgEgYa7vObzFA52G1KU1Qkjk3bZXdNlDyWgv8K5lX2dSrxKnfA5kV3OenQqIic/EOzqdfCUK49bmtYHIxZMgZcVsgXwfM672NsVbWuZStbLTOcuSXMjd3mzJx08gdiGri+gdj+EtwvD6ShzZ9jynfOc5XOsGpa+6/l/ex6mwdZAEAcOsZLNiFQzNBG2NGe/NbruouiqmtlA61O1e148ytdupvM5K9VuYC1gIygRbyALIAsgCwFVQCFAhUArYAgGKt7zm81QOSwPGxZmNDYizNaGeLK1gZsVsgXxTkCUsZ7Y3rQMun79HUDqFgIA5VXgfbNXLUOem/lytsviZddemygb9LAsFNFDfNs2o3rAygQoEZQIsAsBFgIsBCoBFgK2AWAw1jV7Ul81QOUwPIRZ2BsxZ2tDYZWtDPivlC+KQncNbvt60DJZ79G+G+?I?RbU.IAiwEWAWAqqARYBYCLARYArEc1W2AwJh1L4q+lQw/T2/TH4oyNoafoX0qFuDD00+F0pIehfSoTwo8qLpTxdH3g4ceVE7CPoCcKck7CPoBhTklIY73sDGnJcL)UC?E?FlAWAjKoFQIAWAiwE2AkCUAlAL?JQ)?ABzgFAgCAJAheIE5ksBikejG69VvKoGFarX3tfS31hi40OaO2/mL6W+sHHhzZI5cy8nKvFL2X8AyZUr2MtgkAlAJAk?Ak)?BQI?AI?AMFZ70nnt/EKz7KuPM9+0XUPNXZ/chsjukIzdGjVc7Op36B3NF3W9YNwsBIA.?Cbg)?AFAgABKAQqAQBgrPek85v4hWfdq40yLtF0DzN3vKonkCvW6dEi5mdTv0Du6Lut8N0?S)CAS))sB)ApLGkjepUX6+IQ1nUL3Le7PQvrDX+lgjtB3zPv9YPpIM0UDmKmZU4KmiW4hmhCkexmQLpsAs)Js)))CwE))UdLG3lKBCTxeMgGQ?AX?S)))CwCwCwCwCwCwHOqJHtV2vhfogaGsnXq3KQzP2iahq2rssm/Tquyb1B2WQ?sBNg)))))aNRGy66t431ciBrX7cJd6u5SONmdNW/90DDCxbpXqlRvQo3Zpqi+VA319)B:9k=%iVBORw0KG;)NSUhEUg?AOo?ADYCAM?ADS+I/a)nFBMVEX::5+/3z9vs3ZKU3Y6QJEBs?AD2+PwJEBo2YqKEpda0yObw9PrV4PE7a7A4Zaf4+v04Zqhrk84IDxjy9vvv8/o7a7Hb5fPp7/g6aa48bbO/0eo8bbRQgMX+/v+Gp9fs8fn1+Pxdicm2yud4ndLX4vLh6fWqweNslM6eud/8/f6SsNvg6fXa5PPA0erd5vTq8Pj7/P7t8vne5/SXOKY)HrUlEQVR4XuyZ246jMBBE+0eqbe7kPjP7:+22mBRmWGRCI49iPR5quTtyHS5BbIt1Lfn1qu8AV/nf3h5A9q7aitvwHnATjUBNqvWwIZhD7CtELZC2KnarFoDG4Zhs2oNbNvSfrFtyRrYMOwBtlqyy8a5bghdCPtdIQAXnFHu+lSpWtTArmcVj5S7bmA8cpA9A9IfCtk3gHuXFaJp2rdZIYrOAShdVUgUOhAuG5Xt0ZYI9MV6Q3Ie0BHZDKf1DaxTeKpkM8IlUHkRXwH9ek0SZlXJZmyBegg1sF6THO8NfFSyGd2aO3C8KtmiagUEVfRRotu3dfhBjCYf4DS2+nG73Ll9aFJVXQBrKYWsv4z4hKq6CF42KWT/UPUmqdCFcIVIIXt5IINo/KmS3KpXVwJOrlWz0DN+VklO1aLGHXE4xJuygZeSUbXCqOoiRCPIploDVdHcVcuspiSXKuBEBlVEq/IB3qZqTdUZ0zS1RLLcq3yAW6CfFU112ZAc29IVI4d4U64Qz5JhB5YOgdJPTNOfKpEMNJ0DUHfFVDTDrBLJSbwpG3iDrr5phtA0nqa/Q+JZPfHd0ommv0TaBua7Jbj1psej6pGEn/o0Se9VUBXr9vvvjmFWmVQXhDHxow/D3LYU/3J0jSbxQwM/JA2B7TwNYxKZhJep9kBViBQVUD5t+h/Cvco0BtX5w.hCMOrVA8/tqV1ouQ8wDQG1fkw/UskhNep+vL7tvSMZ4pT1XSnKkXlSn50jBCdm1WGBbOqmmZWp6wVJZ/33vxkAz+EBQ0cwpIGjuJve3e23SYMhAFYeF+y72lrNc5xL6qcJHbe/+FKcKgRw0QiPxOPbf47SScX38FFIyFoHBSMjYjQPvDD38XsI5FSeatMtfRntgkglbfiNfCCUnEnjhU6ufRCqiRA2un1B8X0e511/2mp/3S+Rs3LA+fzjDo8L/cP4QMCv02T1O6gnJuMekr6f6ypdOBXRj2n/fAi7ncT0lWePiH1M2pF/5rKDJiKfnwbLY7KK70MaDLqgGZNZQbMgMabbLDnq4C0USrXT0oIESrv3DcqB42ipr2VVAdRhWpCBhpJ5a82QhWUUihOdd9MfXlKdyIunn7Wv6Q41QFU4L70xFF5KE51klT61DzPVDu1iYeO1i6ns9mCkVLolqhgtZQK15VSaq4vxamuBhWogXOqzamQNMkiSoWS/YA71naYH3CkNEmhCqjAbSlauknF;Rd8Xy65Knob+yU7MR+jZp46RHSfUbt0vXqmlq5Xk2DrFf5EuKCKyGioH6OxiMPNBpfZdSrcn+vk29blAa684w675b7h+QOjFeF8dQkKuTP4veamtwcfTg+XrOOj5eAFKDGW8Fq6SmvHBa0MgSkPpVgGaksdZHfjiazCSzlE7bKU2cb6qweNakVFdT8Bxym8lD+DtwfH2GXtTlqOtFMP6qlx7CUp/Lz6gl2WWWemteYaBIuI0LtJ1FWeepy89S8NNnUvKh8DZwPYVR8XrWd6STVPk6mHfRf6tl7JKlYteTpoqmMk6eGrZYN/NCRUqGLeoZSeav8EdGAlEJ5KmPdAhX9/Z5FUxPd1LA0C0x1MdS31/wG/EaaoWFrC21PK@NMOrb8yZvpBkYtl77e6mr2tTXguWVNAPD1mvH1Q+cVJ76XAxpBoat17aMNSzVT7U7QLXCVMdSE4iaqKey1rNyRkQ62ldqxT7wzlKTz6nX40sPejk+YqmrHaXyQanNzKs2al5dSVLD1maqJWu9tl4qXgOnqIf/7Qerl4rHkqj5t6qfek2exB0poQYXcfi8egLPq02E3Ja0Vkt4yGSjtQbGs0MrGzw7QDWSVHwXQj9VaG+ppToFVMF9YDXUvd7dJ/Pq/j6zIdXS/j6JI4s4vc9XcSuJtqfmklT8LIR+quoTLni89arIuaX7OKk8ldyB4dNol5W7EKvtU8m8qvWMIZ7nYgRPjmqjqjkPLE9Vc8pbnqrw7L4gFX8jo186D3xFpQqoIu/ZnISvqRIq/vYUkeJUfF6VeScOkwpVSzJvOhIpQMWsZL0q8P6qgBRb3gi+lcxLFVHxd80JdFtUbxHnPUVfunfoctNepchiM02xnaim0tvSstBeltp3zt0VmynAa3NUHuoAKDzZFNu35bZzt8VmCvDaLJWXAlS4hPi07ZzXTAFem6EKSBVTXUCqnupcFNUFobhUnuq+TrX7SAWkaqn89x+oVAG1zmTjaNt1CfUEkMrNqzVLCEfb9DMPvQ5AFayWyPFKrzBMJX6zVCiq/eYoXcQp+pKsdCxgVSvV/9Vn/VjciUtxK461ItJht7Tz3B2y/cxA/i2gUn8v66/65DEABaSm4svDbD83wHyp+Cbr79J+AIpQK+oztp8byEg1+kWhfAY0bD83UPdDrxzTWUCqmkqZe0vF/5ci/VQLxxwM1RwM1RwM1RwM1RwM1RwM1WyXagxAFXCKUs23UE1LFV3Z0IE6KxtAiqRimcn11/4Dbh0LQJEM6YeEuf7QH8R+qXgOSPXECsVojIRTbXRC9WON+iiE8vu9eBQ5+X3gpiLtxKsltVSBGrjJAEz9VBrEqZ9KgyL1U2k4oXaq/rTUltpSW2pLbaktVcHKRlfwfWCVkdkH3vn8A1A/ImDHrezo)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL8?ACZCAM?ABJwRsf)MFBMVEX:/+3iazwwuX/2fbVp8rjtdj/4vi/kbT/9v33yezOoMPcrtH/7PrqvN/9z/LHmbxFdNHz?ADCUlEQVR4XuzWy2rDMBhE4f/oLttJ3v9tW+SVoOk2GZhv5eUZI4R.gFK7B5ACt3+BFTx/iLej3D/Q7p