["$ file..E$ ","A(eBEf[(CC|F5784558}.(BBBBZC","File.ReadAllLines"," returns an array. This array contains a string for each line in the file specified. We use this method. We then look inside its .NET Framework implementation to see how it works. It is found in the System.IO namespace.","Example."," This example program specifies a file on the disk. To have it run correctly, change the filename to one that exists. ReadAllLines gets a string array from the file. The string array returned can be used as any other string array. ","Then: ","We can use \"foreach\" or \"for\" to loop over the file's data in a clean and intuitive way.","This program reads in a file, counts its lines, and counts all chars in each line.","C# program that calls File.ReadAllLines","\n\nusing System;\nusing System.IO;\n\nclass A\n{\n static void Main()\n {\n ","string[]"," lines = ","File.ReadAllLines","(","\"C:\\\\rearrange.txt\"",");\n\n Console.WriteLine(","\"Length: {0}\"",", lines.Length);\n Console.WriteLine(","\"First: {0}\"",", lines[0]);\n\n int count = 0;\n ","foreach"," (string line in lines)\n {\n count++;\n }\n\n int c = 0;\n ","for"," (int i = 0; i < lines.Length; i++)\n {\n c++;\n }\n\n Console.WriteLine(","\"Count: {0}\"",", count);\n Console.WriteLine(","\"C: {0}\"",", c);\n }\n}\n\n","\n\nLength: 430\nFirst: /_1=D1\nCount: 430\nC: 430","Implementation."," The File.ReadAllLines method is not a low-level implementation. Instead, it uses a List and the StreamReader type, and then ToArray, to return the array. This is inefficient if you want to put a file into a List.","If you need"," to optimize a File.ReadAllLines call, you could estimate the capacity of the List in its constructor, which would reduce resizes. You could also avoid ToArray if you want to keep the List. ","List ","list","StreamReader ","streamreader","ToArray ","toarray","Capacity ","capacity","Summary."," We looked at the File.ReadAllLines