["$ enum..G$ ","|enums$specifies tag types with enums|writes enums|switch, enums$Stack with enums$underlying type$GetUnderlyingType$causes null error|None enum$","OYxXKxOOKxxusing System;xxclass Programx{xOKenumK ImportancexO{YNone,YTrivial,YRegular,YImportant,YCriticalxO};xxOstatic void Main()xO{KY// ... An enum local variable.YKImportance value = KImportance.CriticalK;KxY// ... Test against known Importance values.YKif (value == KImportance.TrivialK)Y{YOConsole.WriteLine(KXNot trueXK);Y}Yelse if (value == KImportance.CriticalK)Y{YOConsole.WriteLine(KXTrueXK);Y}xO}x}xxKxxTrueKxxusing System;xxclass Programx{xOKenumK ExO{YNone,YBoldTag,YItalicsTag,YHyperlinkTag,xO};xxOstatic void Main()xO{KY// ... These values are enum E types.YKE en1 = E.BoldTag;YE en2 = E.ItalicsTag;xYif (en1 == E.BoldTag)Y{KYO// Will be printed.YOKConsole.WriteLine(KXBoldXK);Y}Yif (en1 == E.HyperlinkTag)Y{KYO// Won't be printed.YOKConsole.WriteLine(KXNot trueXK);Y}xO}x}xxKxxBoldKxxusing System;xxclass Programx{xOstatic void Main()xO{KY// ... Two enum variables.YKB b1 = B.Dog;YV v1 = V.Hidden;KxY// ... Print out their values.YKConsole.WriteLine(b1);YConsole.WriteLine(v1);xO}xxOKenumK VxO{YNone,YHidden = 2,YVisible = 4xO};xxOKenumK BxO{YNone,YCat = 1,YDog = 2xO};x}xxKxxDogxHiddenKxxusing System;xxclass Programx{xOstatic void Main()xO{KY// ... Test enum with switch method.YKG e1 = G.None;Yif (IsFormat(e1))Y{KYO// Won't succeed.YO// ... G.None is not a format value.YOKConsole.WriteLine(KXErrorXK);Y}KxY// ... Test another enum with switch.YKG e2 = G.ItalicsFormat;Yif (IsFormat(e2))Y{KYO// Will succeed.YO// ... G.ItalicsFormat is a format value.YOKConsole.WriteLine(KXTrueXK);Y}xO}xxOKenumK GxO{YNone,YBoldFormat,KO// Is a format value.YKItalicsFormat,K // Is a format value.YKHyperlinkKO // Not a format value.xOK};KxxO/// <summary>xO/// Returns true if the G enum value is a format value.xO/// </summary>xOKpublic static bool IsFormat(G e)xO{YKswitchK (e)Y{YOcase G.BoldFormat:YOcase G.ItalicsFormat:YOO{KYOOO// These two values are format values.YOOOKreturn true;YOO}YOdefault:YOO{KYOOO// The argument is not a format value.YOOOKreturn false;YOO}Y}xO}x}xxKxxTrueKEnum with default value of NoneKxxKenumK Ex{xONone,xOA,xOB,xOCx};Kxxusing System;xusing System.Collections.Generic;xxclass Programx{xOstatic void Main()xO{YM();xO}xxOKenumK ExO{YNone,KOO // integer value = 0YKBoldTag,KO // 1YKItalicsTag,K // 2YKHyperlinkTag,K // 3xOK};xxOstatic public void M()xO{KY// ... Stack of enums.YKStackK<E> stack = new Stack<E>();KxY// ... Add enum values to the Stack.YKstack.Push(KE.BoldTagK);K // Add bold.YKstack.Push(KE.ItalicsTagK);K // Add italics.xY// ... Get the top enum value.YKE thisTag = stack.Pop();K // Get top tag.YKConsole.WriteLine(thisTag);xO}x}xxKxxItalicsTagKxxusing System;xxclass