/JBT6M/86xPureP+l3T9DuL+fOb7eyMsBHHkzYtG9/99zv5mZmZlZS+XFjqRTXwBk+yco919o91fxfpaSnnl3hYQG0FuoygApZDWAHLo68AxdCThD1+jADF2tQ8+6+TkBpKx5/0d5/35wv/vdb2ZmZmZmLf9q6+Nvl8Czvwi8/93/Me43MzMzMzMzM7MR0lqfcUua+XAPqFTN/HtABcEBL5a58iFp/n8oALoHCNX8NWDPlz1CIerkNkNSBeUB4+D9gMStfPmAs7NMuf41oEbbBmj1x4jYBqj1Lz/V3MtuxCAMhlHHBGxISN7/bdtp0/7qJbIcEcnxdhTpfAsQw4LfAelG/3RMui8gTflhfgQcMU0f5UcAr+kjZXuOHwGYhajOn9PD+e0AUcJE89sBUuiBfioN/Kj+te/TNFf9F6D9xZ9XCuuvxyqV7fRZr4t6Tcy8lXv9FUu0Gx7sP8bv9QVIy8GSft5fXh98AdqM7y89+pb13G6fH/A7E2meMMK+N+fY928L03SQv+w/Rfkmv744e01dEDDAX8QgjfKnL/PajACPv8lfU7nBz1qx7DMCrvvPZxnvz1PreFcVAYP8e2degFrH+eEVYIwAr1/qrxMIn74Z+c12PTWRgbEC/H6sozIheuj5oQJjBPj94BMulMb6EaBWgN8PPtGGHWikHwHNCPD7ZSXMCt51vxZnAPv8533g1et+beILyDTOP2MDcvtxJ+gKyBTDD74rIFMcP3aAnYwATBw/jFLICAjrpwq+ERDTT/WTz2oERPWTHgdOIyCmHxujFRDSD74VwBH9MFoBmQL77YBMgf12QKbIfjuA4vsR8FA/AgL6N/IExPE33B97AoL4ESjqC4ji79Mxe03vw1wcAQH81Xn/hoAYfvX6ERDCT9nrR0AIv4rPjwAO4acixl376YEzhp80C/h7Nxw4cMYZ3XiZ57kzbs+tAC:DXTkHOow1+So)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AP)CLCAM?ABobuSi)/FBMVEX:/8?ACqqqpra2tYWFilpaUmJibd3d0lJSVXV1d.kKpqanKysqnp6fR0dHDw8NUVFRqamp9fX2Xl5empqaysrK4uLiLi4tBQUFnZ2dpaWmHh4eJiYmNjY2ampqcnJyoqKizs7O2tra+vr6/v7/FxcXLy8vMzMzNzc3Q0NDU1NTV1dXZ2dlVVVXOzs7y8vL8/Pzz8/P39/f09PTn5+f4+Pjo6Oj6+vr+/v719fXm5ubw8PDx8fH5+fn7+/v9/f0zzP/29vaj6P/l5eXj4+Pp6ent7e3u7u7o+f/v7+/q6uqZ5v/R9P8mmb/M8v8rrtnk5OTs7Ozr6+vW9f+/jlaT?AGHUlEQVR4XuzbB3ajQBCEYd1IOQenzTnc/y47UwNF4+ZJ2saYHqx/T/C9GmR7B42u697UyH838A18A9/AN/BGNVTwRlh1QwRf7C2B2eDBuqGB71SKPBgwsRfRgwATdxV6OOCJqtk8BDCxugZy9mDBOzGFFuRBgE8izVYj5w2mdi2iWZGzB9Oqk2YlzhicdMdnCbQW5wyusEsR0SQrcb5ggZ2lqE5mOXL+4EI705HMkYU4Y3CpfajFpUkWYpQrGFwYt7ICbRB7B4ML7FwGt.n8V0sbzC4wE5FhRkzR/HaIHYKBhfasQhm@U4d/B2S+2B0XxGnCsY6ybtngFNMsSRLMGpDMHgJu1nBjTIQrymOGswvEn7kQENcnmsIQaYG7O8wIEbvNB+YMEMMkbmxhRrsOC7B4ML7W8G83Ox+ml8Jsfg5IX2D4MZ5ELMQ30FmOiNA/B3VfCGecH9woI5kiE+4DnGob5+YuYQjHkT931ZNFM8HstDDTDFdrOdwmxg7Bu4QdvB5dT9Vf18VrdgeldvAwxv5K4W9qsLeT3lHRyeX3gXCyu4OcfgcJ6jd7drCda5BONAr1bB+9QarPMIptcKTlcTvKOY5ABeLIL3l/lySucYjCcY3lZgnV8wBg7edy3BOr/gXRuwvmatcgt+soNPjWUAftcOzNtGNlTwWkV15uCvzQmoRjt/hu3gYxXJrw4elW1ieD0pPmrHZbhN2s6n48MefxoCvLODKdVogA29NHipwJi4DXhZJc0+wZzYBl7qKnLf4EkEHxNYTdwOPCuS5s7Bj7UawacEVhNHsQ1MKqvIbsDiTKeJIbaB6cRlclFJfl3whY9pOTHEdvCDrCJ7APNTq5xYiG1ganF9nirJTsA808XEEAeyDQyrjOQg7hj8t9bowkOcJhZiI5jSOckU9w/mma4mhjiSbeDmF4CSuCewPtOcmBtHsg1MLhMj9wvWE4dDncQY2QYulNNUjewEzImFGGQjmFpp7husJ5bigmwDk4tXnRDFfsDloY7iMcSBfAH8rRbB1Kbq4r7APNPyUAtxeo3HDCaXZIC3vYH1xBSTHMxmMJxa3D34sVYdrCcW4vQqnhUM5SFFMSbuB6zPtBBLshFMbkXmxP2CtTiNHMgw28DJq8WYuOb4oeoQTLF8jDEyyfP/Oj9k0Ms4sR8wxOWx5ivxLcH78I8Tdw/Wjc6LOTJWjrUD72MOwUoMcswIpheJM30W/Ak9FnUAhlhtTDLMgwRTTDLMQA8FrCemmGQ0IDDFmgwzGh5Yi0Gm+d7QmU9pH2CKQaYZ2cGMA7sAazHNLcCmXy27B1OsycwIpliDH/oEU6zJd23AU4rJhdcJWJOZFZzEY3Lp9QGmWJtt4HP/4+ECTDJrDZ42en2ASdYZwfMpolZ6Z0ZwJ2mz/eupTH3bWn4Vt/9vH78IuPnmgV4N/tfOnevGDUNhFNYRtczu3VnsOPseu3GQmSYYGBjBZfL+TxPgkoqSC6bxFKEu+FdqP1CsBJ3/BpbtD/4dDxBr0GrvWrzJJAT2BIs4/r00EonYjj0E4nMYg1a42hsvJoy2mqD2aSHeB1VA2tvkwTp6cncBh4eI9x2ypXgBmldePAcngBKqwsHKcys4pkwbrKM2C6hrkON9zyl8COBHTA9gI/tWcS6ADihbnvmDdTSuSR/8N/kzPHld19Lx2Z3+hPXyRl7oFxx9pdn4OVYeANAGYwvnRZk8WO8EmLzpU03Q16nmAB81mGpGFYwr6LqyTBys21SL+uzsGu69dwBv5xxd8dh7iwHsVjCA33aOWfJgWR+kqpmcXMNOuOsvcBPyY/4OOwF3wx2uuuc9uKhojhvcGApkw2ouJ0xehqjeU8B7t8DBlKmASwKrhPJ21oNbR+PSB8uE3T/uhBu6idFQ5LijenqCDV57YUyhfe/V6z+12msFrKe5Om9bjD59GtHGvFbA8cXrxeI1BtZec2CpNfcJY3kaTZH7xz/3wD/Eo811a2Ct1V6bYK0dvAbA2+g0N3iNgzfaax6svIbB0XCaEfAenTirYM21Dy6sgzXXOFhjTYM11ihYxXgD1io4XU8GZ3AGZ3AGZ3AGZ3AGZ/AvT+a4HcQoaps)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AHw?AB8C)ACOdYti?ACfUlEQVR4Xu3bsW7rMAyG0fv+e9+AG0eOHDVr4qpNgAeO2gQI0G1LJEaLIPFg+wcafy9wYERmGMP59wEMjVuFZN/4MiEtF76pC7/wC7/w7tVyUhFm+oxZNFttR+PdS1amx3Gu4yi8lST0IrZ+DG60JS6H4IW2lfoBuNPGtO+PN1oTTdlKqcvivtRiSX7o++PjW01WvT+6D6quuu2OTyttzCe1O88dMOHspmcAftd5APCpFDkCd4oyAp8SuELwHDhD8ErRQOCNoobAO0X+dvjAXnnUoAcOeqsBh4xMAD4YONsLRQsAv104TwCeKTIAXijicT5eKaI6H+CA9fEcfF2cdZyMt0y30pjn4aO7KUUxXg7EGz1JwkDgbGOicPY5IXikZWDwiK1j8IjLgfjwXxX79XgsjZMnXDNZdT3/4YDrXU+gr9SonI9PZ4q4Ax8OkAHwdZkZAHwKRY7AK0WGwAcHrgh8psAZgheKBgJ3ihoCb0i8U+QIfLwt3t/2wC3I+9yQEy4BZ/ugKCPwQlEF4EMo6gDcKFLkAlmQq/P4Oz8aGierPp7Qi95tHTvi69QUzVa9jV/wcBO6x23uixf6EYumnLN9lZPQjwLaETfaXJ1742krzT53x3Wjnft8hL/uGd6rJX