[",XeUX6`9e7`4-for-loopfor, alternate syntaxbreakcontinuedecrements in for-loopnested for-loopsreuses iteration variablemethod, for-each loophas loop overflow errorfor-loop, stringapplies loop jammingunrolls loops","fC2CsBffEfCEefrA1#s~~~| G7}0.BC 847}^BCC 9}cBCC 886647}( G7}.C G774}sC 5G74}dCC 56G75}ZC G754}bB 4G79}(~~C 9474749846F553C~ 64646F55[B.3","For."," Most runtime in programs is spent in loops. The for-loop iterates over numbers. It is commonly used. It is ideal for processing known ranges.","For each."," In Java no foreach keyword is used. Instead we use the for-keyword to iterate over each element in a collection. We do not need an index to do this.","Example."," This program uses a simple for-loop. It declares the iteration variable \"i\" inside the condition of the loop. It starts at 0, and continues until it is equal to 5. ","First part: ","The first part of the for-loop condition is where the loop iteration variable is declared and initialized.","Second part: ","This is the terminating condition. In this loop, we terminate when the variable reaches 5.","Third part: ","The third and final part of the for-loop is the iteration statement. This is applied after each pass through the loop.","Recommendation."," A for-loop is best when the starting and ending numbers are known. If the end index is unknown, consider a while-loop. Use a break when the end is reached.","For each."," This is a simple syntax form. If we loop over a collection, we use a colon, not an index variable. This enumerates each element in the collection (array, ArrayList). ","Arrays ","array-java","Info: ","This is called a foreach-loop statement. The Java language does not support a \"foreach\" keyword. Please use the \"for\" keyword.","Break."," A for-loop can be stopped at any time, based on any condition. We use the \"break\" statement. It takes no arguments and terminates the nearest enclosing loop. ","Break ","break-java","More complex logic is needed to fully break out of a nested loop. A flag boolean, or the use of methods, is needed.","However: ","This for-loop example scans each element in the values array. It stops (breaks) when a negative one element is found.","Continue."," This keyword stops the current loop iteration and moves to the next one. Further statements are not executed. In a loop with an iteration condition, the next iteration begins. ","Continue ","continue-java","Caution: ","A continue statement can sometimes lead to an infinite loop. Be sure the iteration variable is incremented.","We use \"continue\" to skip over Strings in an array that start with the letter \"b.\" We filter Strings.","Decrement loop."," Often we use decrementing for-loops to iterate backwards through a series of numbers. The >= operator means we include zero in the loop body. ","Nested for-loops."," All kinds of loops can be nested. When we use a break or continue statement with a nested loop, only the innermost loop is affected. ","However: ","A return statement will exit all loops in the current method. Sometimes flag variables of boolean type are needed.","Reuse iteration variable."," Sometimes an iteration variable needs to be reused outside of a for-loop. We can use any local variable in a new for-loop. ","The local variable, like x in this program, remains reachable after the loop itself terminates.","Method, for-each."," A method can be called in the for-loop. This method is evaluated once and then the results of it are accessed in the loop iteration variable. ","This program shows that the method getElements is only called once. It is not called three times.","So: ","When calling a variable or method in a for-each loop, we can see that the result is cached in a local and not evaluated more than once.","Overflow behavior."," Loops in Java can wrap around. This can happen in loops where we increment or decrement. The int type overflows and becomes negative, then reaches the target. ","Caution: ","This mistake can cause a serious performance problem. Be sure to validate your looping logic. A for-each loop also helps.","String loop."," This program uses a for-loop over a String. We start at index 0 and process until the length() is reached. With charAt we get each character at an index. ","Strings ","string-java","Performance, loop jamming."," In loop jamming many loops are combined into one. Consider this program\u2014three arrays, all of the same length, must be looped over. ","Version 1: ","The first part loops over the three arrays separately and sums their elements.","Version 2: ","The second part loops over the arrays in a single, jammed loop. This version is faster.","Result: ","The single loop is nearly twice as fast as the three loops put together. And it has the same result on every iteration.","Performance, loop unrolling."," Sometimes loops are unnecessary. In loop unrolling, we change a loop to a list of statements. We can loop over groups of statements at once. ","In this example we simply remove the entire loop and place the statements that need to be executed.","Unwinding: ","Loop unrolling is sometimes called loop unwinding. It can improve, or reduce, performance\u2014we must benchmark.","ArrayList."," A for-loop can be used on an ArrayList. We can iterate through the indexes, bounded by size(), or directly through the elements with simpler syntax. ","ArrayList, For ","arraylist-java","Loops are key to optimizations."," Often we eliminate steps from the loop body by changing the loop declaration. Loops affect control flow, causing it to repeat.","With loops,"," programs gain complexity and power. Statements no longer occur in the order of program's text lines. Control flow branches, repeats, changes as time passes."]