Programx{xOenum CoffeeSize : KbyteKxO{YNone,YTall,YVenti,YGrandexO};xxOstatic void Main()xO{KY// ... Create a coffee size local.YKCoffeeSize size = KCoffeeSize.VentiK;YConsole.WriteLine(size);xO}x}xxKxxVentiKxxusing System;xxclass Programx{xOenum Importance : bytexO{YLow,YMedium,YHighxO};xxOstatic void Main()xO{KY// Determine the underlying type of the enum.YKType type = KEnum.GetUnderlyingTypeK(typeof(Importance));YConsole.WriteLine(type);xO}x}xxKxxSystem.ByteKxxenum Colorx{xONone,xOBlue,xORedx}xxclass Programx{xOstatic void Main()xO{YColor c = KnullK;xO}x}xxKResultsKxxKError CS0037KxCannot convert null to 'Color' because it is a non-nullable value typexxKxxenum Colorx{xONone,xOBlue,xORedx}xxclass Programx{xOstatic void Main()xO{YColor c = KColor.NoneK;xO}x}K","A0EBABDBEBrrre0(3~| 76565454}1C~kC 766464}0CC 697}1B(aC~EaBXBkBC~ 66466476666566}XCCP7XIEs~E~C 76666G7656566}b~~E~ 764}(BCC 9}b 7F5 7XBXB3Bs(X","Enum."," In the forest a flower grows. This flower has many attributes. It is blooming. It is pink (not blue or yellow). A gentle wind passes through the region.","With an enum,"," we can classify this plant. Consider that flowers come in all colors. It could use FlowerColor.Pink. Another one could be Blue.","Enum example."," Here is an enum that expresses importance. An enum type internally contains an enumerator list. The values (like Trivial and Critical) are ints like 1 and 4. ","Int: ","The underlying value of this enum is the default, which is int. When we use an Importance variable, we are using an int.","Enum advantages."," With an enum, magic constants are separate. This modular design makes things easier to understand. Fewer bugs will be introduced. ","Enums can be used with IntelliSense in Visual Studio. This feature will guess the value you are typing.","Press tab: ","We can simply press tab and select the enum type we want. This is an advantage to using enum types.","Debugger."," Next, we examine what enums look like in the Visual Studio debugger. We see that enums are strongly-typed. You cannot assign them to just any value. ","The debugger shows that en1 and en2 are of type Program.E. But internally, these two variables are stored as integers.","Strings."," We convert enums to strings for display on the Console. Enum values always have a name, such as E.None, E.BoldTag or E.ItalicsTag. ","To print out the enum values, you can call ToString on the enum variable in a program.","Another method such as Console.WriteLine can automatically call the ToString method.","ToString."," Console.WriteLine will call the ToString method on all types passed to it. Internally, ToString invokes methods that use reflection to acquire the string representation. ","Enum ToString ","enum-tostring","A warning."," Some examples here use short, letter-based identifiers (b1, v2) for variables. These are not ideal. It is better to use more descriptive words, such as \"animal\" or \"visibility.