5Jpzbnnvj215O09OAe4cmfZYFvaDQvlpMK397M0pTLOgMe4vbqzbF5SBd+4dWSiogmPx9vRCyqQkTpfNxbj6nFVHAHrpDi8EaMxAWHOykOV9yBc6U8Abh8xsRlInD9ikgcgEe9EPmbDplO1GH4FGrAK+f+Tp+5e7+f9no2rusyUc5fJkpWZRHN7dpeD8MvXPKz0sfHgX8NhQXG/wOMvRhmEaG4n)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AM8?ABwCAM?ACOw9TN?ABgFBMVEX:/8?AC0tLT/vhr/3IXU1NS5ubkTExP/vx5FRUXe3t41NTUmJiZsbGy1tbX/3orZ2dnFxcX/wyz/wCO9vb3MzMzt7e22trb/4JSoqKj/349WVlb5+fnW1tb/1Wn/4pt4eHj/y0j09PTp6eni4uLR0dFiYmL/5KKDg4P/zlT/9vz/6reMjIzl5eX/xzn/yuubm5v/2HTBwcGSkpL/0V3/2n3+/P/x8fH/6K:7cOwsLD/5qj:fn8/Pz/4/T:v:bhv/+fv/qBz/5Nb:vv/1sr/lHz/x6D/pKf/z/T/jDD/fkL/zZf:Pb/r8L+/v7:v7/oNb/TbD/VrX/hMv/j8:HJf/G5n/2O3/yOf/csL/wOT/icz/LaD/Qan/xOX/6vf/y+j/uuH/ab7/N6X/s97/rNv/z+v/5PT/fcb/0+z/5/X/JJz/lNH/7fj/4fL/pdf/7/f/p9f/9fr/H5r/8vn/9uL/3PD/yen/+Pz/89f/+/7/8Mv/zOr/mtT/x+o1H6di?AL9klEQVR4XtTYZZLkMAyGYV/RGGRopsFFuPrK7a+2s+P8noreGzylREpFrLpULLTbiaU6n1h3iRFxslpi6sRnVu5ZAslkAZQmobV7CBR7FkAdF08MkglADD0ARR6A2HkAijwAsfMAFHkAYueJQP?xM4TgeABiKUHoNgDEDzuHhcPQPDEoM65V9+6PQOlP4KyfNCqAugKwEEprbVaucdQw8cJZYZShHGUPQbAtfQNnDyq/8/j7k+YCSB48hMfz2lv+pkH70tZEoilR5Gin3le4Slty9KjDUAFLQmjAufkFecWHptXfDyDAUgmzkFzIo8HHcW2CvHx7I1vb4R0DprgsdaW11TT1MZx5OMxJuiMBCd47L3z9kyx9CTVg1NVQYPquubncW7GqSw0v30cPU6fwal8Fpg/xJFKKXb7QL/JGWfEaNKjpLTW3Pa1fBEPD+0z0lAHkeoQs3sqv/l7mue5DpzRa+QXIa5kLUsz8PEocMTXkgqeuiaN54h2s9lMk8w5fY8GjsjgGb1HBo5oJ9/znoMHqcCBJ3AUOOIy9dTGMPLoF/HPY8njOQoccen7oigmy8ej34Ds8nzQdeBocMQTaZqmP7P4HwIOumFXe08j0M76QyQlDw848OD0BA46EuZ2e94w8IAz92A8hXh4JGFoY/PwECfygIPaZ8LQjuPgAWfuGckDDjwbwvRFw8FDnNhTYxToMnlNljHwgPPwVN4z4+D+NFn3a7tuDzixB5xHT32RddvDYd0ecGIPODNP0RAnTdftASfyTCLyNNn2sH4PcWIPceK6+3h2nwX4vgR4f19U/PQJnyVOVEGcuJfdsW0vPz7L85cYO2hRHAnDOF5oSqQAY2InBomRqEFCUI;tnQPwy6zx/0404CdD7/vU1WZF53anlv5vwleflR4YjkMHJ5d7GLWQ6S/P5AOj3q5ODyXNL1c1rk3jwu0GzpAt6FJe1wgNXKAvqXkIZA3D4EcHgeou/M4QGo0Oq4fPfnGgDx6GMQegL72MIg9ALk8qVcPg9jDILcHSYfnJVo/eghE+fQwiD0McnuQdHgeQfkeIM8eBrGHQW4Pkg6PBbFnv6E8exjEHga5PQxiD0DHO1C+3WuRZw+D2MMgtwdJh+cOlKstRHvvHoDYwyC3xwVSc3hwQAmD1kqpLeXZwyD2MMjtYRB77AExaD1VOl+ewnQP6gJdcQe60ddm1pMkSfQbaJNE0Qt5AJI5P2+UP09gGjKIPee7E/og4cl6pJTJoE9ZT7pcLiN7QGprQfmG2k+n/j0oYA+KGQQPdfjdE8m99UjjAUj1oBzztl0uPXvGtuDOU/IoWE87e/TMKwkQezRIAWQ8lJLSu4dB7Kl5FOBB9aPnKKm98Uh4NEivAED5llJV5d9ja7Sn5EFA8Qc8uvjBE8ketEkS9hiQ3QOVJL48oWnWFwcNPOOeaUHtR+8pHjyJ1E2FUJP5fD5C8EA0XYtLFEVJ8jxPGYaN6IpZG6DD2IqK8AMe9OCpJKoGEh6AdFOTXK+rqoqoZ3lqwjXwhCF56rEFFUHYuT3QQDeRasKgqU2lSimfnsB44r4WuqyGi0TFWAcP+sozmIwmDCIKd6R8edqFLu4L6EMYlvEpROeZBf3ZQyBkQcvllHuhfHnOiwz1nBK4t2sZl6HuMDMi8jR/8ERTA0LksaKNb0+mO9hOZHt778qypmOiyhlA8HTYg8P/70GUqwmDlrZ0TZ6RR0+QrVDvabPs9V10WbZAYXiaUfB0Ah48d+69rnKhBgbEnmov0pHJm2elK23hijjwWFE7M6BOGE98DpzvU/VNv0+TyIqkhCcV4hIhf55wp+s9q4Y44rbKkBkKgF6F9QzrR8+x54iUXPAgiYgj1nBV/jwL46lNBTjwUEZUAtSIX55Z6/g9Co71DNgDjvEk87kvT/amO5lWPwS67X6BTuRpBHuGJXtMETjsMSDDgQcyj57Vq67Qhe8G2dR1WRhRG8eNYI/rPleBwx4tAucpnl2ja1H2r0VeT3VdmyMKwPnSE+WC79sja9Qc9kwmvjxnbvUuek9xIhHNAy04OLpu7Po/hDm019xW2NKJye/9B+3A6T09iDjsGbPHwWEPc8gz8OtZ9L0xR3RtQSKArsLpcXHgYQ57TN72wIahZs+5bTUIHKeHOZxizvM89O6hud6Bw3WBATHH7WEOe8B5oudVd/1xh7yFGtSJB8+YPcxhD3Oe52lQZzjsWQDEHLeHOewB56meK3WzHPZkBLqJrz3MYQ84z/R8foLz13fx/dNkPatsccf5Sf1Dnr+pn/Awh1PMcXj+o91eVtuIwSgAa1VCV3mArlJKYTbeTXdx3ZBLL/RCKEyhgLKJhhFINkLViGHaV+9/ItmS5cmQ0OYAwgaZXx+6btyHCMcjoN+lyb+PjazLDjYAat6IcRRO1RGgddtKyZX1y+Ax5uzsbGMG5o0xlhI9l5fnrdbOsZiRcvXu6OgtpScAONwJVNd2W/z39fU3jG7Og3RzHqSrJz1G3IyIEI2PnlNwuFIbkzzWGA8PEj2/Ls9le0qeIfOMH+48H+Ehju5jZPKAU3jYs7DXMk/P5zyInvLUYrH1dE299QSOtUFYVRvjKayiABQ95zx4bO65+vT64uLiMzzPX9j+wHO77ic8b54jJ8HTjEk86WkEWjHl4X3wCPJ0KngwPXZDHBtG7mMGj1Rbj+dcSqm1U9Ej4LkRoQRDdOEpR1cm/tT3SPIcdKjv7eAW5NGEgKdNHrYkjyk9AVQFj1FcKksevedZ8ORpdhRfFp/zsMKDyId5Rnhqxmp43JwnJXoseawhj/uy5xFFsboYLiJnPQbtWHrK9dbtg6MXHijgaZLHWnh88qxKz1KRx3h4zJ5nUXjY4zzl/ik9SfgYj1LwDMkzhDZ5Bnj8Eh71/zwpPANSeOnp2JRHlOst91TswJP2j4dnYPC0mcfBM7Pe0ujmPToDznQoPa7PzoPT5OHw+ENPOt+swvnWwuMyjwfn8DwoRzedB74PWIc+k2AODwKPSvcPswQywVNR/PJuZr6m+2ejeLx/XOPT/cN0/8/nNTLnCTV86Zm5TyV5CLRkiEGy1oIzgLP1qMzjM499Io9Ey0vP4Xsnvd9YpQi0yjyYGc927zeviCPJBI/MPExnJfTTeCxaV3rueY86TBBbcQLFnYKwFa26VfxMaTpx8+P9y5Phz+3ten18fLzz+LwE:6T/qXVOPsKyTx/a63j1jphKArg10IdeeaOCc+OEAdBqwikIPO/B/v+X2s5XhujSNhaeoAre8W98yO3ofTvKSTKlckHEk7/rdl0QvgWorWuKnUTU3u7m9k8Nf0fkpSS+tf7J/O8+Mm5hmarVFVpTRLe/u9DmWF7kqR0Ct/uh3O7nAexOQ9iO/EgiedlnvyyzLMx