method in the .NET Framework version 4.0. This is a convenience method that uses StreamReader and List internally. It can be useful in quick programs where you simply want all the lines in a file. ","But: ","If you need to save memory, reading in the lines one-by-one and processing them as you read them would be effective."]

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAL?yAMAIgABEQECEQH/xABq?E?gMBAQE)))?QMCBAUGBwgQ?EDAgMDBwUK.@)?ABAgMEEQUSIRMiMQYUMkFRYZEHI1JxoRUzYoGCkrHB0dIkNUJTcqOksvEWFyWiw9Ph4/A0Q1Rjg4SzwuL/2gAMAw?AQAC?A/APv4)ABTKu8XGu9d5fWDJnEEoQSgMzNDJDFDJAYKZ?GI)IAJBBi92WwCJczBgj1MgTYkBAC)))Aaxe9d1SgGbCSUMSUBkWIZNK0UsbwBgpk?Yg?EEEqVve1vScndrYAyuVSu3kG1j9NPFCl70zrqDONq34dRe1xmims15nnBllNlvAkxb0UMgVK)?AQRcEki5grivad4Jy3LJOiVFU0i3bqYI53aoLWsNgkou7tUZndqgZTYuWt6KGjnd2qbiO0QGD0sWEFecjOClXWLQV5tCMxNjFXoZqaNa7zjW9iGzmXtPP19RJzuTK9bItrIq9SBUshs0TdrKqJplaq/Ub9zPMcXby/nHeKkpPL6bvFSDorTL2odzMZNdqhw0qJfTd4qbVBJJLVxMzu434r1JcFb6dWtVyqmiKvgeiQkh.c0)?xUwuZGjiEjo4N1Va5zkTjZe36gWRtzORvapsZjVzmgySb8475ynOifU/npPnL9oN6Ol6W8mljvOXfLGmhQMkzOzuc7TtVTqNaShVKiMXLe9iDlY1ygwTk+2F2M1fNec59j5uSTNs8ub3prrdJOJ17HzXysw7aDCtP8AiP7IKa7nLbQ6j/KfyDjXfxj9lqv7ofzu+T+/44/Zar+5Pz9iFPvLoch8WvAxVStVVeJ+yXS68Rndbh7fsuc+Sbzi69n0G0jzRrqqSFGbO29e6ql+FuHiQyNHqt76G6l7Jr1IYuXKialSVDLJxKp6uNmXRev/AFxFJUulmjar7qt9PkqJYkaxVRLWtqbGY8zI/PI9/pOX6TqVOIxRU0stnbjHO6uz1nlvdul9CTwb946ciKlkU6GDU73pLI1qu1Runip0wc33apfQk8G/eHu3S+hJ4N+8VnX5tN6CnTOlgjfwpz+pjF9qoea926X0JPBv3j0vJipjqoZ542u6SM3kTszdq+kDWrIpI6d7nNVE0TxPQoSYoZA4I)ABgpzMUX3pnrOopx8Rdmqkb6LU9oNimS8idyKpVE0ogh4aG3CTTsSyA289kd8Rs00W7w6zayiNu6hYSaL36qa1Qnmn/AKK/QfO+X7M9Dh3/AHH0sPo0/vb/AFL9B5fFIKCsiZFX0vOGw5tn5xzLZregvcFJYxz2ZWprmRT8/YmxMynCe3ePuNbgfJS67TBv2qf7xy34DyLv+IP2yo+8YOLW0FUvCO/ym/ae3rMcpaWukpZkfmZl3rJl6KO7b9Z3kdofNq2qfXVclW9qNdIqbvUmiNt4IXy4lX1F9tUSOT0cyo35rbIaNVTumyIioiNv7bHRbhWjFauVyom0ut97u9p9AdM29syX7LmrUybTLkXt+o8G1VultF6lQ246+tjVMk7+5HLmTwddCyjpI4JGyq5znNva1rcLFkmDPezK2Vuva231qd7FpFZh8utlflanzkVfYeXO/hU8+J1TYaxGyxR3l3mt10ya6W/KOnW0NFPQ1XN6eNkkaO3msa3eYmbTQ6Er0e66dhdRKlA3m0iZnOfmc5q7qZt1OPqPGnd5MM/CZpvQYjPnL/8AJqYNCyXEoGSsR7N/dcl0Xcd1HtaKmo4nPijgYxzkR26xESycCIukW4tVpHE+Gy3e1PVx/wAC2KQ3I3ocyS0UzmdX2pc6t42W3U3ltwQvkTgeYV1y5rixDXWzVQuYuhrr2lZmADE?AGKopzZ8OqJZ3y5mWcvat7Iluw6gBnHI5iqreyxz46Gb0m+K/YTFRTM62+K/Yb4Bksz9eBgjVt1E5V7jIE3KiiSF72ObdOCpqcmowWqmvlfH4u+6d0EFkcr4+jb4z5ri1G+kqH00qtzst0b21RHdnecOVmp6nlOv9LVHyP/ABtPMzdZCnqaRFdDG9eLmtVfjQ1iUMHO1Mc+pGU2tENlpcxprxG/CwlEGex3uTVPuzzd6M8P4odejdRTJNzVc2Zyum6Wrnde929x4zFZZ6LBaqeklfBUyLFBDNE5WvbmdtHK1zfgRqnxnOwWTlDTYxhrMUxOpqaWtYmaGWolkZkqEdC3O2RbXau93EnArp0Soei3W+XVF4ev/SHpsLpVgxhkf5t0jf6rj10Dt50VurN4/wADx2LRVVNg2JS0kslPUtijSOaJyskavOIc2VzFul23Q8ej+WMGGpjTMaqnQ84Wl2UlRLI7Pk2uscmZmWxLVsU4pPtJUb8FEv4qfUZkft35uOZf8Dsq/VvwlynB5OVMmKYbh2IztTbTNTbaJZXxyOic5LaJmVlz4RRVnLvFfdDmfKOuj9zaOXEZtrW1DUdFArczWbzt7f0TRC+WRFRmnUcxOs/SkirnT1GzH0UPlfkf5V4rylw/EabGZlqarDZIstS5EzOjnR+VrsvSVuyXVe05vlg5QYzT43gPJ/AsQnoaidrpJebTPhz7eRsMO02XFPNu8StyorUB9pJPkXkmxvGPd3GMAxzEJ66ohauXbzSTZX00myk2e11Tp/HY9ZyorcTwnE6eqgqH8znRPNX3Noz8n1O09pWSexB57CMUnxTEJHMe7m+rsnUjbpl+NQAeh))?AB4LlNT1L8WqHMie9rsnRRXf7tp5efM1Va5F776KfRMTvz2X5P7qGm9jHtVr2o79JLobHN7tRyO4oinTgxzYsbG+FHIxEbdHWXd04WU+dPU8HF5RVv+Lf1/8AlH3GfB8PmT/Z2/J3f3bH5ZpWaoUPareJlNjKzZebZo7Xzo5Gre/C3HvPpNJy5WRU/o/9d/lns+TmKri6S+Y2Oyy/lZ+lm+C30T5Jh0S3Q+rcgaSaZlXs25suy60T0+0xuZQV0znoksm7re6N7Du4zDtKekpvhPmd7GN/9i+XC8RYtK6stmgY2Kn6F2tiXRvm+zN1noaWKpiRG2ez1XRDpwNdbiviSa1S3M9z8yaqc7EqXnFBV6e/MY79ZG88pUcn05klX/zFiyW4bqOvc+ioxb5rqWx5sq6rx7Qa0q5lzKt7IiHPwqKHmNFzduSJsceRnZp/E/PKcnXYmzE8kmz9z6OSuy5c2fZvjY5nd07314H6Yyiy9qmS62Kj5d5Ekov5N1jYI8lW2sdzt1+nuN2Tu5ES6HzrlxPjPKDyty03J9iTYlRSRQ4cy8ej6SPbv9/XZ7r2vXe06j9LmRC8LA/OXI+sxnAfKdDHyk8xidVUOjxH3uzpK1udvvHm950jXbuh9p5etj/kzU1D+lTvifH+k6RsX7r1PSggHj/J29lRhNRVfl7dYs36DGOt/XB7)))?HDxFn4XJ8n91DVyHUq4/Pv77fQhrbI3Wv3Gp3Ia0qcTU2R+SqJnA/YOzLVpWdqmhW1MUSs2irvX4IRTZ7vytvwvrY/MWGw8ND6/wCTiPcrv+j/AGh75KKP4XsJWBsStyqvWa0VVE96IxVVVvxSxuXfbVLfHctiNlqJ2FUaaGw02s1yLk5U7CcqAkki5AJ)))))?BrTM31KFjN1yalLmljXFMiGtkLiHNJOVjDXOWHKirbPwS/oiksiyXW3D6yTGROj8ZndO0KiXQ1qONyStVUVOPFO42XqioupkzgXIYNLDrohgSADM))))))EKYKWGNiUUwclynKY5S+xqtapjJKjLXS97laRXUtyGTWhquLCEe13Ata2wRDIAyMg)))))))ACLFKIXmGTvKZmudl07QRYzMdTIiNFRUuliVJABeQ)))?Af/2Q==%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEXv2f::+VlZX29vYeLcrO)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL4?ABBCAM?ABYbu5j)MFBMVEX:/+1wv+jqv9siv/p6:W3f8zZv9gb:19v9NK/8zAP999:S:8z:8zzP+z6P/0gInF?ABg0lEQVR4XtXXy1ICURAD0H7c96D+/9/KQqkhlEKD0iTrWZzKYtJXbou2s+jvn1Q55f2mfAMOb6Ec5D6+c/ObcvOdm98qN9+5+a1w842b3wo33/6Dv2H22g3zCL+PKF/uSKDsGL8pN9+5+U25+c7Nb5Wb74R8h+ki41eYLja+Qf1k/AL1k/HF4XIg4ytMFxl/X7/z8aF+Ov6A6bqR:FTnswXa2B96LmyPZtfoH4yvsDlwMaHy4GLj/Xz8RXqJ+PD5UDGh+ni448O08XEh+lSrtUVnC6qm+ey/krGx+li4+N0sfHh7Cfj43Sx8bF+Mj5OFxkf67c8frF+jJUovzRIBr/4+kovMb5YPr/OdcrUGL9k8FG/Tw3xxbP55/o1R4hfk/m6IBbii+fyJ/JnjK+5/HWRGuJLfzG+xvh6lX89f8m3GH90ar7Ya/FrkF8y+XNhRpAvlsi3+H8fUxP5A+svYb54Hl8Uy4/zNZEvCvo4XzyRLzrhXg7zNZMvw/o6ptsQpvDnE+wJyVGQ5SG7)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEX/6Nn:/+VlZX29va5ksB5)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAJYAzQMAIgABEQECEQH/xACV?ACAgMBAQ)))?BAMFAQIGBwgQ?ECBAMFBAYHBAgHAQ)IBAwAEERIFEyEiMTJBUQYjYXEHFEJSgaEVJDNikbHBQ3KC0SU0Y3OSovDxCBZTk6Oys+ER?ICAQMBBwIEBQQDAQ)ECABEDEiExBBMiQVFhcYEykUKhsdEUcpLB8AVSwvEjYoLS/9oADAM?AEBAgEAPwD3+CCCCEIIIIIQjEZXdEec37yfBYLhJIxGLx6pGhPB118NVjFwmxqtIjdMqcK8tOtYgexBhs8u7vPc840ScW/iW371N8ZGPId9JrnfxmDlQbXvIp3OuFtpUtu2y12UpxLFbi8+RvNyUlVvLRe81QPJFi5dnGmxTNMBAve3UjBJKTCHsCWid7TRapyWJsThNLPiJCg1+nzI3ZmBCOoPr4Tg5jFH2HSA0LevslaqJzRaboy1jQmvFF5iWAEEv9ScUdFuCinWq+fKOSd7M4+YK40yBDX3uXhpFni6foeoTV2ox713iB+36yL+Kzo2nQD7frU6JjG/7X5w832jP2iEo8/SRxOUNzPlzBGl2y3py/HfF3JYecyIlMvkLZIuw0iKf5Rpn/0nHjXWuVWX0sn4C3Jh1ZYgaL+23z4TsGu0cqX2lQ/zQ6ziks/9k6JeS6/zjlncPwFgG2nidYNzZu2iJNOKlFSFZjBsPcllfw3EyOxdojpYpe7sppFc2JQfxgeqNGE7/FfBuj5TvRmhiYXg6x5Wsx2pw1SykN1kKbYqLoU8E3/gkPSXbSZrZNy217VlRJPMS/nAMDFdSEP7QfGVNEVPSUVIzHNyHaOSmKbatl7riW/Pd84vmnxcFCFUXxTVI0ZGX6hI5NBAkEawhBBBBCEEEEEIQQQQQmjq90evsr+UUjTwZ4ttvA4ZV2a/LnFvOEoycwVK92enkKxxzeKd4n1dGjqlxBzpDfS4S6vt6eEXzsAVske0uHWgzTbKjRAnslVUXfoqwqnrrNDJxfgVYVcFybmDeemVyq7LfNE5J4xZSOSCqxdyTiRNeqQwRoTem2Fij87mKk212duN4s486T4PAredRPtEVR+Oqaxq7UhtefHMrxiipp0okMvySAt2m+CcCWGx1wgbzEptKmqp4QK6d3T7Ch5eE1N0dRPnz5ysKXamCUHX1sBNkqKtfCkbyT8xItk024uXX8PFIkpLG8TLLgmYohEIqiqicljf1ZgnSYJ1MwRuJtOJPCJmYFdL2Vq+JhSdQZOeLuTSs1MuqptPIf8AZHs/GsW4OmScSEmmwNNPjHDvYpLypFlS0w+AfaOUQRH+fwi1YxSTbbE2ryF1Btu9kl95PCIs/REgd3b+UfnN8ecgXzfO86JWQdHvgH8+ekedYn2Dx9nEnp/B8XK14jMGqFeFy3ZYqK8PSH+0Pap7CW1eaO8zNAbCq7WnFs8ok7PdqpzFcKmXb2/W2albVbt+zXwVNIkw9N1mDGcq6GRyAVYd3/BN+3xkBrqjzsdxvuvl7zlsTe7c4FRiZB2YbtvzREXB2fe0uSKge1+MVMMwBvr3du7X9F6x6thWPyGMS4ScwyYOPIoGye3y97pFO7JIzNnZKpLDXgEeVdIyuJWyOudMmJxuQr9x/IqDdfEnH+ouqhkTFk8NWkK4P9P7Ti5KcxCaMe+Izrs0Wmqc6abo6BiSmpp1XZlCNwqbR1VdPGOrw3CRNCcYlwG5e8K0UqS9Vi6awgRRLiT8KxAP4PpmbskAY2Cdr39ptm6nqOqIZhQHG5P57TlpHB1uQrNPOkdHJyZtINlRKm1rvWLJqWl2ulfnEyqAc0Hz0hbL1Bc8febKprciatoVE1qsSRhVTqkCEnVPhC585JMwQQRiEwRCAqZqgiKbRbkRE5rFTLdquzE5N+oSmNyExOVt9VammTdu/uxO75R8/enH0iz2IYzM9kcKfNjDJHucQyy/rD3tgVvsBw+aLDfZn/h7m8QwFnFcSxYsPxSYbF+Ulm2/sa7becd113W3hghPf3caweXnBw9/EJZqdNREJU3mxduPgHLuu2uXWHo+OcPlsck/SzhMn2kfdmcWl8ZkGpl99wnTOx9qzb2vYtt+EfY0EJFMCpy7oDS4gJPCqou+OSLDX7ScIRHLuzPC3p1SGO0PbjDcB7Q4N2YmJd5+bxwrGibtsbG5G7nLi3aruTlCuI9vsKw3tPhfZI5VxyexMFcAhILGxqf2utdctbab4nw53xA6Re4kGfEMhG9EAwCWmDRCBsrbUPdyVKpDQMk4QCDZ3D7S6IsW4T4/9CN/WQr9mm+sTv1OXe8VVFxixUB2l/ET9WfJpWjOwPFU+McB2ldbmpOSmDQ3AZvABopClFt/xR6abu7aCnlWqfpCjqMGhXquWf7NsRTXqq0jboutOJ+0bGWo33fYwzdOp?yquxsN8Ubnl/ZzF5eQmjmbCG0VHhVUVF36USOgmzxOZxFualpZn1N8RPPvIXN3uU/WL9MMkdu8lPVMvTh8+SxIptSqoUu4pn5IiIlIey9djyZe0x4W1FdJ1fT/aQjFoQ2+NtjwdR9623nL40uLlhrjsu6jTgAq2iO0tE4QtTfFBgOMPui2w8y464C2nsFfbX2udfGPQlxBJZhG77iJS9mlvTnvhL1hmXdIyVNqlxim2i/vxnD1XcZTgv/AG76Zh8eJBWTKi3bAVq+nbSGTzhMYUE1NszX0WJZYqjbtqVTdy8YCw8mjFqWwrJmde80ENfZOyukRrijBulnzcyA14gVeH3RGsOtdo0ootCeWPtmtVL71PGF3ydSpVAhYAeJZf7zIHTdmXbKLPgNy1+g4qW2HyZsGn1NpkbE2wXW/wBod26Hil0PZMEIKdOcUEt2lfJL32kt04F684shxKYyzcOXO0V6jVfLWK/MmYNqfSpO31fuY5jbDpOgMwQ7kKaHzVRuTRloyabWlyXWa8odiulZs3iEsghGvGZJ8k5xYxE5tud/cSdBSjyPHtKSZyPWZzTboOVRNb6JWlPGByovB6+i25NB3rtU/OLNZ2XzDZuXMBF2aL/pY1WflqBxbdbNlVr8onDvsNDcV68eH2ipxJZPaL9V1W3PDC9+YmDP9GZkzXuxPKr95Nn57oZw1prIF5viMUv6ViRZ6XsFyq2kqpwrXZ8I3YmmZiuUq6InJU0XzjR2cq1qQC1+nt95vjTGHWnUkLXqfX7SaCCCIYzPiHGFH/nmf+lOD6We9duru9ZLN/WPt1FSiax83+mv0X4mxi0z2wwNgpuRnSzJ9hoVJxh72nLR1ID4lXkta6Qj2S9P2M9ncIbwjFMNHF/VhRuWmCfVhwQHhF3u3r/PSCE+milZbMzslvNqneWpd4LdSu@49hsxjGDzuFys4eHvTbStDONIt7d3tBtBr8Y8Z7A9svSn227XN4w1Lg12ctJt+XdQmpPLr+zctIje6EiL46R6v2x7KMdssH+h5mbfkms0Hs6VUUc2ELZqSbtqCE+c3PR5MYl6UXeyD3aNybOVZz/AKVc7yY7trNybc37QSL390Yw/wBH8/jnpKxPs452gfecwhr1j6Wobkxs5NrY3OcYE+gltaUWH+xvobdx/H8fan5ydkpHC3iakZ7KynJu43RF4M32bW7v4kjXsJ6JfpecxWYxx+dkm5GYRmTIAVk5jU7ne99hUFN2+u/SMqLIAF7zVjQJJoV5T3bDJT6Lw6Uw0nnJkpRkGTmX65jpCKXunqWpFVd8M3lrGxjeanTiWv4xkx7rLom/i5w8KA49JWkEsWPjZuLlMKNYjz743eBNbqVWIKrVSrVeqxKoBHEw4FNubvbbmbG8rduypXLr0TziF15KKsZJdU69ISedWpV1VenTfEyJcgbYX94pMzhCWxXn8YSJ560neSr13qnhG024IbPPrzirdfUhtVdPl1hsoukbVf6RMuGYmrqMg7eBuXjsLwV2lr7qfCNmp1dd2m+m/wAoqG5i09yEn+uUWExj42H9UYuoljghRR/OIsmFrskkGTX+FVs+fFSwZxNBXZTUarvosWTc6RAhVWyvWiL4xy0pOvNzDc40oidfaG5KF4LFszjieskbLAN307qlwJTnbXnCvUdPiagQTtfEmxM1DS6g3TKSQa9+J1ciTxNi7eBB7ICVSSsdO0eY0DngkcVJzjlUcqLdxX2N0RE0pomtI6zDppZllbuKsV2XCqfQKEtcOTVsTZry/aLTEnMOzD7wAolUSZO5NbUtpv5xgpSZy5QMpe5Qr7SFF1XrXwhp3EQaccAmj7ql5aURF3c4CxAcw2xaMrKV3bl1RU1jcNlod3/P8MjKYLbvmyd/6tXl6QUHjkzvZTOtIAGqc0t4q9N8SSTZNsALgWOUtLdrTxjR2fynMvKOtmZy4efPlGXJ0G2mnrCIXVRB3Vqu5F1jQhyPp+reSA4w2rUSUWjf68RqCIJqaCVASJFK5bRpBLzKPkewQK3TipGmhtOqpLrXVoveTwm5hOFPOE87Iy7jpLtOG0BEq9eGsOQRrNphEQUQRRLactEREjMEEEJguEvJYoZ1SF/foSJ/JYvj4S8liongQhA/H8/9on6c03vtIc4tfbeLCa0SNjdW3lXxjQUjBtrDNRU8SB8703rotdNK+CxAKXRuaWr4wDSJxsNpGdpCdBhGYcG1enWLB6kV04I2LpE2KiZG24qUGIvZYrrr+vhFA7PJU;m/wD/AGLmcFKLql6rzWKdyTb+1sUyovDpuiyYY+zAJFjfcgfrFF09pwea2HjIEm0u3Iib/P4xo48prsry5axKZsEzZXapurCoiAL41RdUrGCUIA8j7yYIQxbTpPrHmH7Gud36pDMs/wB6mmtU8dEiGXdlK98S2f2dFKv8XKGvWMKqJhKvnZ7zlgr52ItYT6jSSdOo14BbP22mceMk0V2J3a6HzOmw8W3kbO8yKqfYjciJzrzjrsEcFqaOXuUrx503x5q3MYZntuOPepNWrsNOd4uuzs7/AJRf4Vj0u1PtBnoTNw2G6KiX37nPHyirykMGQKRQ+k/UD6x7HS5ECvYq+DRHkp8/Sd8kkpTjr7wgbZ0t31SlKaUpEbknM+suTAI1tUy7lWo20ovDFiipRF5dYIVGVvyqMnAhFb/UW9bP/crpqRemXr9i3Ls3rXz3dY2clZtyXZauC9skLetNlPKH4IO1b07sOwTvc97neIOy868CC6TZbalbSuzRLR4a9Y3kZV6WE8w02l2QGuz/AIocgjByNpK7UfIQGFQweySPEmEEEEaSWEEEEEJguEvJYr320cZIa05/hrFgXCXksKUiTGa+80cXKkefT8ICUablou9UWM5dhEHRVSMGiUh3a4kR5xcgZFdy16qtVjVUGnWI3V2oB3RNW13IjdzVy2K2dPYXSLFxpa7t8ITDK2qJRNiq5G047FEO5bV16RU3vEig0pdLU1VV6JHTT0sNy/nFajWQ4jzCqDre025zFVh7Nkx0utdQA8AOf.48h3ApTfJ4qUzbL1220Tf7yKNVjQwIVXVa67+UWsxM4hMEJTcwT5Ci23U0RfhFbNJaQ67W/l4xnYpaij95IXZslOVO34SSPzqatsOmW9E68ty1i0bxJcPbG+SB/M1A3KomnhuWKbOe1K/+GlImlZgGnBfftMdeMhHl9+kQZlZgNIo+J/7qTAIQe0rIo4QWCT5WtS+ke0ptC4Hq5MtHwHKsg64JVXZ7zl8I6GXxxJlo2QR9pwQS3ZG41p1olq+UcyOOh6sfqoEw+I924y83xL7aiCbvNYQGZdxBhyansWdCbYTYE3RASHl94l3xVZ3XGSDkCaGrIR3+0v45m4wdtj1HEFojSrgMV9tBthtuWIM9y7PzhT2Dyr5iQHZlnfxXNrZ898WccF6NMZl5xmcw5t914mVB76wSEW2lhW/dqKfjHexXm7PnLL4hBBBBCEEEEEIQQQQQhBBBBCYXcvlEFsMLuiO2MgzBErZlrvVLrCjgLFtMN6IsIuNlDWN9hFsq7mVriCK7vjEInrDUyy54D5wkoEHOHEojmLEEczZ013itITfJYldPZitmZlvLXvRu80VdPCJ8acfaRMu0rMVNWiS9PFPLzjnXphw12UQfzp5xZTBKZleWhb4XBmQsXR05mqWACbNOdUpWHyqqq9otna9ILRYC2IXcji9h+cSFnEHrslknR+6i/pELuGYga5hskAU9pFTnFwjUxw/RM2SfcMxRem4ITNzDAMxCRmM+tpfWNpNddDS2N8eahShQDspK3/VZFTYowoaSzEWdD42UfZ9pTuSx2FrrThrupErKYe42gkDgu0T7QhUbudEpFoY4LkmHqUwL13G+8ir59zpGsrIdnchTm2HCOi/tnAp/wBts/nEGXOz60U6dPOkBtX8u8Zx4KUM+LIxO6laavXusdveVE13SrpYNOlEjWbZBm3OknWyNOJwlRFT3h2N2sW6SWFX9+2r0vbwhMOl/wDVOmkQzk/gxNjKELgNiQ7bzquOBaiXCF2lFSKTMRjIGPU6k97u9+iORRsVH8J7RgGNMo8Ca29K8fKP+jibPCe1cuy+ih64JSx3ffS9v8TEY93jwLC5nAWJwZiVaenn2jBxnONvuibW68cpB3W11j3iWmG5uWZmmdpp8BdbL7ppcnyhTIVLnS2rYHhv+SyRMmu7BBFc1e:AK2SPmSwQQRpN4QQQQQhBBBBCEEEEEIRikZgghI3B2VhF8Nlaoqovu1r8osVSE30KlBVdOaRJjMjcShfZbFdkVrrqSqq6+cR1t5V8F1h58f94RIvCLFDYiTjcyB211VvH8NIqZqSlRVSbBd9d9dfjFu6RU3RWTSHauyRlvtRURFSGcRI9vKL5LNjf4nOzokw4jja2/ovKKedmpx53ON5Scom1VBWiJu2acou3ZScmXUlwTvDXZHfqvJd0VEz9TcdlZkUz2y29PDdviw7TBYVz39N8b6feR4ceX8AD6DxzzFQmJu77d0Oehlv/GGJdmXuQZuuQSqTm1Yv710KG8wS7Cpdp/qsXEvg0/MNBMgy0+xVFLvmlRf3kuRY2HZBT3x/9ef3E2ytkFdohW9j+H85ltnsy0HdTD2/2VE/mIxrNrLsqcrIzKuSzibWipVei1SGDaZkyDMwiU/g26U/cc03xO08TQXNYfJ5Z0ItEM9375WxWZ2RiSzg3yTQvf0bwqTI/ZkMA7i7F5FKEj4ux4SsYlZaz6yBXVThLl4J+sX+GPYSLA+rMJ3dQ74pci/8q1iHD8Xw+YIsxpBbt+xydpOpc9IYmx7KOpbOlLcPBauYl3JEtuSEAyo94sxCvwCoon08aEcfpurc6c3TZGKksURTl249o48fZ8zDupApyuWPetNubfd29zcXtU0jv8LZZlpFmUl20aZlhRlpsV2RAES23wpHA4BhuEOTbJYU463LtCq2Wrlrr99u6ty+9HeyCCFwipfxeEQ5jkIp8vaUb5P95LjOMDQmNseklSG5+RQAjsEEELySEEEEEIQQQQQhBBBBCEEEEEIRA8GsTxghSMg0ZgixKh9tNU5xXG2lV1pTd4xfuy9yQqsklV2fKGUzhRIWw3KlJcnk2eKE3WxqN9aLoWnLnHRDKqCKNqefOMepp0ReVFSqRt/GUTv+81HTCuCb5nKTGFNTqn6mSAYftD0r4UiqnMKwdiXD6sExOVXPOpKq0X3a/lHbzWHZ;LbY/BERfjFeODzeZmZyS5N8OwhV8oF6w2G7Tj4Ztq7zSTsPAWoO96mWv6ZzE6vZhuVG7DmQmrUEe4dbKvvIpJSqQlZgj492089p/VrRIf3qhtR2swxjHD6268P92Kf+qJFa7KYuwYpnGyRp7NNfOJcGYqneY0WLaS4f/jM5U6dyCveZRs9tjr+Xu3qnPrJ4SLYibT8uplwXPtCPiqW2fOMJhOGCp5JDy43XdydVEIuzw2emmUannHpps14TNAD/ItafCITwpgDFoZdsD3.uqVPAuSRMz42VgG0lv9qs3/AOItbhe5k6kEli:AJwoavGqsiJSUq5Ktr/RUvMarY+0rxKo9CKyqxcS8vLSxdzIMgbqJmWk6zS3ddcNVRNYmlMDxLKXKr9wQcMRX/.D+MWDHZR1wfrjq/xlmEnhuHT4rCuTJiBHZ9w3uRbzZcYyBu3xLlBq/q1MeQW1NvRhhsizLm/N5DbjzlBzm3SO5OnhTSLSWPLdAiAQ1pbepKldN0MSWFScgyjLIbOv4w4IAHsp+ELvku7Zn8LO23tGloClXSNqFsdvLkzaCCCIpmEEEEEIQQQQQhBBBBCEEEEEIQQQQQhGKJGYIITW1ILUjaCMTNyOwekaq2MTQRoRM3FchpvvQFLuu+IllAmCS4B3eKaeUPwQAd7kza+6fH3iaYdL+2nwHZiZqUlWdW2hEvepr/OJoIkkcIIIIIQgggghCCCCCEIIIIIT:Z!