\"","Parse."," Sometimes we have a string value that we want to convert to an equivalent enum. This could happen when accepting user input. ","When using the .NET Framework, calling a built-in method to do conversions (where one exists) is usually best.","Enum.Parse: ","The tricky part of using this method involves typeof and casting. It is best to avoid this if possible.","Enum.Parse ","enum-parse","GetName, Getnames."," Built-in methods get strings that represent enums. With GetName, we can get the name for an enum value. With GetNames we get all the string representations at once. ","Enum.GetName ","enum-getname","Format enums."," It is possible to format the values stored in enums in different ways. We can display an integer representation, or a hex representation. ","Enum.Format ","enum-format","Switch."," The above samples show if-statements used with enums. But switch in the C# language is sometimes compiled to more efficient IL. ","Switch Enum ","switch-enum","The IsFormat method works as a filter that tells us something about sets of enum values.","Logic: ","We can separate the logic here instead of repeating ourselves. This helps clarify the program logic.","Default."," Values are always initialized to zero when they are fields of a class. Upon class creation, an enum field will also be initialized to zero (and the equivalent value). ","To make enums valid, always use the default value of zero. This way, we can test for the default value of fields.","Sometimes: ","This issue is not worth fixing. But it is often useful for verifying correctness.","FxCop."," This is a code analysis tool released by Microsoft. It helps us improve certain issues in code. It will tell us that \"enums should have zero value.\" ","A non-flags attributed enumeration should define a member with the value of zero so that the default value is a valid value of the enumeration. If appropriate, name the member None.","Enums should have zero value: MSDN ","http://msdn.microsoft.com/en-us/library/ms182149(VS.80).aspx","Collections."," Here we apply the Stack collection in the .NET Framework. With Stack, we can develop a parser that keeps the most recently encountered enum value on the top. ","Stack: ","The Stack here can only have E-type values added to it. This is an example of type checking and validation.","Stack ","stack","Pop: ","With the Pop method we get the top element from the stack. This is of type E.ItalicsTag.","Result: ","In the execution of this program, the stack has two enums added and one removed.","Type."," An enum has an underlying type. Each time we use the enum, we are using the