9038iGkEtKwcNjSpg0cXkj718MHj3wHmfz1FmfMgPvEAtHraxblJRHMp9c2eZyk1gTM6ssLZPLf4zYcydeIZio94WEfxtYcVprryPI8M0OQDaXklZEbq75gPQoQz2gGc3VNi11QY88GjEo:kId6eUTPGUydPKKHYsw4Mv8mqkGqCVkQahcfQkjQgGPNdjzb6wtqGVn1tG25ezhS+nO7jCdVJAd87SmOHrYB1BK1OCV5Z0KolQfCwlHCiR6Lo1nLdwePTtvEn57aZT03TH32nPfN7h5snHiUtXaU0s45QhzymDEFOELDK0eBI54OEjNgDse2mW3JeLK/P6nnvMICeveoIJLSzEwI72kIsSHKgFMt4IhHJKL6tCd/v6FKeX2hnz2sQrBv1o6jJ2SMWcS8rtq9CtE/d4+RqxqTE4/DyO1bbJf3eMqfcDFHoIDEM1fBY4geNsRI/Zi7eBQyrFdBo+OrXMToxNNjHO+Dk+fzfx+QDUMlHoqpqxC1pdnrkw/DbR5s2hs4+mW/HnWx55a09cWn72sk6/GYfQQmnm4ESEzcJh6D+UJIhZDcbNGDO+iqLfWJZ/gij8EsL994HbUWEb9RUv+OWW+eQCEOHLd7SjgUs8XTp2V8Usp/jWfAdNdvdL8npbWa6o5Szw/MhRCN0BNu8dVTxKY3kuNQqadPS5Ws0cUNZ89fcGEBkgbGb70)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AMk?AClCAM?ADBLikW)wFBMVEX:/8BAQF0dHT8/Pzq6urk5OT+/v7w8PDn5+fe3t4WFhZ5eXnc3Nz09PQtLS3U1NTh4eGVlZX4+PiJiYnf39/u7u76+vo@CRcXFx2dnaYmJitra1BQUGmpqYoKCi1tbXi4uJqamrJycmOjo5kZGTGxsaxsbHd3d3o6Ojs7OzOzs57e3twcHCSkpJ/f39LS0vCwsI4ODiC;K5ubl8fHyAgID29vacnJx1dXXX19e9vb2;KBVVVXS0tLa2tqFhYUirMo7?AJK0lEQVR4XtybB470NgxGRbn36b3P1t7L35L73yq7DrGywbEDWOIAzruAQALm+0zLok1YQ0v8L+hd+Jfi/0Dif+KJ9uP5Oa0vxR36SCJajXXpf9MTLWZk+4qLUauHVhHbavez3v5SXDtw/DLt1IrlBwEtxWthIU7wyaD9pfQ6Qc7AV7RSK8kgQDo+0k6teAGiSmmpVoYBKaWtWrGDAnQWu2wqdkx3yfVrSxkKHpIgdlyGIYwcTyveeRzHvvFSOgFyLK24dpxjG4/BpVL4rWL5MWK8S0n1ALvoMWSKGInPtdvkzMrS86pKsUcMmSJWnGs2KruWM6tGK1w+waFVZKDVqoeplHLp/rdWhgw2seMynebNss5kzrpOK3wD2HXiEs210nuXyGmdVviisLWJFRqz2NtLRE6zGq3g0OJgNIgRnfm1eZKKyCkPlUGg2JgfWlcLGw86jxWDZh3LIlnkyavSimN+aM0BHhM8SJWyaXbQzw9ZZl+hFd98IXv45N7Cg2Kk2UHWXBIOa8U27/Ut5GzxoEsMXo3m1ttMEg5rxfz09e4B6eJBF1+Cb3bQsC8pVCtOMDA/fYMUvjn71krQ7KDOqyQc1IpvfmjtQiiww4OcXrMJGMkqpn8JXuZQIlTn6Q0tyosvWJlAmbHOQFlLAtEKG6MFlHnUiA/uUhKIVtjwUigz0ZnnZAQTrXDgdHOrb0IoMRca9PqyjqXgILuW3bxHOygQXgkt7DtZx09hEPpGdwbfpI7QpBPJaj7MV2LNi+rtAnKfaORoJJvKKqIrYRb6Rhdh8GoUGc9CzNHIqazgLhCGoW90bq6V26Y5OsQcXa+V/qUwCX2j6+Qz5xHCddMcnZ6EcCMU7q+DI/hNGIW+0d3l6rUXV01z9L2UE8zRyOhWEuYMLlmaU28nhXAiP7nHHI0kff6hhR3TVy/m6PBE5qQAu2qtRH8EB7Rjy8Y5enwjkVTlaKKVp40wzaabHOpYJprQB0ilYgXjCq3sPY5n/XZkqGOjk3Ih8mYMjyOheJDIu+kIjNubX5aRjg0XAL9liW0IE1co5mposQUU/Y7FK3zWi5wARMUDv7QyfTAfUGblgIJ1nTXq2GkI460kUK1cZ8IYdHszzXQ7tgRY3UgC1crMEQah25uoo9exJxxaBNQKG3R7c2drdewV4ERWlhKeCwV7QOlrpTl3AuFWVrCC1BN8WDOju4HRorqUmxAWI8FHjwQU3YXMWBKIVhggAUV3OjohrKSCaoUBf5YciHTa0/FPWDe/noR5flxj1NIPKLggQ57zVyzKzQpgybQLwqglTjUjXYZNQboAE0nYjiE8FYagX/fRu2sVULSagkQANHqFsAoE+y7IzQPKqVb+nNdq5TfAYii4d0EYUH5oNuWhRispwAmDSxy6CxLJzNdvCtWKKqTPssAmUcvggkxpJS28M8L8KFErae6OqLIpO4D0+1kPd8eJWreW/tdD2pQz1MokhLRz7Kilf+WBauVrFelxfaui2zOGKw+olRT3/NpQFdOo9drhuPKAWgG4Zcwn5ajVH/JceUCtrIVJqIpV1Jr1jF15oFqxF9zfqlTUmlsGrzxQrRwjn7hLjZX/s6zjbiiYoCrGqBVlbbvykB1UcdJ1+K888OcTXXp7WcHHF0or/PlEF++J1lBgLVigHVwKbfyXg2VM/+VZMDEk36r0yaakjinyciV4oKsg/b/N0K5IoYwoiv4eCEboKkj/b7N1oRAs44s9o0/0V0H4t9kF0QoWouq4fn8TvKhVkM7fZpeHtPJPO3fgkzgShQH8SzqAm9lmaLsQweFBQcfzPF0OUbBU9:/r45pZ0TGwBqWGF5yvyQ4NEPiF+C9TJqHDeJzzI9393B/Y+5NjzptlmZvb0mV43Y+xReIDr5XFY12TWvYQ9smyPxR4Qscfq8q/bF72qwtXRIbJBvhpMXX+6bNVG+5dEHuOjhpne+BUdBW6iS3t6sUp8oXrVDYVnpVEhPhdPnJ0pDYDruyQaY4aV1XtEI327sSea/gmbUClrIrFWNNmDUlgM0Tv9c+CAh/CcqvCmPiwgi7qAlYf1i0Qq3dRZEsWIYsrQAoqhjAP5F+r31Q1TUDy7hVRkSlJgVIqqk/GYcPfGYIMKG1MdZETrkqSdqsCZHKXMI4p7W4zppBUhFXGwT8q0QVt1QDqpMooiQhdZSiFbruYoecDFECS5KEpMy9PzCkYcVktxT1DlIk/YaarC60iXQRS9kGBhJEprDLw9wEAT43+StIoyTtkuicZOySSCrbsArKBNUBBZEm8TGJ+3RRIlAhMkccW97fVryCtNREqk5SStJtlyRx7wMSe5kI/jo+JrEKm0ULn+SYY8ufGmLOKDEJ0cD9T2K9LOokKClXAoAmY6T7LikX2n38jE8.zqOc5+AyBxzbDkk8FFhQxiisgBUSaUi0gQISVTIupAlpAuREElV14cEqDcYSca9qkqmS1+wjNt9uKi9N8oNQpCurpJ09dTYaFD2ylhTDsAula/JtIatMm38nzwj0gNYbveB/NjyHh18RhwsPy9u43jivT2FldauID9ScLG/rYy64GJ/W2lEOH2NfvzbtiKaOG3+xmr0m1rcAgNuCHDfr2F8i3HCwp912dNW2hyKVrpYOlc728oo4tA7Jkuvp3a0lTMWRWu23AjPNTesitbyvWD+vnlmT4pMitZyWzAE6H4Ng4HhMtQP2kojBQvNwTI0aIKlqN8LDcFTnPUCBZgSs60cty9gazTvbcwaYEzJnjdpgbWxdBYpmDOyYqJg4oafaCW37us8P8qkC5a6ffn4DO9qLqXk2iHjRQNOZG4rD2AuXc2dMVhrJXPv/hmMNbL7Dc5t8vnX/XtZC0xdzQL9FDwVs9AqAktNMwsZrgevwa9QAZ6e+llgDKY6d9l7k2ewdTbJNpIzMPZ98mbVAmsvE+eiC+amd5UigvOad8BSNEzW/oY31f9epkyjXCSLb/Au9JpsgqXUCDjRna4swNzT/KczBGsi:lmDMauL8uN81ewNT7fkv8FpobnAfkEni4uQxOuB69VHlpxPXgl/4QMeEonvcAUTHWy+XszBbYa2Wxj0gBjr9mbxf8Hr1NxlVSmEZxmBJ6aD/1+f/ECL+p2uUaJhqvBCF4Udb8yyn/BHl8QvbrnqQ)BJRU5Er@ggg==!I#!