OFYBXYYFBFJFA {YOFBF?Fcmain(FO[] args) {XYYOOF{FWthrough 0, 1, 2, 3FV4.YOOXF|X (FiiFy0; i < 5; i++) {YOOOFQ.out.F[ln(i);YOO}YO}Y}YYXYY0Y1Y2Y3Y4XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFO[] FhsFyFqFO[3];YOOFhs[0]FyXBDotBX;YOOFhs[1]FyXBNetBX;YOOFhs[2]FyXBPerlsBXFbOOXF|X (FO Fh : Fhs) {YOOOFQ.out.F[ln(Fh);YOO}YO}Y}YYXYYDotYNetYPerlsXYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFz[] FhsFy{ 1, 2, 3, -1 };XYYOOF9FWover FU indexes, but break on negative one.YOOXFw(FiiFy0; i < Fhs.lF^; i++) {YOOOFmFhs[i]Fx-1) {YOOOOXbreakX;YOOO}YOOOFQ.out.F[ln(Fhs[i]);YOO}YO}Y}YYXYY1Y2Y3XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFO[] FhsFy{ XBcatBX, XBbearBX, XBdogBX, XBbirdBX };XYYOOF{FWover all FOs.YOOXFw(FO Fh : Fhs) {XYYOOOF{Skip FOs starting with letter b.YOOOXFmFh.startsWith(XBbBX)) {YOOOOXcontinueX;YOOO}YYOOOFQ.out.F[ln(Fh);YOO}YO}Y}YYXYYcatYdogXYYFBFJFA {YOFBF?Fcmain(FO[] args) {XYYOOF{FWfrom fiveFjzero, decrementing.YOOXF|X (FiiFy5; i >= 0; i--) {YOOOFQ.out.F[ln(i);YOO}YO}Y}YYXYY5Y4Y3Y2Y1Y0XYYFBFJFA {YOFBF?Fcmain(FO[] args) {XYYOOF{Use nested F|-loops.YOOXF|X (FiiFy0; i < 3; i++) {YOOOXF|X (FiyFy0; y < 3; y++) {YOOOOFQ.out.F[ln(iF}XB,BXF}y);YOOO}YOO}YO}Y}YYXYY0,0Y0,1Y0,2Y1,0Y1,1Y1,2Y2,0Y2,1Y2,2XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOXFzX xFy0;XYOOF{Parts of the F|-loop can be omitted.YOOF9Here we use no variable declarationFpthe F|-statement.YOOXF|X (; x < 3; x++) {YOOOFQ.out.F[ln(x);YOO}YOOFQ.out.F[ln(XBx is still reachable!BX);YOOFQ.out.F[ln(x);YO}Y}YYXYY0Y1Y2Yx is still reachable!Y3XYYFBFJFA {YYOF?FicountFbOF?Fz[] XgetElementsX() {XYOOF{Set FU F8s based on a F?field.YOOXFz[] FUFyFqFz[3];YOOFU[0]Fycount++;YOOFU[1]Fycount++;YOOFU[2]Fycount++;YOOFK FU;YO}YYOFBF?Fcmain(FO[] args) {XYYOOF{The mFg is called onceFVnot many timesFpthe F|-loop.YOOXF|X (FiFh : XgetElementsX()) {YOOOFQ.out.F[ln(Fh);YOO}YO}Y}YYXYY0Y1Y2XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOlong iterationsFy0;XYOOF{F] iterations from 100Fj200 decrementing.YOOXF|X (XFzX uFy100; u <= 200; u--) {YOOOiterations++;YOO}YOOFQ.out.F[ln(XBIterations from 100Fj200: BXF}iterations);YO}Y}YYXYYIterations from 100Fj200: 2147483749XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFO FhFyXBartBX;XYYOOF{FWfrom 0FjlF^() of the FP.YOOXF|X (FiiFy0; i < Fh.lF^(); i++) {XYOOOF{Fkletters with charAt mFg.YOOOXchar letterFyFh.XcharAtX(i);YOOOFQ.out.F[ln(letter);YOO}YO}Y}YYXYYaYrYtXYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFz[] FU1Fy{ 10, 20, 30 };YOOFz[] FU2Fy{ 20, 10, 30 };YOOFz[] FU3Fy{ 40, 40, 10 }FbOOlong t1FyFQ.currentTimeMillis();XYYOOF{Version 1: loop over each FU separately.YOOXFw(FiiFy0; i < 10000000; i++) {YYOOOFisumFy0;YOOOXF|X (FixFy0; x < FU1.lF^; x++) {YOOOOsum X+=X FU1[x];YOOO}YOOOXF|X (FixFy0; x < FU2.lF^; x++) {YOOOOsum X+=X FU2[x];YOOO}YOOOXF|X (FixFy0; x < FU3.lF^; x++) {YOOOOsum X+=X FU3[x];YOOO}YOOOFmsum != 210) {YOOOOFQ.out.F[ln(false);YOOO}YOO}YYOOlong t2FyFQ.currentTimeMillis();XYYOOF{Version 2: jam loops together.YOOXFw(FiiFy0; i < 10000000; i++) {YOOOFisumFy0;YOOOXF|X (FixFy0; x < FU1.lF^; x++) {YOOOOsum X+=X FU1[x];YOOOOsum X+=X FU2[x];YOOOOsum X+=X FU3[x];YOOO}YOOOFmsum != 210) {YOOOOFQ.out.F[ln(false);YOOO}YOO}YYOOlong t3FyFQ.currentTimeMillis();XYYOOF9Times.YOOXFQ.out.F[ln(t2 - t1);YOOFQ.out.F[ln(t3 - t2);YO}Y}YYXResultsXYYX109 msX, 3 F|-loopsYX 48 msX, 1 F|-loop (jammed)XYYFBFJFA {YOFBF?Fcmain(FO[] args) {YYOOFz[] FU1FyFqFz[5]FbOOlong t1FyFQ.currentTimeMillis();XYYOOF{Version 1: assign F8sFpa loop.YOOXFw(FiiFy0; i < 10000000; i++) {YOOOFw(FixFy0; x < FU1.lF^; x++) {YOOOOFU1[x] X=X x;YOOO}YOO}YYOOlong t2FyFQ.currentTimeMillis();XYYOOF{Version 2: unroll the loopFVuse a Fn of statements.YOOXFw(FiiFy0; i < 10000000; i++) {YOOOFU1[0] X=X 0;YOOOFU1[1]Fy1;YOOOFU1[2]Fy2;YOOOFU1[3]Fy3;YOOOFU1[4]Fy4;YOO}YYOOlong t3FyFQ.currentTimeMillis();XYYOOF9Times.YOOXFQ.out.F[ln(t2 - t1);YOOFQ.out.F[ln(t3 - t2);YO}Y}YYXResultsXYYX56 msX, F|-loopYX17 msX, unrolled statementsX

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIALQAuwMAIgABEQECEQH/xABc?EBAQEBAQEBAQ))?AQIDBAUGBwgQ?IBAgMEBgUICAcB)?ABAgMRBBIhBTFBUQYTFCIyYVJxgZGhIzNCU3KxwdEHFTRjc4KishYXJENiktLC/9oADAM?AE?g?PwD+/g)?Hkq9s7ZDq83ZsqzZcnizcc3etl5FjG/FbrmZSypOzd3bRXGNwXbOr7+TJfhvvbz8jeKjOUO5ylwu3oZxnbPk+yeefw:AEeo3maUNU0r2XL1mMsXKolFpu13wfK3qPPhKbpUsuvpaq3DcXEQcsul9+72HcGczzZjeRZcpyoRcYO64nUAjdypWQABCg))))?+FV6bdDKFWdGt0i2ZTq05OFSnPG4eMoyi+9GUesvdH3T/N/QvFdF6W1ukeG290SxXSCvW2zX6rGUMBTxdKjDP4KlSpLuelY1GNyN2P8AR1OpTrU4VqM41KVSKnTqQalGUZLSUXutY0fyLpB0m6XY3pvtDoR0Nx2H2Lh+j+ze3VJzw8K3WuEKUuo+UzZYZa8PCr6M+R0h/Sj0o/ym2L0t2bXhs/a+J2j2LF1KdKnUhKMIYn6GIjUy5uqjLyID+6EPj9GqPSOhsmnDpViaGK2rmnKrUwkXGjlb7kILLB91aXaPoTqznUdGjv8A9yfo3/EqjdkcrI7uUeaOdSfhyy58RGhTjwzS9KWpvq4eivuG4jzNcEKbeU2crun9j4o6kZpfc?Qo))))?PzvRTofgOiP6z7DXrVv1ri546v1zj3alTfGGSMe6fogW7syWV15H4jpX+jDY3Srav667dj9l7QnQeExNbZ1ZUuvofV1c0J6W081vvpbO2f0V9HNrdEtn9DIVK+C2Zs6usTRlQlF1ZVMtWMuslUhK+brpN6bz9yQXYsjnVnkhKfopy9yOOCi+ojOWs6nykvPNqdMRBzo1IelGUfejngaiqYWjL/ik/XHRm182/Yc341fkz1AIXOZ1I0rPkYoS7jjxg3H3G2cMK80JT9OcpezcaS7phvvL2npBEUyb)))))AMzbjCUvJ/A8na6nKPx/M9GInGnQq1JvuxhKUvJWPhrauA+u/pl+R2pU3NNqLlbkrnnr14U2lKpGF1xaX3nWe1sR2+OFywyZ4R3O/et5+Z6ZOWz60p2fZarzS49XJ736mfBVeFba9KpSlmhKrS58MqP1jR3rxjTyd3xR7x5cJUlWdZ575KjyPerfkSFSFSKnCSlHyd0fOxe0q1DETowjFxjbenfVLzO8tnYfM5UnKjL91Jx+G4+DtCmqeMq05TnU8Pjld+FMzQp05zavfS+43i61SnTT8PeSun5M9tTa9erF0oqPKUknovefWwNTrMLTnZbmtN2ja/A/Kqorabj9Nsl/6Cl/N/czeJpxhT7q+l+BzwWIlVqvM72i38Ue4pAeI+mUgB)YnvMrevWblHW9woa7zVzDTubBCmTY)?I?YrUo16NSjNvLUi4S52krOx8j/?xgPrK3/aP/AIPtEOkKtSCahLKcauHo1WutgptaK58mj0fwVCrTrQqVc1OSnHWNrxd9e6fVAE6k5vvychSo0qSfVwUU9XYh8/E7Hw2KrSr1J1M07aRcbaJc4vkfQAjOUH3WKlKnUWWcVJXvZ8z5X+H8H9ZV98f/ACfRw1CGEoQw9NvLC/i1ercuCXM6EciyqVJq0pO28zToUaTzU4KLta65GjOfyM2d7yNmDrdi8+SQvPy+IAKM7+lH3amk1LiS5lxXqfkBr6zoDhKpLNl3O3vLGcrq74jKxmR2ABk0CnLNLmM8uZbGcyOoBCGgACghDNRvJKXFJni7TW9L4L8jUYZjlOpl5nvIeKFernj3tLpPRHrLKLjvJGaluKCH5rau1cfhsfVo0KuWnHLljli/oq+uVvezdGjKrJxi0mlfU44nFQw8FOak05Ze7vu9eNuR+lb0Mxv4uJ+e2XtLG4nESp16ueORy8MVqmvJcz71GcpReZ31LVoypPLJpvyGHxEK8FUgmldrvb9DqW5m5bnI9BoEBCluCAFMVIOZIKV1puZ1I/Epc9C30sZtrc2UiKZNnLJLkXLLkdAW5MqKQAyaBGUyUhir83P7L+4+afUklZ8nozj2ej6PxZ0hJRTOFWDk1u0PHT+ch9pfefQOaoUotd3z3s2WclK1iU4uKd+IPzu0tlYjE46rXhKGWeXxN30ily8j9CznKlGUnK7uao1XTk5R46GMRQhX;VL2TzaPjuPx+EwlTFVHTptZrZu9e1k0uCfM/U7Noyw+Dp0ZtZoZt27WTl+JMPs/B0JSnRp5Jax8Unp/M2emKUUdsRiOt7q3XvqefA4LqO9Kzm002npY8G1cViMP1PUTy5s2bRO9stt6ZnZeLxOIryhWnmjkfBLW65JHrxOEpYvJ1jl3L+G3G3NPkXC4GjhpudNy3Ze9bdv4JcjGen1OXKs2utvM69VWeIzqTyXWmbTdyO9eUoUKs4PvRhLK/NI+L2/H/W/0x/I+7KCqQlTl9JNe88n6rw/OfvRilOnFPOk/Zc6V6dWbTpycUlrZ2PYC2BxPSQS8LKHufqBClJHwopDRQACg?EIVkBlmWQpDRlkIUhTLIyXDMlIVeJ+epTL4GkAim0eDHLWn/N+BrAr5R/Z/FGnDuZr+wiqd/Jb23PoFsZa7svUzzSo5LanNJPjY6ybXC567EsaBk0ZJLcaJxKQq3FIikK?CgAEBGQpCmWcMXU6nDVqtvBTlLleyZ+Ix+M7bWjVyZO6o777m/Jcz9ptH9gxX8Gp/az8EfS2fFWlK2qdj4W2qk06dNPuyV2rcUz0bP/b8L/Fp/3H7pn4bZ/wC3YX+LT/uP3LJj/HD1M1sb5qr9pfcZIaaJY8R9YhUEjSQLYOEJ2zRXlpc3GEI+GK91iJGlYy2zaS32NCy5IoMmgACFIwkWwKQhQ?ACFMVKsKUc03+bfJHLrMVU8FONOP7xu/9Ipx66rKvLdFuNLytvl7T0G9I8PXcxrLW9lwtxPM6mKp/OU4zj+7bv/UdadSFWOeD0+KfJnQ81WPU1Y14+GTUavnfdL2BWlpb1Eacdb3XG/DzO5LGiENWMmbG2SxTNjFhY1YWFxYzYqRqxUhcJBFSCKZNWBQAa?I))UA44VfIRjxu/fdnU5/NTfoT19TOuljUt/wATMdEl7CHHFL5CUeLt77o7Oxzt1s16EXf1sR339olqnH2HQli2FjJoliWNWFi3IZsSxslhcliWLYthYFsSxRYtiFIC2FgCAoAIC2FgCAtg)DHVx84+02ALIx1cfOXtNgAWQ)))))))AB:2Q==%iVBORw0KG;)NSUhEUg?AIc?ACHC)?ZjBXW?ABpklEQVR4Xu3bwY2sQAxF0ZuT03FizskxOIhKwP8jNCq1QJrNiNc947tkddSL0oMG+ijcwPso2D1wxTz66HCUASIHYHU6EqQOyMNRAJ6rFa10gGrawLJ1pYE1yyFbWQJF98rWFrGafove1TEOM2t1EQHQ6oAfcoxjHOMYxziqqtW5++yPv+GYPbYyjkq7xyo4w0O4P4IdXipH8JKVxhFwgQgcxSVXOJxr+bxjcZM/70juWo87grvyTRzx4b9HVQkcP7nHirvW8/vDueaC/ZFcS4Gj48JwzR5zXrMl2mPBDnzJ9lgaX1lI7ysz3Mw88u3ub8cxjoz7nnYE9/0yxziqSuvYe0zn2I1jHN/tMbkjIj79HMuIcKljl3rHOMYxjnFAVWkde4/pHLtxjOO7PSZ3RMTsj7/jGMc4VmYG1/J/JX0etDO94/MdVaV17D2mc+zGMY7v9pjcERGfdI6NY/4nHMc4xjHv88/76+OY7yvnPB3HOFZrWwAG2doSDAdvbQ5OQrQ2g6Q9W9xya/osl4ZQp+TLkexOAI9cwV73h6sc5KvDRA6LE/APOHkbCvNB8rk)ASUVORK5CYII=$/9j/2wBD?cHBw@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.n/wQARCADNANQDACI?RE?hEA/8QAbgAB?IDAQEB)))?ECAwQFBgcIE?BAwIDAwUICwsJ.)?AQIDBBEFEhMhIjEGFDJCUSMzQVJhYnLCBxUkQ1NjcYOSorI0VHOCk5Sjs8PS0xYXRGSBhJHV41VWdJXF1uLk8P/a?wD?AB?I?D8A/SI)?UFVUEKtiQhW5cEJt?BY)?AgkE?Ak)))))AGO5kMa;8IvAyGK5kvcBi3JABFy4ABIAUFVUEKtiSUKX8pcEIo?L))))GN6uRqq210S6XTMY1SZURWyRbUuirC537Ygkzi5oSQ1/UqaT8einf8A9QjNHmmN/wC0cL/5PV/56VXN4BsO6Ucljj4NXzVEdRFVaXPaKqlpKrRa5kWZmSWnkbE98j2MqKOWln05JJNLW0tWTTM+I4tQUKR8+rqOi1Vdo87qYKfUczJn0tZ8efTzN7345Gp2kOZdDeuWa48+3lLgz+hi+GO9HEKR37Y2WYvQP6FdRu9Gpgd65jWUq1iptOyTc04Z2SJeN7JGotrsc17fqGxnQNkuZFMtyMxizEXVTMi3MLn9hkVV7ShALGFXXLoWQqmwm4Mjdha5NypILopYEISC1w?SACARckEXJ4gX?BJBjiXa9niLf5t/Q9aP8AEMpo1EmjJDKuxjnNgk8jZXdyd+Wyx/PPI4Em8ACSDy9WnMsapp+EGLQOopv+Oomy1FE7+8U3PI5ZP6vSxDH0WKGDEmI7UwqdtYuXr0mV8VfHlZ0/ccs8kUf3zDB8GdHHqB9bh88UC5aqPTqaN18rWVlLIyopc3ma0TY5fhYnvi98K0FZFiFFT1TGrpVUEcmR6bzNVu/HK3x496OWP4XOasyK12ZDIzaljqo5HIjmqjmuS6Ki5mq3xiinE5POWOnlw56rqYXO6jb4z6TKyWgd5/uOWKCWT32phnO4pL+GwIarkyyo9PfEyu9Jm+z1vqGUiRquavb6zOgQ1UciKnBUuYL2UlyXQuBYu1qLt8BsscarmLfYVRFUyozylksnAsZrktiROJTL5Rl8pcElsqFLKELkKBlCAgkAkEEgkCwAJKhFDiqgxqtlMgCe?yA1aunSoglhcqtSRjmZk6TM7ek3z4++G0CHJclDgR4rXMjZrYNiEk2VupoTYTpPky77otbE435JH961I45Srsbq04cn8Yd89gHr46d+xGUpvk7Dzvt/W/7tY3+X5Pf9wGtycbVtdiTJsPqcPpX1rqqiZVSYe9+Wtbq1UeWhraxjNPENefukkfcqhkXvZ6vIhNiqtc7Y4m6JwPNVkdTR4gzEKajmrGT03M62GmdSMn7lJq0U/uyqo4MlPq1kcsepq+6GfBmy3Fah3HBsSj9OTCfUxOQ7ljG5pVWORLIMycTntq5HcaKpZ6TqT1KqQyQq7fuxzEzXajlbm3+n0HydfMbFhYwq1fCSjgiXMnAoCUWxKIa02JUkL1ZNVU0T04sknjY5PxXvMft1h3hr6P86g/fLW06lH+Cdum78JFnfE76DpY/oHQQs1fOCpY1qavpanNzepgnyZc2jNHLkz9DNkfuG6cfELwzUlZ1Wv5rUL8RVOYxjvm6lsH4KJ851WqZ2rZSli4AUyFSASAQQSQRcAs?SQpQspVEuDG7apkTw?GQ))AFHFiqqRYrfYVsRYsCqtIRxjK3LOUxXNd7S6SFJmq5ionSTeavY5m+wzRSI9rXp1kuVQxLSU71VXQQuVVuqujjdf6hRqKhkzIpnqadlRBLBJfJNHJG6y5XI17cmZvnmDDZny07NW2tGroJ+r3eJ2lK70JHt1IvinsI9q6H7zpfzeD9w2oKaGBuSCKKJl82SJjYm5vGysNhNpU2CAVuZLkWJuVV6IYXyI26nPlqUS91CKVVbHQWZE4FFmXtOI6uThcllTm8KFjXerl4HbSod5DO2ZHeacpiqu1LL8hsNcDCksjFs46BKIYGScDYBtscjku?DI)?ACAQpVVMauDlsar5Aak0qNM+cZjT1F7S2cGslTczuccqqrXRKqIjVt2obqqedxSRcz/AMX7JRW3I1tpr1HKOeK+VkK/K2T980P5ZVSLbSpfoyfxjzOIzKl9p51Z1R3EqjDdieqn1iDlTUyWvHTJ8jZP4x6zDat9TEsj0aio9zdxHZcuVj/WPitBUrdLqfWuTj89G9fj3J+jiLmwd65Rylzj4zPoUVQ9FsqscxvpS7nrGNyl@qprX28DytbXZb7T5liVtp88xJLqtg0hWn3CXFbLa5uUmJK5U2n5TqY1VV2H1P2PqZYKV8qpZ1TPe/bHFuM+vqmVCqtP0RRVCuttO21qPS6cfAp5DDHLZD10C7EFwrEcllJaqps8KG1E66WNeZN5F8ZBE7fTyi5pMdpyZVN0AEm+)?CqljGoKuMD1NJ5vPNV0fhUhVOXUMV3A1Ll2qpdW+QlEKK41GQuRSTzWLJ3R6eRv2WHqmoeYxZESaRPR+ywI43Y4NtzwNexVueedCt+B6+qjRbmi2luvAuhvMblNKkjVFQ+u8lEVKF9/vmT9XEeCp6O1th9F5OsyUj0/rDv1cRJlRTuqeH5Y1KMiggRdsjnSOTzWbjPtO+ge4Pk3KupWavlRFu2FrYE/E33/Xc4orSyKeBr3K6546sgVyrsU9xLCrr7DWXDFf4AjbC580fh7nLZEVVU+1YFhK00EESJZY442r6XX+uaGF4BrVkCK26I9r3bOqzf9U+qQYejbbCVBbD4VaibD00KWRDTggy22HRbZqXVbIhRVJ4GKpXodu8YI3XexE8ZpimkV7lXgnBPRMlIiulv4iFkU4j5dSpajevIdcAFjsgAEg?AhVKKSqkKDG5SuUxubc2LW2FVQqpGmljTVgRhsKhFj.kKGOxya3CVqJHyJPkR2Xd081t3J4/mnbseS5T8o1wnRiijY+WZrn5pc2RjWOydFmnneGl1ZZNhgl5NeHnfH4j/WEfJxG/0n9B/rHPwXle6uqGUlTFE10mbTlizeLuNc175O+b3dPQPYI4zIc2eeSN1s26aEOBtT3/8AR/8Amduipkp41Yjs13Zr2y9VjPVMcbzZa4sZYp8ybTPc8TU8jlnkfI6v3pHOe73L1nuz/fR7O5cG0154FOQ6JtWuv/df/aMzeSLWf0nN8xl/bHuflK7AWVVPN0WCspXq9H5lVuVN3Lb651mx24pc3dMqrF7CqkXcm0wovkNKuqUghfNIjnMjy3axN7fcxnX9I6SsVfApz8UgV9JMipx0/wBYwpYo5rpNi9E8jU8rKKK+aGsW3YyD+MajfZNwalbldS4m5eLssFJtd+enGxKgveyHhK3DFVV2FkQmOljjdna3ePpzvZjwLhzPGPzei/zAHxObClRybPB6zwWM5+x?S?ADGqkX2p8o7TGq22g1nOsbJVULIqLYEWNlDGqAuQY1aWKnyP2SYK7nWFVFDTVM72Nl3qenkqNN0UkT4szWMkZ43fO+n145uLYrSYVSS11dM2Cmhy5n73Se7IxrWs33vkf73GSjSjj4CtTyhq6yKtqqSu5zDp5Jfa50XenZ2dCljY/Tf8JGfW8FqqmejZJWI/nGaTPqR6LulubuSM8t/Otg1RIjGQYjkzd8dDB9nnWfJ+lPX0ldBWwtqaaVJYn7M3neK5vUeXQ4GISO4Zd34Q6sbjab8pz2Gw1ykmGCXY06DbGZppsk8hl1FXyfIDrxTNRDO53YUuYy7EVy+TwgyZ1cpmamwkkA2k2EGvVNzQvT0ftMNkq5qORUW9l7CLFrniquhR19h5yfCUVV2H1B1HG7wu/wAW/uGF2GQdr/8AFv7gIPj9Tg6I5mzqes8H1iXA6aRUVzpU2W2Ob42fxPOBIOw)ADE/YphU2XJmRe003XS6LxBpzplUyxSIm6q/IpsnOMjZ1bsXeT6wKxVKN3Xm6DXSqi7VaVdWwt6yu8mVxFjYWphRO+R/lDaPkvsy08s3Jxjol+5cRpqidvxWnUU+Z3z08R9DmxF23Tbl853S+icx8bZ2yxTsbPFM1zJo5W52SRv6eZr+mSc+bFoczcjc/wkh8QwCo9j72spOexVDcR5v7q24lm5zl38ui/muTP3r9Kel9jeoWb2xhjVzoWrA9mfpJndKxjnZOvkb9QzV/IDkdDOzXrVwx+b7l9tKaLU3mbuWsZJP+Tk659FwDA8OwylRmGsZpSLnWVsms6V3jOl6/6oEzM1ur0zd0uCFmsXsNzTLtYDA2kNdpmairwRVNhqGQG9HTW6xhbEqmZEROHAkA22MRv?AFw)))?AY5Y0dw49pkAKuajkspzHorVs5FQxK467mo5LORP7TUfRtXouVvkXeaDmzUcidDfOY5TAdB1BIvB7P7czSEw568XsT5MzgcuSjqXLbRk/wDvnDnWMGIvlhw/EZ6dF14aKrkhVEzWkZA97HfTPQMoGN6Sud9k21iZkWPI3I5HNc3ta/pg26TDHte18m5k+cPy/wAmuQEnKSGpqlxOOmkjqHMex8LqieRz2sl13d2j3JH++e+y5zqckErOTHLH+TzqttVS1eaObSXuWq+k5xFJpd00Zo8uhLH8F82d7GvYnqXyvfhlVTaD3Oyw1SyMfF5uqxkmt+Ek0ze5GexfLhOJRYriNTBLLTJJzenptR7NSVr4tSWV7I+9s97jj77773MHbyn2DKTYuARkQgkAFkQ?Eg)))))))AHJdj2EsVUdimHNVq7UdW0zXZvpnznG+XFTT8pcKosPrKOqwyrkoWVGgsFRk5xUvp5W68OpkfGzLJp99MOI8gkqKmpl9sFZq1EsmXmubJnke/pc63zlRextp1NPO3FNsFRFMjeZdaKRj8v3UAfdw)))))f/9k=%iVBORw0KG;)NSUhEUg?AL4?ACXCAM?ACcCRFR)wFBMVEX+:/5zqPy1sPGxe/v5M/9p3z6uZiRluWJ2PiVw9X+l2OU3PiouO201fPx6uDa4+fm6OTm9/3z+/7w+v6Vy+C93Pbb8/3i9f3L5Pjp9/7A6vuU0+3+yWzu8vLO7/z8/v/5/f/s+f72/P7Jl+Xn7fDX6vjh8PP17+vd7e7T1/Tu8Ovz9faf3/nE5PG6y9O15/rU8fyDz+7I7fzN6fDx+Pq3bt2cuMPN5OzM2uCIyeP5+/up4/r/ilH/wFJ/1fdrZtz9k/x4?AKyklEQVR4Xuzc53LjyA4F4GVUzjk45+zJu3vT+7/VBZuQQJ3phuiWNKqp2jNrWzU7Pz5AYDOY1B/HzT/5J2ceObpYN6l/jTmS3KP1gP61NYBas8HLcnUcXn52sByuBqYf0L6W778Cf7t/Bfu06/Rzr2wfo/3g6bvK9uXzT22K9oG3upHtnzNXFTsXYMOfHzC2AnZqfWn75eVl9sWx/n9O9rJ0Bf4ThHireffoJRjEHlrvA/cvAt+AHaeeOqLJ+/JNT+EfajVQs3baArjmtV7soO/vGPBf4gStId5j7xqa/t7iGiLPDSAvV/TY+P4mfeCZzRL68haAnzV+esSXd19wylchBfj5UY94B52ZF6XCZTlKwALA76WHzoPbM1gFvAMeftArdpTPZvSVh35C4H+Yf70RpQLwl9FbW2+1u6i9n+IoyV6B9Q0o46f6cE/1Ex7@CMdcvVQfVQj1PBTAbgPI1vZ5js6j10vmiYlU6wD3wXHO6C0X9Nj64t2Uftmswb0C7+sXzZb1INdgXsWARWgXzbfUs0/Qz2liEf7eGz+KxH+pxvZLGCAfs629uOqI3rEF9w7pVABFgBrKOnZrzQf8BRsPdsV+fsqrr/AFCoo+nE/sK39rMfe2/Eg/niwAiyA/hT3yOJ38PEIWfS8yQpekXvXgAXM6A+HCyC/rP9681FfnHk3/bRE3CUUtgHzRTl5bLfjMAjSNA3azOe4Jh8nx9F6Vf3BOuANoEx6k+t2mCZJUqf8m5LcEd/4eRXSm89rDurFDvTPH4ilBFyJrsOE2JJ62Dd8YwM/NB9GR/SAt8A9irAVMI4TYxd9+nXA+wCC3cV35Fc2XNBbWq/I59YoNbBfEiYGLUlOLgZ9nugnemOCS/bL7LhHh/WAV8l6oAIsoIv6eji7yFef/uAupaFKhQ+zg6Mjk2PHz70DBaxzT0Dknxg/gdpmrKD7ODqox9Zr9jdHtAoK/vvQAMGfhI8XlJMwycsBPjS/z3wefObDzG83l6kEFqOu4LGA9t2qsuTOwcfRAb20HuQesVZA3XWlTuGX6Vfi22ZH+FY9dJ7t3hE/J2Sgnno4IH755qNesf9LiVJBro+l9yq/XYqv61W1HvtbMO/o+vXw1APDV2aHl/we8AHPdK9YCkjrGj4J4jBNZPaBrzcf9WL3D/jV5teDk+wIum1KTJ6Yj7ODG+6EAnon/rlU3AWo220yox0X5YT8vHAKH2cHm2/XK/LSNRT8yqLJRz2UwVNQ1/g4O9J80IvdK5YCOqlth5tvtOkT6Q3ua5ikTwU+vbCOPuopoAd7o9HIvhr0CqJWIP55JztFqWdhfJIGlDBsPw74kNMcMF+eF/gc5+yA3o5vlIxSwDzLl043DMMgX4XqcXYK0OvRVmuaz0KCUsuBb52d4uTPkY/2j5eAfEp+BHHDx2ao52QT4x59PliT5q/5Tjx9bw0XpQuxFiD609PYtD8lvtFv8PlcHfn67EDvofOtRWNRqVSGjWq1+qECgL8+AQjqhi96CusVvj472Hzp9qLZbFYoTfLbYikL2g/8+yQbHtN8AvWNX/Dbu+9qfo4HfbXVaAwzf7NV1QN+Cvr57KWb1JOu8C8dfMuWa453ND7iGfZXk6a/ujVYAPKNnvxByKMP3aeofJwdXjVlclDPEXvZArD9hs/+8djodf6Zk4/Nd0xO1Ss/zz+2f5zzrd0XPxwtG73C1/X/dUb1y/gAn7tPfuZTVL5j9EkPeA7i9Vj8Gt9c8/Tiz4Rvms963MkCfntUv0wP85XuK+smdJ+bn+kfoigatUBPdMBrqa5L0PnSfWXltPBlnyuzQ/qHEfW+dfXt27erCPSA1/PpE/TfOT3MJ38JPqW48EyQH11FOZ8SaXpG6lksrO1H/ubKea53Hzbd8Saf2n5F+tz/XEU94v/SMhwuKFWVLwun2n1tp4t8krOf9Arf4GurrF6Zv+IMTQXGr3Vf+P0d+Vej59Y38et6gn5fp1Z7Ncl+cujv2A98ys58Xjdh06UmRavxuXpQ+KS:aOQ69f85/fsJ+ep81obanxZOX35uOybKW3SyhO1Wg1Fr/Elf:JfsvSs38++xvRVbbuV3V+7Vrls/9V+M+H5Yt/9MCrptp9hS+h9v9SvvHjHvfjs399wj9/Nd/4uQDgw/TQgpMbX+kV8L9:zOfHjP8h5h9XHmk/VlKtL+m8KUe4Osrj/+6b2t/VW9/zZu/392WMj2aX+V3YXj897r6MQ/y9emRqPzrJ9l0dzrm0Y84FT76db6ycB7iiHNmGx739FR9+Dg7/sf7+tkW89X2Vz34f78S3/dsq/y5LnbfcZ3hg/ynTo302/i7X2nA4UG/xMWvIV8OmA93paEnfNIjX/yYFX9YYyudm+DCyXjWK/ye0v1yV9mg+apf8umTxif9AvQyO8DXrrJRtvNFD3ytgMWK36oNa61Nvmm9co2T9Qq/7BVm4k+noyjKrt43m60RXOTk2P1DPqml1DYiZ7kwOsroA1+/vi8rz+lDpfK/dSqR+PF6G/LJT8mo+UuJ4I1e48/0dRP5feb31vwp6zlN7ZdypG6I3xVsPephdjx+u5I1f8yjD/5Kc1TiN6JV8onVgZfeu5r/oe7L8M8yPO+05uTHAp7VAvQw3t384uzglit898p5cdGbRJXohhf9EfMllRbPD8fLLnjWC1+fHYqDT2F+k5DRlPSfI9GLf8RbgGTX36rP4TdDODvIV+5pIP5DPiYtwYNfuR9DMeu3BIifu8964GdmbfiJfwNsTLTfO0rmwjd+WDZdo498Ss4fPyAYu7/n+3k44odVX+Pj8NPK814xTIoFH70xYE93U3G+dMOAEsbt7q0MD8wO8ik4/DOensoU1n1TUTTa971srA+W/zFZLoO24Rs/8inIx+nJ+ZWb7GaSKEev1ny27/1Owi9xQHL2x+/rlXMwYD3w1enpjSukf88yjZpRNJ22Mn7rzRYvOuKXWes5YWH6B47Z0fmTZuVmLLeU5Dvfyot+83JJtWNuJMH9O/lv20Hs4KvTM8j8nZuJyeqEN+NHbN/XPcyiZ7dMz+1tHCyXxLfPjt5+PuikyDljk7bkz5R930FOf2LqPfgp9P2xJ3xovnb/Pp/wFm8DPp1GU8cDH/54bsd9gH7CU8IJd/9c43PO4YSdK5BLJhyvpyfQz3bOaTcgsOCDOKaKlm3mnyuzs+XZFbyN3P/ZFQOXi4Ec7sjpPYEzeZaAmnUbED+bnT40X/ilnxxiv9+TQ8J/6YRpGr4wn/HypsbU8Pi+G8ftMeU2WD5C82F2yj63JY9teT+3lfljc59vPY2Jv7a/S1duqOH3fLhJeQxPQA+zc+Cn5rCwH/ndsclbzi/YuTPxMhhTVg+PnlwAH2bn0M8sov8lyPxJ+KPTyfSC59zGbYOXJ49Bz7NzhCdGc39KCYI07ZIe7BMeml6P6XKoDM0/zvO6mT9+efsxnwch68Vugvi+pflHe1raFGDS6Rg94Htm5Fkvx8nM5xzzWfXVZrKBL35cAONFj80/1icFYKHqJwWIHped3+ZzGhBv+Ef+lAz+/qFPySAQNP93/4yS3/8TYo7/+Tz/b+8Oag?YCCE+Xc9Dfs15BBS3j5PQEdq2lS+DNZ12XwVr2sS+iJk1+P0NdSuRetLwFmH2Vewswa5L8BX/X3/frD3BHD+2HcFuN7sOWQcn/bbWusA15FS6H9LZi8)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AL4?ABQCAM?A.5D9d)YFBMVEX0msFwTFuCzMtMbm7lkbbMgqKrbog4ODuU6ukmJiZuqqma9POTYXaO4N9ejo1SPEVmnZz4u9XWuNGi9fS7+PftocX96/M8UlL1osas4unl/Pz72Of:/+90eDzm8L0nMJFVwVy?ADH0lEQVR4Xu3Z2W6DMBQEUO82a/a12:/ZQkTrP.+lrCwpU8T35gyol6sYxgn+9zPx6aUA7He/rCeyL7Q9/Qck9fiOUDQ+WkL8Tzj2TNMX0hnn8gaw7pC/H8hp70hf/GL/zCL/zC7+pZBEnTbeWlkn3dhfjzOwixOF9Us9QEvut9YRvkz+9ga7c2v5MvBenofBQW5kv7YFyklJbEd3LG2Yb5KMhnr16Mj8hpaCSJXwPTPRdVF562sSGeP7xfl2+BQREcIh9jJBPxkRAfk3x5+T9E8vtV+d7sn0kyH8+8SMG/yCGCzK9f+I7GRy6iScBHovieJah8PPE58PuX4elofL9vpuDLekiXdvb7R9O69Xce7PbbyJ0HVbEqv7lM0+MspiGSX9eVWI7vhBw5QlD4mB5MG36HdaGCe7IF+FJWIsWRjcjHCPsI8pFNuqnj1uS7F7+tGzq/2U6LFfk4QyJ918Twm6196MXqL4tO4M2MWvARQpR33Zz5hV/4hX/eXVkop/2t8bntTxkUrrvzg:xwyj5/powX9+ZFH4+PtkZGALnBswto8KZ7Rg1e2j2GRV27ErWnKA55VMAnhpoMinEB3vVCoV8+YVf+IVf+MrMQ9FoX1BEjTKcGzUWVajgRf4++j1fV7Nwisb4gqHxWxSMHSo6UPAi7u9jUvFbCl/xymdxPrcPx4ZzviHzN5PFUvhtFcfn0LfMPFfgvwmfpsBQ+agAE+YbsFuzCfMRf51fLcpXYwOoMB9qgyFKx0eos28Zho7RRpljmYaP2eea0TeSFiMd1mB2DKZ6CJVv9BAiH6HywYarJfDnBBofScDHDOAJwPSsz+dmiArwAxthAn6KR9fO+IbEb1FVAKTZODnnb0Y5cMwI7zx2hCv8/VX3/RbmqVkp0r7PB4Qelu2yfKVHRKu1bil8pTfj5YqhgPVfGl0h1g9b6A64TvuVWu7IZipEz3Ys+pnHJjhxpuV7P2bo3/GZbp8iQKL5q78sKm2MVuVd95/yC7/wC/9KvxKarAoR37Z20GRViPiyeIYmqwK+69I+oiJZFfBVnfYJG8mq8Auf8D0EMfeTQ)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AMg?AENCAM?AB91Nof)YFBMVEX:/+jXFz+Y2P8jo7/2Nj4+Pj9/f3+7e3+/v7/CAj+5OT/MzOnpaVqaGg9MTHj4eEBAQH:/7Pz8:+vLx8fH:fn/+/b/+vP:vz/68:0Y:s0j/qS7/oBj/9uj/lgBYKzsE?AG80lEQVR4Xuzd6XbbIBAFYB5gWLR5S9K+/1vWik97j7MBGmMuKveXf+Y7SM5IzGDzRYbsGMIM20LrOKWGVAJFTv;YGyhMDnAWBIDyUDoWHICCRMEjFwKEQSO3GBJeBYEjkM8HyVkCwJFuoUMAkd6uJYEEDjyJIBwOE5wHOOBBBC6BTkmhR8.FzCCIFjX5Dp+zQCASNGaReCtAKZ/kvI0iEPTId0SId0SId0SId0SId0SId0SId4EXxoGTIGZ28JtnHI37BAOsSJ2CBim4dYYySMRpqHOD/bYMUFafpNo8c9Im2/+3Wrwa0Q3/bbeFkdswQn5kGQuKTM/ogXmfe4Y9X3EAGpsauLWnEUecY+OxyAPLZodME+tPMhikDnA0GtpehFwYIQQEi6g1A0OhSNSki65XH9WrjZZxcMisZWO+jEhRBQNFboaQREXzS6LUXj+XyJ5Xwu7EDkth4rZs6FXF5iuZwT+n4fBhExRqx4k5nLy+vbz3l9uTytE3vGt1U+5O33z3mLQj71+StGHMaxFgR/VvHZEz1kSAgQ2SGCYDEUwye1IbgvdLMn8TJeDyk/e6Io4xWQqCO5IgBFUf0qICWGT4ggYOQEEJTxVmwtyKAunfHu1wYxUhFy7zjE8knCBAEiKV9BQhhFRhsqQQbd8Mk95AqoCTltHz7B7e6ttf4KEGulImQpMHxSF3JMCjcE6xEPLUQ/fOKtMED0wydjcOJpIGD8kO8g1zgZzTx6Esi0HbJabLDcEOQbiJUbhRoS3xKeR3+1eLGtQ7yVK0TENQ7BpdU+5F9kDxBnZTbNQ5yMALQLcR6AhiFexOwAEol6f4QGot+xev6l5aXEHuKTING+X30q/ENkgXSIe698RdqG3B4MXXB+/dAyxFvxNoRgRyutX1rhPW4XN7sTF/YAkdn4HUDcuAJEC9FXAUqInc0a9beWvi5Tf/2mpXylXKH6LfHs0jakQw70kLjkSA9RDJ/wQeLZDQQOZshhH5BkyYEbshxuiSvgIIUoelGYIIrhEzZIKmWBgxKSEzjah5xYITQO/UDAlm5ZQIb0FIZkBlMbw5bwQAZtSkEGJSN/KUtBNNl2WRJAVAxQikDMhgv8zrG@iJRQzYEjiUr@BA4MgNE0Q/68ADgSNzbhsSJggYaWGA6EcEIKGCYEFyTps4EEPuEHEMrq0CnUR1jmSp0EmkGBHQQvSdROVnHQxBFAdJcUD0sw78kGnnEIQYstBCOqRDOkRfBnBA9IUZC0RfKlNA9A8v5SEd0iEd0iEd0iEd0iEd0iEdMk2/PmSamoRcHee7XCVNQuCARAWp9aYRDkiqQI6tQI6tQTRnQfFDotkPBA5KSJ7kQAbRnyl4ooMoTnmkguRLFiaIvjuID4K+s8x+rYEHou+gI4Doz28uBslvJdKfqK0v49U7VpCAsumMc/2Dlb6VSH/qfKFH3fyofgeAK4pfZmCU5McQRqFoWfOnvbvLkSOEgQAcmv6Z7IJdsnia+x80Ydv4gUThIZHGjqZu8AlT3dCrHbcC0p8Yip4GAFTl/IeAl/RyARF6amkvg6yflOtUpP1ZKo3/Jv2KrN9d1jmBfCfdllqOF0BWB5V1BJQtiXRhOB6kouact5G8jYWRIxaEkNRhyWnsfo4DYeDL8akxiy3MGQNSQOaYLJstTAsAqUjm+NWSk9aye8gBZHV875kwo5are4iAOkQdk0UlO6G4h1SkyWEYkzwBdg8hhRjBYpJcQO5bi4E8QWZJzhXVPaSANoPMGRCCeISsJ8uiEOD0DmlAXkISqufXeJusJYRQfB+srHwXEKC5P+oSdEH+AEmgb94joMUW+QkhVPeQClpPFkH8Ctbla5AtwGQ1YD1ZKcBkFdDyKbItytdFnVUkhazL1/PN3QnkCbIoX6c3dwJSiEmWk+Xy5q6iDsjnHyaL3UMIpUNUspgsxxAGnnlIehbl6xZSQHtWiWVyZEJxD6mglFWiFLPYMRc43EP0RjR9SSaMOnSyvLdWKxU9lLbfWTadLM8QyymVbkvKm2HMkQF2D7GwLcz8cSFr+bqHWA6pZENmDr3QCgKxcLktlLKFIJEglkM/7ZoFOKNBLKILU8tz1/KNB5lreSrfgB/grZabAQL/SQSXSkuA45u7d955h4WP/wIiPdzO6I5DhG9L8IVpwtd1sejCPCJvkavng1ktMRfmIdIVmrEwISdLOkPTh4xjQlj4C7Lvu1F.kSU0XNDRI6Q5TscJhGJWb4zhKNuEXUMySXS4jlOmyyDfIicMct3gnDY8p32CEsLWb7XDIlavpdK1NEhYV8Y7ckeuXyFuUtGLi3fgJAeNkeHxDyRnG0cD7tCXxiD5qEWPSm22Ad3xfBUvpGHTAGxczDzXwJ+AEcd7jSxOYb/)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?APo?AChCAM?ADZe1I7)MFBMVEX::t9PT/+OH/8cf/3nz/++:/vlSkpMDAwP/wQOArKuox8jJ0sb3+fnY5ubl7u5WDST4?AFP0lEQVR4Xuzay67bMAxFUYEv2U5u+/9/WztOcvyi26FKagMZcbRABQIMlXYTKUmTceS0ctizyWHPJoc9mzypnSHPZuclGUfhpX65panTM9bpGev0jHV6xjo9WZ1uZqF9vV6vR8xMRGqm+W63/llWLBudP/KSLk552js9pd3mFjrLbJdU7DddzORy70YuQG9G2rgbdLE5ubreRFye/wchoabhiNgM9i3eZPToNLp0EtH/Qq6vLu0qo0en0aWTNEwHexfs4Dk+vhnJnLUt14vedshHIUYK+XFkW7mQfiNtV05zO7uafXkIezbxRyznGpXTt6+dzRb7lU/+Rldpnw74CW9L5WOXbVxgP4yobO28rS064LtAv3lRdz8yWdKCGpf7dimu3VknN06HnLlWZtg39MIO/f5BAjdMV9CZeRqGiZkPa38rQD/bubh2bX7pvMpXO1+svTC7APFHTO3SIX8Mrx6wgx6r49Kfw7sn6KrB6ZDDnoFOS6sc9v2Jjyg3LH3YhbXbUmj6cCgPfTiVhM71TK+cgg75pprkwK8915ttjeLSy7/TS0R6p9OZTgno6tMV9Jh2nw557BMPOs57p8e0K+ygQ66Qx6XTlk4Z6LAT6Du5lfhrpw+dgi8ddNhXOuTB6XZHt/h0PdMV9NgnXo90xXkPmsEOOuSdHjKDHXTIk9AVdE1Ch11XukIOeng7zWWR+w/nLD7dsVseul3LrWSwA6+WQO6/jL6n/3o8Y9nRvfz3VGud4tp9+U99FXrvDmCq9bH8Slz7n3LNbcWVHIai2y+zQdf:9uhET2mIERVfTpnqNJ6Cq?C8mSIwevSdIAUu4ubWb6hXxBsu/tSgJGBm6O8kjjXerISvqz3E99IYRMQPM57l0uXQEEvwggyIe49+outJptNCBJOp7jLl3cqnCDVeqf4d5nvQJcWCjGqCOq1OOJ5pS3HQ5SJZ9Cij3FvKlhF+oueQALjzFXfatuJLOCK+ZB5oA2WadgT7YnmXcZjYqCsPL/q6zEaSIuxvbm5W5vI7PUGfhdUs/7BO1qbG8O6KvQJaILVfIOoarh19XPuwepV2N7c+CF1eIXWSUv9pGTnnrePUjq1djeHPjn1U6GpOwhuD6jrnZeh+JXYlvz1zgpUmEuFf8hdTU/rUNZF2L9J+auQa7vFuf6ocGWWvhpHUpeiF3XzSvPe6oXn1PXdVqHjAuxecl8q6+mt1xivSL0mzxYvkK53a/G9uYu3zlOkrQ91f8cbUhs2GA/itXuwh67ZAS/WPLaEed1qD+K1TcVrKV++BykPUQdqu+O+A6Umg5QwyMKvscDxdrF8oA217OUFD+e/DsOt+vmflhWNR3uTleaHjmcj2xOyn0usj2LVK8NJFwBa8xv8/Olx4WOVSVvVDTc5Edr/6TmsuBW7Y26mnN+j1VFj9LqEltI0x1vs6DqWSRTdprXX3tjyY+vJXv1Y1tIUgwjsG1eeGIITpKJgdRiQjCPfYebh1JcSDoAs2HujqySTzIwhYi9ldHgHPWU2mzvE6+jejsdAHyUOYzccy1lTpd3Vwp04FxzEaECNdcGsV8jFkkZeH+VvXqdRFZ3H1nyVhWPNSntoZr7HRVGwwyWVIfb76iBGTgL3VvbKQhJIcnYJT+DJGUh9t/7A1PQko1Ke9AwTR3CmmyYg7ASbbM6nDlg3wNtknq9q+X+X5gNMiejhpsuI+mT5rl5pX3cNkrWcS81KOmJIkblHHlIcwbmEP+pO4YRJMuchmGQ5axkDnxLzmrvPrDiKTLyJV1ZKOYhY80BE5HA/8G:wN70b2bHBk)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEXv2f::+VlZX29vYeLcrO)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL)A+CAM?AC802HE)z1BMVEX::z+P+p0/8kkP+j0P+93f/Q5:E4f/q9P+w1/+k0f/d7f/5/P/p8:0+f+Qx/9Opf86m/9xtv/W6v+t1f/L5P/i8P+u1v+63P+32v/a7P+/3v/V6f9grv+m0f/b7P+ezf/u9v+Avv9Ko:v9/+hz/+12f/9/f/s9f/M5f/4+:x9:G4f/Y6:2+v+Iwv/n8v/C4P/R5:T6P/+/v/l8v+42/+r1P9vtv97vP+y1:f7v+o0v+z2P/O5v98vP+UyP9qs/+Vyf/k8f/7/P/5YNTZ?ADhUlEQVR4Xu3Z546jMBSAUV+b3lt6b9N7L1vL+z/TEmXuQCjBk8kCK+X7GSnxUSRsuJB4k6a/TFEMUpAu02WSBKSyrAYVog5kKxdg2i6LGkzNSry+kEjJA1CWSKrC2xB4wTarA7gp8IJlVguwyg12agFWBF6wxGoBlrjB43qADyInFd+aZAIGkdP13tLLB0den2wu8lJSXRNur16tN33NGQUAiWFAsCp3YbEIIKPXI1XmI7hRBKAItusB9rnB9P8H78F78KFxcmFB2OR3X783SH46tT2HLfM8KkMCYIwaKp8TOrZDhES5donltIBm4yHQ5FG21hw7bL3nAOACESN5CUjjaGoD7UxZ2E7AitRuaYKgKmkujFlGM3kFtm4fBYELbI5dxnYGnvfF1lAIk5Je3WHZ/QoRf/ROMOQCmzbydwM+7ffU1cpy4jsuy2t6d3LUv3551ArByN05OH1W6i7L7xLg/ritfikCD5C+Q/D8Vmxp6e+Bwza1ABidfX3UcsHYrsGapXxrBwimRs6aA8/z3DjAvQJFElvDD4LFMBWVqvheapPSvTAHAbOfYU9PXliHHB5dIzh24Zkxnv32aTOYRYAfACP5hX4MvO3BsQCwDknUsYBRI7WkqyPDALiM/8X3xw+BJvoKJ9ij0tZg9KYnMXiAOGteBMfFAcx1/YhzvjQYr7BbgxNnsUERLG94mporAFcuGr4bd0UroZaaSNgWbN3lDucSK7oQMa78ULxgGCE8YAe1nwKfkERWYqLhZT2cvJ51AboMkzjAjoyAz4GN/HFXlyxzUdUhUaP2sQkwQwzlAHtkN+DDFFheBzNMJ1Hdr2evAM/lgb+8gzf8irx+zpA4WL3uAiwiTB3A2gbwudrzTysBa/njGO2BhHUyUect8XYOMmKcfw4e8oBbuGAm+GYSgVktwEN1AzhoS0d78Fp78E0CvL/ouLe1JoJ7OJjN29baiBnU+qTDgyNx0u2P5upvfkq6vXSqub2s/gYewfV/REqDK38InZYKhpNPP+Z3SgWfnkOmV+AepDAoF9zv3SgrhjVSI28DASYrGFXZpGywOhQORFGkQixqEWxcMAw0qwCn4h+3UlIHsMw90J6SOoAPDBKvk+8dQNlgfBMTr4Hewv/4Eki5YHzXFU9tpgFgZ3Fn7QtSMpgaZuMhiIO3eLHICd5VoH/rrfZfUfSbFverW/NTgL92xHNM5cAOXQ)BJRU5Er@ggg==$/9j/4?QSkZJRgABAQ?AQAB?D/2wCE?YEBAQFBAYFBQYJBgUG.sIBgYICwwKCgsKCgwQDAwMDAwMEAwODxAPDgwTExQUExMcGxsbHB8fHx8fHx8fHx8BBwcHDQwNGBAQGBoVERUaHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fH:BABEIAL8AwAMAEQABEQECEQH/xACO?E?gMBAQE)))?QIDBAUGBwgQ?EDAgMDBAoQBgM))BAgMEEQUSIRMiMTJBUXEGFBU0QlJhcpHRByMkMzVTVGJzgZOhsbPB0iVkdISy8RaS8BEB?EDAQQJBAIDAQ))IBAxIEBRETURUhMTI0QVJxkRQiM9Fh8GKBobH/2gAMAw?AQECAQA/AP03LWvb4aN1VOTfgtulA1r2ppbr1kVbI7ezI7VE5NuK26VBZ1NLlepuhslwIUCFAjMAuAzATmAlAJu)AE3))Acepgke3h4Tv8AJQ5GvtVlIp4JGN4eE3/JAaC1WMnXDrqqBGYCmYCMwEZwGcC2YCzXAWuBKKBNw?ABNwI?S)MT6eB67zE9AENp4GLusT0AJ5mQwvleu4xN4Dly4/kere1ncfHi/cGlLaFjsyoxr2QfyrvtIv3BHSWn9dFFx53yV32kX7gdJWPVRHdx/yV32kX7gnpGx6qHdqT5K77SL9wOkbHqo2qav2y5XMWN9kdlujtFVUvurbmDZt3Yzp9td7a2nlDIyMeBkuBZLgSigTcBcCbg)BNw?CAKqBoY58E1f0bgPJVffMvnKHzPU/kl7sQYUhKUCywWdLDZPdf9uz8x4e32L4enu6zZQ6zPE/iBsMcBk5gCATcBcCbgSgEgRc.AE3?VUCqgc7HPgmr+jcB5Wr76l85Q+Z6n8kvdiDCXS3k5wMNLiFDVZu1amKfJy9k9r8q+XKugZJQlHtpubIQ26ST3b/bM/MeHuNieHp7umyTyh121A/iBstcvSBla5ekC6AWuAuBIHmsa7IOyGlbV7HDF2EKOyVmdOT4+VUA7uFVElThdHUSr7bNBHI/TwnMReHWBtoBNw?CUAqoFHAc3HPgmq+