underlying type. The enum has syntactic sugar on top. ","Int: ","Enums are by default an int type, but we can adjust this to a different numeric type.","Byte: ","Here we create an enum with a type of byte. This is sometimes useful on small enums. A byte can only contain 256 different values.","Byte ","byte","Memory: ","The CoffeeSize enum will use memory equivalent to a byte. This can make classes more efficient and smaller.","GetUnderlyingType."," We can determine an enum's type (like int) at runtime. Enum.GetUnderlyingType, a static method, determines the underlying type. ","Static Method ","static","Next: ","We declare an enum Importance. For this example it uses an underlying type of byte.","Then: ","When the GetUnderlyingType method is called, the System.Byte type is returned.","Null, none."," An enum value cannot be null. It is a value type like an int. To avoid the \"cannot convert null\" error, use a special None constant as the first enum item. ","Flags."," The language allows us to specify a Flags attribute on an enum. This enables the enum to be used as a bit field. We can use combinations of enum values this way. ","Flags ","enum-flags","Arrays."," Enums are values. We can use enums to index arrays. This approach is useful for some kinds of tables or data structures in programs. ","Enum Array ","enum-array","Performance."," Enums are fast. They are almost never a performance concern. They are just syntactic sugar on a type like int, which is also fast. ","Enum Performance ","enum-performance","Memory."," Suppose we develop a class that has an enum field. The underlying type of this enum contributes to how much memory the class will use.","Memory, continued."," A smaller type (such as byte) will make class instances that hold the enum smaller. Thousands of class instances are required before this optimization is important.","A review."," Enums enhance clarity and reduce the probability of invalid constants. We use them to represent constant values (such as integers) in a consistent way."]

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAIcAtAMAIgABEQECEQH/xABi?ABBQEBAQ)))AF?IDBAYBBwgQ?EDAgMEBgYFCwIGAwE?AE?gMEEQUSIRMiMUEGFDJRYXEjQlKBkdEVM2KSoQcWJENTcoKxssHhovA0VGNzwvFks9Li/9oADAM?AE?g?PwD3nrlJ+3j++1c65R/8xF99q86r61sIKAvxZ+17XPvU7omg9pDHYoGmxaPivZhPB+1Z94J21j9tvxXmVLicmT6w/EqCqxqZjvrXe5xUDN+QsHxXRibPZ/Feqhze8fFJeZ0uL1Fvrn/ePzVw4pU2+uf94/NSmFwXfpNnsn4r0Fc0XmrsVxG52U8zv3XO+asU1X0hntsXTv8AtBx+a4YrcXNHmVMysDxdsbj5ar0HP5/Bc2je4/BY2Wpx6ij21VJJs/3s1lBTY1iTr5aiWdzzusaDuj4cUtmbXBzC9tFZjexzC97xEQbZHXznxAW42vn8FzbfYKAUNXi21Y2oD9i4+kdJa7R3qSqqsRiqJtlIclt3QEAX0N7c0wi3MJROMrg1rHC54kacL3KNib7BXDN9j8VjpMW6TwO+rc9t+Aax39lHW9KsRim9E8NY4DcdGLtPNpzBLLrxHuUJqmN7TXt8wtqJX67q4ZpcvZCwrel+KX3nt+435IlD0krJGjVn3QulhC4ayId/wWlE89+yPxTNvU+HwQVuP1