jcB5er75l85Q+Z6n8kvdiDC5fZRRVtbgFbS0S+6ZWbmvHeTM2/zm3QM2nnSM6PDex/2P49TY+2qnp5aWmiY9s21arM+ZujUReVvWX6g6Wtvww7X04OQzRP93p/Sx/mSB7rYfh6e7oseHXbtM9NdQN2LL0gZ7N6QJSwF0sBKWAnQDwvZPJjm2n2eM07qVr19wxzxwTZPFXTVetQPX4O5ncihyNVjO14srMyOtuJZFciJfrA3UAkAgEgAKqBRwHMx34Kqvo3AeeWmkqcSWCPlyPXq6VUPnPAld1GEe2tW3ifY/NRU+32qSsumfTKqfeG7r9iy08M8sufk5sUbpZGxhybdvOVItipw98Ee0zI5vhacA2r+i4cct+9qhppav8AEW/0sf5kge52H4enu6UQdhtRcAN2nenSBso9tuIFmgXQC+bQBmQD432fUeBf8iqJKKel2szXR1sU752uiqMy5pW2XqS2qeQD6tgEcMWB4dFDIk0MdLC2ObWz27NtnJw4pqB0LgWQ.LI?qoFHcQOXjvwVVfRu/ADgrNPTYis8ab7HrxTReZUD53xZ2tRnHyq28Tx2prafYbHZMumfVXX+4N3X7Xuai3hjjz83MidLFI2TKvoDkW8oSpLc2Kmtmnj2ez87jqG3f1UrkcdzUyP8VfQGl18ko3+Ip/Sx/mSB7nYfh6e7oxB121FwA22AbDAMrQLATcAB4rEPYwoa+srayaqXb1Mk8sXtTdzbsRtn63fkXebq3UD1uE0PaGGUdDn2nakEcG0tlzbNiNzcVtfrA3ALXAsBZAJAqoFHcQNaojbJG5j03XAcCvbhkMzmSVFRtvEbLJ19NgxcCHpp8KJh8MkbZGzVKZk+OkRfxBwLfpp8MEmHfzFT9vJ6wcC36Wu6hd8qqft5AcC36afCvaTvlVV9vJ+4HAt+lnhgyLy3yOtlzyOV7rXva7tecMkY/w3I2hLaiaBssTUDOwDKgFwAGKslWGlll8Rqgee7p4j8e76kT1B5Hp6/yh8V/ay1+KNtmle36kT9Av03qPOMaf6r+xMTxH4933eoI6dv8AKPxX9rJimI/Hu/8AfUDp2/8A4/8AU91cS+Pd6E9QT07e5R+K/s7rYl8e70J6gdO3uUfiv7ZqTFq/tmNr5Fe1zk6OfTmDb0O1bt27SEqR8+fL3emUPQKOAwv4AeWxhWMxKbd8Frs7JcjuCJwW/RwQDoUyZ6SJ115Cau1XhzgUkjA13ReQCmy8gGRsXkAzxxgbEbAMzWgZWgZEAsAuBrYl3hUeYoHEw5rO2EzdC5esPBaLdxHQq0Z2u/N0f6DqanuV3uUHFWyBYyBKQnFkpme6YvPb+Ib+y/ER/vlV65Q9gqoGNwHk8ZlSLFptY+CcuPNZUYlk1ReIHYpM76OF703nMavDydAESRgYXRAV2QFtnoBlawDK1gGTKBewFkAm4DiBr4j3jP5igefaHz1lVXu5Tld9dwy9de2qcgWxXyBfFOQJwNmE4MlOz3RH5zfxDd2d+eP95vUB6lVQKuaB5vFWz90ZmulmZFZr/a0RzU3U3rXTnA6tNHmpYt9ZN1N93PpxUCXQqBj2CgRsFAbBQMscW8gGdGKBjVNV6wMicEAq/mAqBIGCv7xn8xQORSUklRMkTP8ASdIeI02mldnjFv1OCyQRLI16SZeVpZUDpX9lStxypXJp5A0cV8gZMFsgWweJxH2TaGmxB9NBRPqYI3K19RnRvBdVY22qdaoHRhsyWPXV7LCqunroaaspnZoJsr2ennTpQKaS1hfp/G:AMeoDvoUAB5rFFj7pzZo2SatTferfATmRUA7NEqPo4XZUZmYm70XTmAyZQK5QK5AJygSnEC11ApbVQF1sBDrgQgEgYa7vObzFA52G1KU1Qkjk3bZXdNlDyWgv8K5lX2dSrxKnfA5kV3OenQqIic/EOzqdfCUK49bmtYHIxZMgZcVsgXwfM672NsVbWuZStbLTOcuSXMjd3mzJx08gdiGri+gdj+EtwvD6ShzZ9jynfOc5XOsGpa+6/l/ex6mwdZAEAcOsZLNiFQzNBG2NGe/NbruouiqmtlA61O1e148ytdupvM5K9VuYC1gIygRbyALIAsgCwFVQCFAhUArYAgGKt7zm81QOSwPGxZmNDYizNaGeLK1gZsVsgXxTkCUsZ7Y3rQMun79HUDqFgIA5VXgfbNXLUOem/lytsviZddemygb9LAsFNFDfNs2o3rAygQoEZQIsAsBFgIsBCoBFgK2AWAw1jV7Ul81QOUwPIRZ2BsxZ2tDYZWtDPivlC+KQncNbvt60DJZ79G+G+?I?RbU.IAiwEWAWAqqARYBYCLARYArEc1W2AwJh1L4q+lQw/T2/TH4oyNoafoX0qFuDD00+F0pIehfSoTwo8qLpTxdH3g4ceVE7CPoCcKck7CPoBhTklIY73sDGnJcL)UC?E?FlAWAjKoFQIAWAiwE2AkCUAlAL?JQ)?ABzgFAgCAJAheIE5ksBikejG69VvKoGFarX3tfS31hi40OaO2/mL6W+sHHhzZI5cy8nKvFL2X8AyZUr2MtgkAlAJAk?Ak)?BQI?AI?AMFZ70nnt/EKz7KuPM9+0XUPNXZ/chsjukIzdGjVc7Op36B3NF3W9YNwsBIA.?Cbg)?AFAgABKAQqAQBgrPek85v4hWfdq40yLtF0DzN3vKonkCvW6dEi5mdTv0Du6Lut8N0?S)CAS))sB)ApLGkjepUX6+IQ1nUL3Le7PQvrDX+lgjtB3zPv9YPpIM0UDmKmZU4KmiW4hmhCkexmQLpsAs)Js)))CwE))UdLG3lKBCTxeMgGQ?AX?S)))CwCwCwCwCwCwHOqJHtV2vhfogaGsnXq3KQzP2iahq2rssm/Tquyb1B2WQ?sBNg)))))aNRGy66t431ciBrX7cJd6u5SONmdNW/90DDCxbpXqlRvQo3Zpqi+VA319)B:9k=%iVBORw0KG;)NSUhEUg?AOo?ADYCAM?ADS+I/a)nFBMVEX::5+/3z9vs3ZKU3Y6QJEBs?AD2+PwJEBo2YqKEpda0yObw9PrV4PE7a7A4Zaf4+v04Zqhrk84IDxjy9vvv8/o7a7Hb5fPp7/g6aa48bbO/0eo8bbRQgMX+/v+Gp9fs8fn1+Pxdicm2yud4ndLX4vLh6fWqweNslM6eud/8/f6SsNvg6fXa5PPA0erd5vTq8Pj7/P7t8vne5/SXOKY)HrUlEQVR4XuyZ246jMBBE+0eqbe7kPjP7:+22mBRmWGRCI49iPR5quTtyHS5BbIt1Lfn1qu8AV/nf3h5A9q7aitvwHnATjUBNqvWwIZhD7CtELZC2KnarFoDG4Zhs2oNbNvSfrFtyRrYMOwBtlqyy8a5bghdCPtdIQAXnFHu+lSpWtTArmcVj5S7bmA8cpA9A9IfCtk3gHuXFaJp2rdZIYrOAShdVUgUOhAuG5Xt0ZYI9MV6Q3Ie0BHZDKf1DaxTeKpkM8IlUHkRXwH9ek0SZlXJZmyBegg1sF6THO8NfFSyGd2aO3C8KtmiagUEVfRRotu3dfhBjCYf4DS2+nG73Ll9aFJVXQBrKYWsv4z4hKq6CF42KWT/UPUmqdCFcIVIIXt5IINo/KmS3KpXVwJOrlWz0DN+VklO1aLGHXE4xJuygZeSUbXCqOoiRCPIploDVdHcVcuspiSXKuBEBlVEq/IB3qZqTdUZ0zS1RLLcq3yAW6CfFU112ZAc29IVI4d4U64Qz5JhB5YOgdJPTNOfKpEMNJ0DUHfFVDTDrBLJSbwpG3iDrr5phtA0nqa/Q+JZPfHd0ommv0TaBua7Jbj1psej6pGEn/o0Se9VUBXr9vvvjmFWmVQXhDHxow/D3LYU/3J0jSbxQwM/JA2B7TwNYxKZhJep9kBViBQVUD5t+h/Cvco0BtX5w.hCMOrVA8/tqV1ouQ8wDQG1fkw/UskhNep+vL7tvSMZ4pT1XSnKkXlSn50jBCdm1WGBbOqmmZWp6wVJZ/33vxkAz+EBQ0cwpIGjuJve3e23SYMhAFYeF+y72lrNc5xL6qcJHbe/+FKcKgRw0QiPxOPbf47SScX38FFIyFoHBSMjYjQPvDD38XsI5FSeatMtfRntgkglbfiNfCCUnEnjhU6ufRCqiRA2un1B8X0e511/2mp/3S+Rs3LA+fzjDo8L/cP4QMCv02T1O6gnJuMekr6f6ypdOBXRj2n/fAi7ncT0lWePiH1M2pF/5rKDJiKfnwbLY7KK70MaDLqgGZNZQbMgMabbLDnq4C0USrXT0oIESrv3DcqB42ipr2VVAdRhWpCBhpJ5a82QhWUUihOdd9MfXlKdyIunn7Wv6Q41QFU4L70xFF5KE51klT61DzPVDu1iYeO1i6ns9mCkVLolqhgtZQK15VSaq4vxamuBhWogXOqzamQNMkiSoWS/YA71naYH3CkNEmhCqjAbSlauknF;Rd8Xy65Knob+yU7MR+jZp46RHSfUbt0vXqmlq5Xk2DrFf5EuKCKyGioH6OxiMPNBpfZdSrcn+vk29blAa684w675b7h+QOjFeF8dQkKuTP4veamtwcfTg+XrOOj5eAFKDGW8Fq6SmvHBa0MgSkPpVgGaksdZHfjiazCSzlE7bKU2cb6qweNakVFdT8Bxym8lD+DtwfH2GXtTlqOtFMP6qlx7CUp/Lz6gl2WWWemteYaBIuI0LtJ1FWeepy89S8NNnUvKh8DZwPYVR8XrWd6STVPk6mHfRf6tl7JKlYteTpoqmMk6eGrZYN/NCRUqGLeoZSeav8EdGAlEJ5KmPdAhX9/Z5FUxPd1LA0C0x1MdS31/wG/EaaoWFrC21PK@NMOrb8yZvpBkYtl77e6mr2tTXguWVNAPD1mvH1Q+cVJ76XAxpBoat17aMNSzVT7U7QLXCVMdSE4iaqKey1rNyRkQ62ldqxT7wzlKTz6nX40sPejk+YqmrHaXyQanNzKs2al5dSVLD1maqJWu9tl4qXgOnqIf/7Qerl4rHkqj5t6qfek2exB0poQYXcfi8egLPq02E3Ja0Vkt4yGSjtQbGs0MrGzw7QDWSVHwXQj9VaG+ppToFVMF9YDXUvd7dJ/Pq/j6zIdXS/j6JI4s4vc9XcSuJtqfmklT8LIR+quoTLni89arIuaX7OKk8ldyB4dNol5W7EKvtU8m8qvWMIZ7nYgRPjmqjqjkPLE9Vc8pbnqrw7L4gFX8jo186D3xFpQqoIu/ZnISvqRIq/vYUkeJUfF6VeScOkwpVSzJvOhIpQMWsZL0q8P6qgBRb3gi+lcxLFVHxd80JdFtUbxHnPUVfunfoctNepchiM02xnaim0tvSstBeltp3zt0VmynAa3NUHuoAKDzZFNu35bZzt8VmCvDaLJWXAlS4hPi07ZzXTAFem6EKSBVTXUCqnupcFNUFobhUnuq+TrX7SAWkaqn89x+oVAG1zmTjaNt1CfUEkMrNqzVLCEfb9DMPvQ5AFayWyPFKrzBMJX6zVCiq/eYoXcQp+pKsdCxgVSvV/9Vn/VjciUtxK461ItJht7Tz3B2y/cxA/i2gUn8v66/65DEABaSm4svDbD83wHyp+Cbr79J+AIpQK+oztp8byEg1+kWhfAY0bD83UPdDrxzTWUCqmkqZe0vF/5ci/VQLxxwM1RwM1RwM1RwM1RwM1RwM1WyXagxAFXCKUs23UE1LFV3Z0IE6KxtAiqRimcn11/4Dbh0LQJEM6YeEuf7QH8R+qXgOSPXECsVojIRTbXRC9WON+iiE8vu9eBQ5+X3gpiLtxKsltVSBGrjJAEz9VBrEqZ9KgyL1U2k4oXaq/rTUltpSW2pLbaktVcHKRlfwfWCVkdkH3vn8A1A/ImDHrezo)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL8?ACZCAM?ABJwRsf)MFBMVEX:/+3iazwwuX/2fbVp8rjtdj/4vi/kbT/9v33yezOoMPcrtH/7PrqvN/9z/LHmbxFdNHz?ADCUlEQVR4XuzWy2rDMBhE4f/oLttJ3v9tW+SVoOk2GZhv5eUZI4R.gFK7B5ACt3+BFTx/iLej3D/Q7p/JBT6M/86xPureP+l3T9DuL+fOb7eyMsBHHkzYtG9/99zv5mZmZlZS+XFjqRTXwBk+yco919o91fxfpaSnnl3hYQG0FuoygApZDWAHLo68AxdCThD1+jADF2tQ8+6+TkBpKx5/0d5/35wv/vdb2ZmZmZmLf9q6+Nvl8Czvwi8/93/Me43MzMzMzMzM7MR0lqfcUua+XAPqFTN/HtABcEBL5a58iFp/n8oALoHCNX8NWDPlz1CIerkNkNSBeUB4+D9gMStfPmAs7NMuf41oEbbBmj1x4jYBqj1Lz/V3MtuxCAMhlHHBGxISN7/bdtp0/7qJbIcEcnxdhTpfAsQw4LfAelG/3RMui8gTflhfgQcMU0f5UcAr+kjZXuOHwGYhajOn9PD+e0AUcJE89sBUuiBfioN/Kj+te/TNFf9F6D9xZ9XCuuvxyqV7fRZr4t6Tcy8lXv9FUu0Gx7sP8bv9QVIy8GSft5fXh98AdqM7y89+pb13G6fH/A7E2meMMK+N+fY928L03SQv+w/Rfkmv744e01dEDDAX8QgjfKnL/PajACPv8lfU7nBz1qx7DMCrvvPZxnvz1PreFcVAYP8e2degFrH+eEVYIwAr1/qrxMIn74Z+c12PTWRgbEC/H6sozIheuj5oQJjBPj94BMulMb6EaBWgN8PPtGGHWikHwHNCPD7ZSXMCt51vxZnAPv8533g1et+beILyDTOP2MDcvtxJ+gKyBTDD74rIFMcP3aAnYwATBw/jFLICAjrpwq+ERDTT/WTz2oERPWTHgdOIyCmHxujFRDSD74VwBH9MFoBmQL77YBMgf12QKbIfjuA4vsR8FA/AgL6N/IExPE33B97AoL4ESjqC4ji79Mxe03vw1wcAQH81Xn/hoAYfvX6ERDCT9nrR0AIv4rPjwAO4acixl376YEzhp80C/h7Nxw4cMYZ3XiZ57kzbs+tAC:DXTkHOow1+So)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AP)CLCAM?ABobuSi)/FBMVEX:/8?ACqqqpra2tYWFilpaUmJibd3d0lJSVXV1d.kKpqanKysqnp6fR0dHDw8NUVFRqamp9fX2Xl5empqaysrK4uLiLi4tBQUFnZ2dpaWmHh4eJiYmNjY2ampqcnJyoqKizs7O2tra+vr6/v7/FxcXLy8vMzMzNzc3Q0NDU1NTV1dXZ2dlVVVXOzs7y8vL8/Pzz8/P39/f09PTn5+f4+Pjo6Oj6+vr+/v719fXm5ubw8PDx8fH5+fn7+/v9/f0zzP/29vaj6P/l5eXj4+Pp6ent7e3u7u7o+f/v7+/q6uqZ5v/R9P8mmb/M8v8rrtnk5OTs7Ozr6+vW9f+/jlaT?AGHUlEQVR4XuzbB3ajQBCEYd1IOQenzTnc/y47UwNF4+ZJ2saYHqx/T/C9GmR7B42u697UyH838A18A9/AN/BGNVTwRlh1QwRf7C2B2eDBuqGB71SKPBgwsRfRgwATdxV6OOCJqtk8BDCxugZy9mDBOzGFFuRBgE8izVYj5w2mdi2iWZGzB9Oqk2YlzhicdMdnCbQW5wyusEsR0SQrcb5ggZ2lqE5mOXL+4EI705HMkYU4Y3CpfajFpUkWYpQrGFwYt7ICbRB7B4ML7FwGt.n8V0sbzC4wE5FhRkzR/HaIHYKBhfasQhm@U4d/B2S+2B0XxGnCsY6ybtngFNMsSRLMGpDMHgJu1nBjTIQrymOGswvEn7kQENcnmsIQaYG7O8wIEbvNB+YMEMMkbmxhRrsOC7B4ML7W8G83Ox+ml8Jsfg5IX2D4MZ5ELMQ30FmOiNA/B3VfCGecH9woI5kiE+4DnGob5+YuYQjHkT931ZNFM8HstDDTDFdrOdwmxg7Bu4QdvB5dT9Vf18VrdgeldvAwxv5K4W9qsLeT3lHRyeX3gXCyu4OcfgcJ6jd7drCda5BONAr1bB+9QarPMIptcKTlcTvKOY5ABeLIL3l/lySucYjCcY3lZgnV8wBg7edy3BOr/gXRuwvmatcgt+soNPjWUAftcOzNtGNlTwWkV15uCvzQmoRjt/hu3gYxXJrw4elW1ieD0pPmrHZbhN2s6n48MefxoCvLODKdVogA29NHipwJi4DXhZJc0+wZzYBl7qKnLf4EkEHxNYTdwOPCuS5s7Bj7UawacEVhNHsQ1MKqvIbsDiTKeJIbaB6cRlclFJfl3whY9pOTHEdvCDrCJ7APNTq5xYiG1ganF9nirJTsA808XEEAeyDQyrjOQg7hj8t9bowkOcJhZiI5jSOckU9w/mma4mhjiSbeDmF4CSuCewPtOcmBtHsg1MLhMj9wvWE4dDncQY2QYulNNUjewEzImFGGQjmFpp7husJ5bigmwDk4tXnRDFfsDloY7iMcSBfAH8rRbB1Kbq4r7APNPyUAtxeo3HDCaXZIC3vYH1xBSTHMxmMJxa3D34sVYdrCcW4vQqnhUM5SFFMSbuB6zPtBBLshFMbkXmxP2CtTiNHMgw28DJq8WYuOb4oeoQTLF8jDEyyfP/Oj9k0Ms4sR8wxOWx5ivxLcH78I8Tdw/Wjc6LOTJWjrUD72MOwUoMcswIpheJM30W/Ak9FnUAhlhtTDLMgwRTTDLMQA8FrCemmGQ0IDDFmgwzGh5Yi0Gm+d7QmU9pH2CKQaYZ2cGMA7sAazHNLcCmXy27B1OsycwIpliDH/oEU6zJd23AU4rJhdcJWJOZFZzEY3Lp9QGmWJtt4HP/4+ECTDJrDZ42en2ASdYZwfMpolZ6Z0ZwJ2mz/eupTH3bWn4Vt/9vH78IuPnmgV4N/tfOnevGDUNhFNYRtczu3VnsOPseu3GQmSYYGBjBZfL+TxPgkoqSC6bxFKEu+FdqP1CsBJ3/BpbtD/4dDxBr0GrvWrzJJAT2BIs4/r00EonYjj0E4nMYg1a42hsvJoy2mqD2aSHeB1VA2tvkwTp6cncBh4eI9x2ypXgBmldePAcngBKqwsHKcys4pkwbrKM2C6hrkON9zyl8COBHTA9gI/tWcS6ADihbnvmDdTSuSR/8N/kzPHld19Lx2Z3+hPXyRl7oFxx9pdn4OVYeANAGYwvnRZk8WO8EmLzpU03Q16nmAB81mGpGFYwr6LqyTBys21SL+uzsGu69dwBv5xxd8dh7iwHsVjCA33aOWfJgWR+kqpmcXMNOuOsvcBPyY/4OOwF3wx2uuuc9uKhojhvcGApkw2ouJ0xehqjeU8B7t8DBlKmASwKrhPJ21oNbR+PSB8uE3T/uhBu6idFQ5LijenqCDV57YUyhfe/V6z+12msFrKe5Om9bjD59GtHGvFbA8cXrxeI1BtZec2CpNfcJY3kaTZH7xz/3wD/Eo811a2Ct1V6bYK0dvAbA2+g0N3iNgzfaax6svIbB0XCaEfAenTirYM21Dy6sgzXXOFhjTYM11ihYxXgD1io4XU8GZ3AGZ3AGZ3AGZ3AGZ/AvT+a4HcQoaps)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AHw?AB8C)ACOdYti?ACfUlEQVR4Xu3bsW7rMAyG0fv+e9+AG0eOHDVr4qpNgAeO2gQI0G1LJEaLIPFg+wcafy9wYERmGMP59wEMjVuFZN/4MiEtF76pC7/wC7/w7tVyUhFm+oxZNFttR+PdS1amx3Gu4yi8lST0IrZ+DG60JS6H4IW2lfoBuNPGtO+PN1oTTdlKqcvivtRiSX7o++PjW01WvT+6D6quuu2OTyttzCe1O88dMOHspmcAftd5APCpFDkCd4oyAp8SuELwHDhD8ErRQOCNoobAO0X+dvjAXnnUoAcOeqsBh4xMAD4YONsLRQsAv104TwCeKTIAXijicT5eKaI6H+CA9fEcfF2cdZyMt0y30pjn4aO7KUUxXg7EGz1JwkDgbGOicPY5IXikZWDwiK1j8IjLgfjwXxX79XgsjZMnXDNZdT3/4YDrXU+gr9SonI9PZ4q4Ax8OkAHwdZkZAHwKRY7AK0WGwAcHrgh8psAZgheKBgJ3ihoCb0i8U+QIfLwt3t/2wC3I+9yQEy4BZ/ugKCPwQlEF4EMo6gDcKFLkAlmQq/P4Oz8aGierPp7Qi95tHTvi69QUzVa9jV/wcBO6x23uixf6EYumnLN9lZPQjwLaETfaXJ1742krzT53x3Wjnft8hL/uGd6rJX5Jpzbnnvj215O09OAe4cmfZYFvaDQvlpMK397M0pTLOgMe4vbqzbF5SBd+4dWSiogmPx9vRCyqQkTpfNxbj6nFVHAHrpDi8EaMxAWHOykOV9yBc6U8Abh8xsRlInD9ikgcgEe9EPmbDplO1GH4FGrAK+f+Tp+5e7+f9no2rusyUc5fJkpWZRHN7dpeD8MvXPKz0sfHgX8NhQXG/wOMvRhmEaG4n)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AM8?ABwCAM?ACOw9TN?ABgFBMVEX:/8?AC0tLT/vhr/3IXU1NS5ubkTExP/vx5FRUXe3t41NTUmJiZsbGy1tbX/3orZ2dnFxcX/wyz/wCO9vb3MzMzt7e22trb/4JSoqKj/349WVlb5+fnW1tb/1Wn/4pt4eHj/y0j09PTp6eni4uLR0dFiYmL/5KKDg4P/zlT/9vz/6reMjIzl5eX/xzn/yuubm5v/2HTBwcGSkpL/0V3/2n3+/P/x8fH/6K:7cOwsLD/5qj:fn8/Pz/4/T:v:bhv/+fv/qBz/5Nb:vv/1sr/lHz/x6D/pKf/z/T/jDD/fkL/zZf:Pb/r8L+/v7:v7/oNb/TbD/VrX/hMv/j8:HJf/G5n/2O3/yOf/csL/wOT/icz/LaD/Qan/xOX/6vf/y+j/uuH/ab7/N6X/s97/rNv/z+v/5PT/fcb/0+z/5/X/JJz/lNH/7fj/4fL/pdf/7/f/p9f/9fr/H5r/8vn/9uL/3PD/yen/+Pz/89f/+/7/8Mv/zOr/mtT/x+o1H6di?AL9klEQVR4XtTYZZLkMAyGYV/RGGRopsFFuPrK7a+2s+P8noreGzylREpFrLpULLTbiaU6n1h3iRFxslpi6sRnVu5ZAslkAZQmobV7CBR7FkAdF08MkglADD0ARR6A2HkAijwAsfMAFHkAYueJQP?xM4TgeABiKUHoNgDEDzuHhcPQPDEoM65V9+6PQOlP4KyfNCqAugKwEEprbVaucdQw8cJZYZShHGUPQbAtfQNnDyq/8/j7k+YCSB48hMfz2lv+pkH70tZEoilR5Gin3le4Slty9KjDUAFLQmjAufkFecWHptXfDyDAUgmzkFzIo8HHcW2CvHx7I1vb4R0DprgsdaW11TT1MZx5OMxJuiMBCd47L3z9kyx9CTVg1NVQYPquubncW7GqSw0v30cPU6fwal8Fpg/xJFKKXb7QL/JGWfEaNKjpLTW3Pa1fBEPD+0z0lAHkeoQs3sqv/l7mue5DpzRa+QXIa5kLUsz8PEocMTXkgqeuiaN54h2s9lMk8w5fY8GjsjgGb1HBo5oJ9/znoMHqcCBJ3AUOOIy9dTGMPLoF/HPY8njOQoccen7oigmy8ej34Ds8nzQdeBocMQTaZqmP7P4HwIOumFXe08j0M76QyQlDw848OD0BA46EuZ2e94w8IAz92A8hXh4JGFoY/PwECfygIPaZ8LQjuPgAWfuGckDDjwbwvRFw8FDnNhTYxToMnlNljHwgPPwVN4z4+D+NFn3a7tuDzixB5xHT32RddvDYd0ecGIPODNP0RAnTdftASfyTCLyNNn2sH4PcWIPceK6+3h2nwX4vgR4f19U/PQJnyVOVEGcuJfdsW0vPz7L85cYO2hRHAnDOF5oSqQAY2InBomRqEFCUI;tnQPwy6zx/0404CdD7/vU1WZF53anlv5vwleflR4YjkMHJ5d7GLWQ6S/P5AOj3q5ODyXNL1c1rk3jwu0GzpAt6FJe1wgNXKAvqXkIZA3D4EcHgeou/M4QGo0Oq4fPfnGgDx6GMQegL72MIg9ALk8qVcPg9jDILcHSYfnJVo/eghE+fQwiD0McnuQdHgeQfkeIM8eBrGHQW4Pkg6PBbFnv6E8exjEHga5PQxiD0DHO1C+3WuRZw+D2MMgtwdJh+cOlKstRHvvHoDYwyC3xwVSc3hwQAmD1kqpLeXZwyD2MMjtYRB77AExaD1VOl+ewnQP6gJdcQe60ddm1pMkSfQbaJNE0Qt5AJI5P2+UP09gGjKIPee7E/og4cl6pJTJoE9ZT7pcLiN7QGprQfmG2k+n/j0oYA+KGQQPdfjdE8m99UjjAUj1oBzztl0uPXvGtuDOU/IoWE87e/TMKwkQezRIAWQ8lJLSu4dB7Kl5FOBB9aPnKKm98Uh4NEivAED5llJV5d9ja7Sn5EFA8Qc8uvjBE8ketEkS9hiQ3QOVJL48oWnWFwcNPOOeaUHtR+8pHjyJ1E2FUJP5fD5C8EA0XYtLFEVJ8jxPGYaN6IpZG6DD2IqK8AMe9OCpJKoGEh6AdFOTXK+rqoqoZ3lqwjXwhCF56rEFFUHYuT3QQDeRasKgqU2lSimfnsB44r4WuqyGi0TFWAcP+sozmIwmDCIKd6R8edqFLu4L6EMYlvEpROeZBf3ZQyBkQcvllHuhfHnOiwz1nBK4t2sZl6HuMDMi8jR/8ERTA0LksaKNb0+mO9hOZHt778qypmOiyhlA8HTYg8P/70GUqwmDlrZ0TZ6RR0+QrVDvabPs9V10WbZAYXiaUfB0Ah48d+69rnKhBgbEnmov0pHJm2elK23hijjwWFE7M6BOGE98DpzvU/VNv0+TyIqkhCcV4hIhf55wp+s9q4Y44rbKkBkKgF6F9QzrR8+x54iUXPAgiYgj1nBV/jwL46lNBTjwUEZUAtSIX55Z6/g9Co71DNgDjvEk87kvT/amO5lWPwS67X6BTuRpBHuGJXtMETjsMSDDgQcyj57Vq67Qhe8G2dR1WRhRG8eNYI/rPleBwx4tAucpnl2ja1H2r0VeT3VdmyMKwPnSE+WC79sja9Qc9kwmvjxnbvUuek9xIhHNAy04OLpu7Po/hDm019xW2NKJye/9B+3A6T09iDjsGbPHwWEPc8gz8OtZ9L0xR3RtQSKArsLpcXHgYQ57TN72wIahZs+5bTUIHKeHOZxizvM89O6hud6Bw3WBATHH7WEOe8B5oudVd/1xh7yFGtSJB8+YPcxhD3Oe52lQZzjsWQDEHLeHOewB56meK3WzHPZkBLqJrz3MYQ84z/R8foLz13fx/dNkPatsccf5Sf1Dnr+pn/Awh1PMcXj+o91eVtuIwSgAa1VCV3mArlJKYTbeTXdx3ZBLL/RCKEyhgLKJhhFINkLViGHaV+9/ItmS5cmQ0OYAwgaZXx+6btyHCMcjoN+lyb+PjazLDjYAat6IcRRO1RGgddtKyZX1y+Ax5uzsbGMG5o0xlhI9l5fnrdbOsZiRcvXu6OgtpScAONwJVNd2W/z39fU3jG7Og3RzHqSrJz1G3IyIEI2PnlNwuFIbkzzWGA8PEj2/Ls9le0qeIfOMH+48H+Ehju5jZPKAU3jYs7DXMk/P5zyInvLUYrH1dE299QSOtUFYVRvjKayiABQ95zx4bO65+vT64uLiMzzPX9j+wHO77ic8b54jJ8HTjEk86WkEWjHl4X3wCPJ0KngwPXZDHBtG7mMGj1Rbj+dcSqm1U9Ej4LkRoQRDdOEpR1cm/tT3SPIcdKjv7eAW5NGEgKdNHrYkjyk9AVQFj1FcKksevedZ8ORpdhRfFp/zsMKDyId5Rnhqxmp43JwnJXoseawhj/uy5xFFsboYLiJnPQbtWHrK9dbtg6MXHijgaZLHWnh88qxKz1KRx3h4zJ5nUXjY4zzl/ik9SfgYj1LwDMkzhDZ5Bnj8Eh71/zwpPANSeOnp2JRHlOst91TswJP2j4dnYPC0mcfBM7Pe0ujmPToDznQoPa7PzoPT5OHw+ENPOt+swvnWwuMyjwfn8DwoRzedB74PWIc+k2AODwKPSvcPswQywVNR/PJuZr6m+2ejeLx/XOPT/cN0/8/nNTLnCTV86Zm5TyV5CLRkiEGy1oIzgLP1qMzjM499Io9Ey0vP4Xsnvd9YpQi0yjyYGc927zeviCPJBI/MPExnJfTTeCxaV3rueY86TBBbcQLFnYKwFa26VfxMaTpx8+P9y5Phz+3ten18fLzz+LwE:6T/qXVOPsKyTx/a63j1jphKArg10IdeeaOCc+OEAdBqwikIPO/B/v+X2s5XhujSNhaeoAre8W98yO3ofTvKSTKlckHEk7/rdl0QvgWorWuKnUTU3u7m9k8Nf0fkpSS+tf7J/O8+Mm5hmarVFVpTRLe/u9DmWF7kqR0Ct/uh3O7nAexOQ9iO/EgiedlnvyyzLMx9038iGkEtKwcNjSpg0cXkj718MHj3wHmfz1FmfMgPvEAtHraxblJRHMp9c2eZyk1gTM6ssLZPLf4zYcydeIZio94WEfxtYcVprryPI8M0OQDaXklZEbq75gPQoQz2gGc3VNi11QY88GjEo:kId6eUTPGUydPKKHYsw4Mv8mqkGqCVkQahcfQkjQgGPNdjzb6wtqGVn1tG25ezhS+nO7jCdVJAd87SmOHrYB1BK1OCV5Z0KolQfCwlHCiR6Lo1nLdwePTtvEn57aZT03TH32nPfN7h5snHiUtXaU0s45QhzymDEFOELDK0eBI54OEjNgDse2mW3JeLK/P6nnvMICeveoIJLSzEwI72kIsSHKgFMt4IhHJKL6tCd/v6FKeX2hnz2sQrBv1o6jJ2SMWcS8rtq9CtE/d4+RqxqTE4/DyO1bbJf3eMqfcDFHoIDEM1fBY4geNsRI/Zi7eBQyrFdBo+OrXMToxNNjHO+Dk+fzfx+QDUMlHoqpqxC1pdnrkw/DbR5s2hs4+mW/HnWx55a09cWn72sk6/GYfQQmnm4ESEzcJh6D+UJIhZDcbNGDO+iqLfWJZ/gij8EsL994HbUWEb9RUv+OWW+eQCEOHLd7SjgUs8XTp2V8Usp/jWfAdNdvdL8npbWa6o5Szw/MhRCN0BNu8dVTxKY3kuNQqadPS5Ws0cUNZ89fcGEBkgbGb70)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AMk?AClCAM?ADBLikW)wFBMVEX:/8BAQF0dHT8/Pzq6urk5OT+/v7w8PDn5+fe3t4WFhZ5eXnc3Nz09PQtLS3U1NTh4eGVlZX4+PiJiYnf39/u7u76+vo@CRcXFx2dnaYmJitra1BQUGmpqYoKCi1tbXi4uJqamrJycmOjo5kZGTGxsaxsbHd3d3o6Ojs7OzOzs57e3twcHCSkpJ/f39LS0vCwsI4ODiC;K5ubl8fHyAgID29vacnJx1dXXX19e9vb2;KBVVVXS0tLa2tqFhYUirMo7?AJK0lEQVR4XtybB470NgxGRbn36b3P1t7L35L73yq7DrGywbEDWOIAzruAQALm+0zLok1YQ0v8L+hd+Jfi/0Dif+KJ9uP5Oa0vxR36SCJajXXpf9MTLWZk+4qLUauHVhHbavez3v5SXDtw/DLt1IrlBwEtxWthIU7wyaD9pfQ6Qc7AV7RSK8kgQDo+0k6teAGiSmmpVoYBKaWtWrGDAnQWu2wqdkx3yfVrSxkKHpIgdlyGIYwcTyveeRzHvvFSOgFyLK24dpxjG4/BpVL4rWL5MWK8S0n1ALvoMWSKGInPtdvkzMrS86pKsUcMmSJWnGs2KruWM6tGK1w+waFVZKDVqoeplHLp/rdWhgw2seMynebNss5kzrpOK3wD2HXiEs210nuXyGmdVviisLWJFRqz2NtLRE6zGq3g0OJgNIgRnfm1eZKKyCkPlUGg2JgfWlcLGw86jxWDZh3LIlnkyavSimN+aM0BHhM8SJWyaXbQzw9ZZl+hFd98IXv45N7Cg2Kk2UHWXBIOa8U27/Ut5GzxoEsMXo3m1ttMEg5rxfz09e4B6eJBF1+Cb3bQsC8pVCtOMDA/fYMUvjn71krQ7KDOqyQc1IpvfmjtQiiww4OcXrMJGMkqpn8JXuZQIlTn6Q0tyosvWJlAmbHOQFlLAtEKG6MFlHnUiA/uUhKIVtjwUigz0ZnnZAQTrXDgdHOrb0IoMRca9PqyjqXgILuW3bxHOygQXgkt7DtZx09hEPpGdwbfpI7QpBPJaj7MV2LNi+rtAnKfaORoJJvKKqIrYRb6Rhdh8GoUGc9CzNHIqazgLhCGoW90bq6V26Y5OsQcXa+V/qUwCX2j6+Qz5xHCddMcnZ6EcCMU7q+DI/hNGIW+0d3l6rUXV01z9L2UE8zRyOhWEuYMLlmaU28nhXAiP7nHHI0kff6hhR3TVy/m6PBE5qQAu2qtRH8EB7Rjy8Y5enwjkVTlaKKVp40wzaabHOpYJprQB0ilYgXjCq3sPY5n/XZkqGOjk3Ih8mYMjyOheJDIu+kIjNubX5aRjg0XAL9liW0IE1co5mposQUU/Y7FK3zWi5wARMUDv7QyfTAfUGblgIJ1nTXq2GkI460kUK1cZ8IYdHszzXQ7tgRY3UgC1crMEQah25uoo9exJxxaBNQKG3R7c2drdewV4ERWlhKeCwV7QOlrpTl3AuFWVrCC1BN8WDOju4HRorqUmxAWI8FHjwQU3YXMWBKIVhggAUV3OjohrKSCaoUBf5YciHTa0/FPWDe/noR5flxj1NIPKLggQ57zVyzKzQpgybQLwqglTjUjXYZNQboAE0nYjiE8FYagX/fRu2sVULSagkQANHqFsAoE+y7IzQPKqVb+nNdq5TfAYii4d0EYUH5oNuWhRispwAmDSxy6CxLJzNdvCtWKKqTPssAmUcvggkxpJS28M8L8KFErae6OqLIpO4D0+1kPd8eJWreW/tdD2pQz1MokhLRz7Kilf+WBauVrFelxfaui2zOGKw+olRT3/NpQFdOo9drhuPKAWgG4Zcwn5ajVH/JceUCtrIVJqIpV1Jr1jF15oFqxF9zfqlTUmlsGrzxQrRwjn7hLjZX/s6zjbiiYoCrGqBVlbbvykB1UcdJ1+K888OcTXXp7WcHHF0or/PlEF++J1lBgLVigHVwKbfyXg2VM/+VZMDEk36r0yaakjinyciV4oKsg/b/N0K5IoYwoiv4eCEboKkj/b7N1oRAs44s9o0/0V0H4t9kF0QoWouq4fn8TvKhVkM7fZpeHtPJPO3fgkzgShQH8SzqAm9lmaLsQweFBQcfzPF0OUbBU9:/r45pZ0TGwBqWGF5yvyQ4NEPiF+C9TJqHDeJzzI9393B/Y+5NjzptlmZvb0mV43Y+xReIDr5XFY12TWvYQ9smyPxR4Qscfq8q/bF72qwtXRIbJBvhpMXX+6bNVG+5dEHuOjhpne+BUdBW6iS3t6sUp8oXrVDYVnpVEhPhdPnJ0pDYDruyQaY4aV1XtEI327sSea/gmbUClrIrFWNNmDUlgM0Tv9c+CAh/CcqvCmPiwgi7qAlYf1i0Qq3dRZEsWIYsrQAoqhjAP5F+r31Q1TUDy7hVRkSlJgVIqqk/GYcPfGYIMKG1MdZETrkqSdqsCZHKXMI4p7W4zppBUhFXGwT8q0QVt1QDqpMooiQhdZSiFbruYoecDFECS5KEpMy9PzCkYcVktxT1DlIk/YaarC60iXQRS9kGBhJEprDLw9wEAT43+StIoyTtkuicZOySSCrbsArKBNUBBZEm8TGJ+3RRIlAhMkccW97fVryCtNREqk5SStJtlyRx7wMSe5kI/jo+JrEKm0ULn+SYY8ufGmLOKDEJ0cD9T2K9LOokKClXAoAmY6T7LikX2n38jE8.zqOc5+AyBxzbDkk8FFhQxiisgBUSaUi0gQISVTIupAlpAuREElV14cEqDcYSca9qkqmS1+wjNt9uKi9N8oNQpCurpJ09dTYaFD2ylhTDsAula/JtIatMm38nzwj0gNYbveB/NjyHh18RhwsPy9u43jivT2FldauID9ScLG/rYy64GJ/W2lEOH2NfvzbtiKaOG3+xmr0m1rcAgNuCHDfr2F8i3HCwp912dNW2hyKVrpYOlc728oo4tA7Jkuvp3a0lTMWRWu23AjPNTesitbyvWD+vnlmT4pMitZyWzAE6H4Ng4HhMtQP2kojBQvNwTI0aIKlqN8LDcFTnPUCBZgSs60cty9gazTvbcwaYEzJnjdpgbWxdBYpmDOyYqJg4oafaCW37us8P8qkC5a6ffn4DO9qLqXk2iHjRQNOZG4rD2AuXc2dMVhrJXPv/hmMNbL7Dc5t8vnX/XtZC0xdzQL9FDwVs9AqAktNMwsZrgevwa9QAZ6e+llgDKY6d9l7k2ewdTbJNpIzMPZ98mbVAmsvE+eiC+amd5UigvOad8BSNEzW/oY31f9epkyjXCSLb/Au9JpsgqXUCDjRna4swNzT/KczBGsi:lmDMauL8uN81ewNT7fkv8FpobnAfkEni4uQxOuB69VHlpxPXgl/4QMeEonvcAUTHWy+XszBbYa2Wxj0gBjr9mbxf8Hr1NxlVSmEZxmBJ6aD/1+f/ECL+p2uUaJhqvBCF4Udb8yyn/BHl8QvbrnqQ)BJRU5Er@ggg==!I#!