fcz7v+VMzGqn2GfA/Ncyld63Ee/wCCJGep7x8Am9YqPa/AKGmrZqmZsb2Myuv334easPj1XFMx+cbqbt5vbKaJpb9s/Fdypj27pSTk7aSe2fikuNvZJJJeRYvUvbI7Xms+aktmDr80SxqQ7R3ms+HZn5SrbmiRvkFlatmpstVDVu2YdfkqklU3rMe2zbLMNpl7WXwUVOHbNrfBTto95uf4JtHBd5vx8FVhLi4DuWpoZ8O0+j4s7bfru38kpsUa2+aCP7vNV8Mhhga6uqXbOjpxmkk/8fEkrpwyLFP0yomNMyUnYwxnea37X2iqdVRTdY2dNM9xtmfndfIvROj0VNUUrnVdHDlYQxrmx6vPE8b3Kk/OCK+V8QfD+xZuN8/FKTpPBHbaNkZT/sonAf6uSpVWA4XRQuqaqrn2V7cbEnly4lZ3qMGHxS12I5ppZXHqtE4nc9kO7z3qM01Wztll++/+Ecnmw+nZGyOFzi85I427t3c7DgLDiVoqrpcyrrYJKWPYtYQxsDn59p+/yRwdJq+2VtO1v2WusB90LH9H+jphPXMReHyuOaKC26zuPitXHEy6npId1zpz2jcAG3vWRxjGWCp2VKGjZDISAH692Z1zorEfSTEMpa6nic2/rX0PenYPjFT1x/0hGdg4FuW+6cx/smNpmX4Ky2jbbgpnQU7uyS0+d/wQ5tfI92Yk3BT8Rx+lgLaCkgLInnM6ocb5j4OUXWhO3JKM32ZBmCe7D45GGGUbjv8ASeRC5BAKVro6lwYyME53GwAHO/cuGGLhcjucFYjrZ7kOIc13Ii4VWXDIZj+j+jf7Hqn93uTqSlyuyvJa7uKDy/lJ6B0lW2jdjET5HODc8TZJIhrYemY0x28c2i2eygqmB8RGawy9xCaSWdo5m+0uSRMcd1mQn1fVP7vyUMdKLKVkOq816cdI8dwjpv0WwWhqnU9FW1EHW4Q1p2gfUNicMzm5rFumhVXBqqpl/Lhi1PLNI+GGmdsonOORl4oOw29hr3JEqMQAfAle0UDBtme/+SwnSD8uXQbBquSjidU4lNE8xy9UiGRrmne353xf6brfUI9K3/fJfOPRCGGXo1+VbaxtfkjjczMB7dW73ck0q3ANz3rUVf5e62F0GIx9F6hnR+ok2cFfO5zdrlJ2mz3NkXix3Q86jivaQ5k0MckZ3JGh7T3gjRfOlRgONY5+RfovQYTQT1lT9JTybOJh3Y71W+48Gt3hvHTVfRFHG+OipopBldHDG13gWtFwuKVPSSPFJJJYLHehtNVPf1KYwS/speyfJyw1X0exHDpw2qhLW+rI3eYf4l6XDischFLiJ5+jqP8A9/NcnE9OTHmD2eyd4Fp5ohHGWn3LOVLDq4ElvxssJR05bZFaZmG69bEu09XZkBvvPFFZqOifvMtA/wANWH5KjJSmnkzTR52eejvenQsIc7v8FHhcIdWMZIWBrjYufq0A87XCfW1wqGshpcNz0kAGXtEON82uo1us3j/TLGsJ2bKWipqaV4/WAyO/eR2mxKop2S9fhLI7HJsXZ8uvrN4k+SGydH6qop/zoxdhjnqJjFRUUo7MPqyZe9OkDGAMjO/J4f6l6LPiVDBROMOV7Y9wBh1v5FB8IxHFMZxmgmx+cyQa5W2yxN17WVvNaHHcPa7E4czs3pi/+DilQ0kXWaZ8Dcjog7O3i12ufXuVypbJLWS1LmZWyW2OoNm21sUDeZ+smKbQu1ABuco0JugcWKtljqa+UCN1PG9lO3/qSWaPMi+unelTnVGKdmgzBDaZgzcUWi5K453cslHe+upVmOJYHpt05raHG4OieC1lLhlS6Pa12LVzm7OBuUuaxrXZrvIseB4heiwcl5R046BdJZ+mn504BQUuLw1LY9tR1uydG17IthvxzujzNysa7tXuowSilIGZt63A2vwui35K+luMY/U4zhOM1ceIuw57er4hE1rdoxzns9RrLtOUFul+9arp01r+huPe2ygqPeNm7T3KDoVQdJMNo6r85XUbZJ5GupqWgjbHHAwN7G41gOvn5opi9NTYnQ1OHVV+r1Ub4ZspyuLHjK4Du0T+Ssktz6WAuOC+dq/CsPj/ACU4Xi8dNG2vlxR8MtVlG0czLPuF3ducPBfQWBPLcHw3XXqsH/1tVKHov0YoMKp8EZQRVGGRvNRDBVDb2kOa7/TZtd4q6+dsXo2Wa1o3baADlZcbxPNcfM12l+BJ+KzP5Q+hWJ9L6rCsTwWt;8SwwnI6ozNb2myMdnjZIbsc3hlPH42OiH5OK/Asbk6V4/jH0njFWwwu2TMsdrNbdzuLjZgA3WonJXnvRnCMWZLGG/rItXdxbyKilcYm52+r6qcJs2448fWWkpbbVrP98FUw/o9gOB9Y+icPgpOtkOqnRMGaXj9Y7i62Y2v3rmHVG2q2+9X5nalNgdmZfvKtRkG9uANk0uFrcki82UJcnndAUqekCkmpJJLAYgzV2nemYfiAY0UlYTsb+ik9Zn/APKsYnII3HTmhgDZbfHRG2N3QT8UHyROcTmsjMrBtDwvbs8nD7PioGiSztmA6O+9G8KGCduXYz/V/q3+yfkppJZ3vyVJ2eX6uXv+y7z70nRgi4F7am3a82/JDp4mtcS03sb7vzVGpgzEup3D/sO4/wAJ5qqaisqnhtU90sbdN8klhHIK9KHbURSNyya7vcmSSNeQzLv/ALTgdOR71UnzAtk0JYRkeBrY8nDxUJrJ2gtzcxy425FNNK6Jgzet29bWaR6pHNPpmxNDWMbla0Wy9wSjLn7juLez8kx5DDmaf/aUFOx7n1Djnlk0JtYNaPUaP93RYysqqZgjGRreLQb3k5ud466eCvNZl7KtxyjKO9C2VBtxT3VBtxUMtOQdBohxBYSCEbZUDvUvWRbis82r8V11cLcVEItVMyWyOSVYy8UPqKwWOqFy4juodVV+nFOy2UolJWgZV7ankivvx+kZ/w.VCSrEjeO8z+SD0+JbCoZJfdad7xb634KacbCqfHfc4sdyLXDdKgkdkc1x0B0KrzTFjw7kV2pqz3o10dY9tNJWyHdfuM8fFYipqZHSGP1s2X8bL0VzBSYbTQ6dlvxAuU2ss2mnceTNPMqeKQuliaDxcD7kdwV467H5EfgjNQdSgXRwOfLDJbS7v5FHKntKrQOzQe9HIxYHzuoWdsKR/FRwjfK6/irikT7JJrb2SSSWExYdpC6d7o2nMPeiWIScUOMgsEXdHIY9zRZmrjde7AR5KrX1T8u6n4ZjTngUVY7K2/oZvZv6rvBRVOWSyrPgZl4KJlLVhzZGvsQeB5+apshqGnO1p+YWlfHLDGY5Wve24yysG9Hfhr6zSqb4nU5O3cMzt5mU3BB4FpVShxR0bBS1LjsfVkHaZ8wiABpGHrV6ukdvRsaBu39eN39lcdG7tZdT2mcj5eKkkiuA7KRpwPIqxHwD7ac/NUMSY+BzZGfVv8AwPcrUDZmSu2kolZP9RK3s7vqnudbiFZMQrY3U0jTIyQd28COFlUDtk4uZwPqn+471CyR8Lj@F+XegUcw71JJKcvFVJ8IxXD3na5dhfckcRd1+Ay8bq8cHxHq4lds+GbJms63kV0YhSybrnBpHfw+KJNhr5Ito6kmLPbEbrad2iGvrJGPKOYLLRspjV1TWzOe4sy8cg77IAMOxKqd6Cme8X7Vso+LrBS1eA4nsmbGohgkvmf6Th91Va4MyWjeLk3sPBX8ApmzVjHyQ7SJocXFwszhpraxPgtlDS4bUwMhmjNVJc5WwN1tfQ2WR6S4dFT1TupNfGzTMx4LbF3cr+EYhVYNUR1Lq6N8ke7JG1hs5vmVpq3pZ0UxmI02KQSNzAely6tPg7iqEErr3kt3cFocUo2zMlbFAC4gbN4s1wcOAsPVXlD6es82o0JH1GE087mnb0xNPL+76hKvYlT0+HP21HM2rw6Q+jmbrl+zK3iCm0b4amGpp2W9MzNp7TO5Xp4I5Kd74zpa/wWEq2TMLopmlrmngRYoRDT9axyhi/bOY77vH+S3WMybsbb66rMYZTZcXoKhwPow/zB1RvFZfTNZ4BC8ReRhzdfrMg/H/Cmw3emZf1Wk/D/ANrR9F6lzpoYLbrQfxC0NTxPgsz0VH6VH7/5Faaa+0LT7k6ijyU0Z5vGb8VooXFwJPAGw8;oxqVw8V1h4rh4qypVI3gkut4JJJLB4gxtyhDmMzXvoiWJP3nN8UCndLfTTwRZlYxotqVnJ65rSQGKZ4jamuaxw4f+lQ2r7gXVuCN8g46KZtQXahjvMpjK2R3Ziulsm5h8Fbp5zC0xyDaU/rM7vFqdHTa8NUX;aGnZ1iskY/Jb0F/wCrmfJSGXwJKv0lPPWu2TYHX5k9kX5kruCYZK97p4ZGRUEpGfPd2e3sDk4d6s4pidDhofHQk/8AVnd/S3uSrcUpKag+kZ/QSyDJSRN5tt7C8+mfiuO1H6Nemo4jvPtdzvGyC1r5p5+rw6cNq5o0b81qsL6P0dNlmlZtpGaC/DPzyjuHej5q3Tu6zLI1stjkivw+048BdDa3GqKNjqWGWWrrX/rGXbFH97eeUYw/CY6SinkjGaRrTldIMzj8lBBssv1TGtcO1lF2+N0w4bG2wBtfRxN3W8baKLF+lHUajqjGZnADMQQGsvwbwufFN2lZsY4Wvmmc1ovqe7VddC5jGS1DH+kAya2v5org2JTYbJU7GNrpMnbcL2A7vNQ1LzVMmrXuEk0LDIyncdPIKGuEcEhp4mlzsgdmvezfasqWGVkpbJWV1U18AuxsQGV207TQ3LYnRZfG56zDsOfWU7Yot4tjztzaD5oDR9IK2Wm29ZFHmd2WtaRfzWjZ1iqoKjr8RzvkDouYy24IFVUZ03fwXKeEuZmeCCSRZw7lQrMeYHPZGwgvtlcHk7MW1Gh1d70RwqrfXuc2ha5s9jtILg52+DPWUPWHYRidLWxAtpJJQx7fYdfeb5FCmMlpZ2TwuMckZDo3tK3+IQ0GO9HYsZc3JtSIq5vdJ+0Hcbpkr3U5zNBA7L2j2VCZXVsBbK8SFguHOtmA/e5jvB812PJBjcdH2uL/AO6lxJ4kqR5n8Ezq4/OLDahj88b6Ub/fs2lvxTKonrIZ4/z1Q/E5M1NQsbwcCf5hUqCPJJNyyNt8T/hazouf0qHyP8itPUgZx3cQsr0YBbiEbT3H+krVzb4c31mlGnR7NkTPZjaPwRijdmi95Vdo1f5rnNOaWpreKYrKekldJJJec1z/AErvNDKh27xVqtf6V2qoPa59+5WogAQslVn0iH2c6Tc8yilLEbDMeIVSFnpN0XRBrX2B5ImSA0AIlTvjYwX0NkVoJaOGNz5i50t8rNNGj2j3qvKGVUjZXsHWGksc5ul2n11SM3ihXSPEpaOga6AHI9p2s1xe44Mt5qAENc5+Ykute/?d3cj+BV0r53wwZLWzvLu1kHG1tSjFLDO901HIwu3BspHa5dd4+9WKOm+inuzAvikB5X1QLC8Q6R0lHhuJY1TMijqx6KR0wzyRe29nqeC0U+LGSM7Juz1GSxDhlHO/inRvic30RHNaKWvp2ROmBu0Ei197N7Ku0cU1jLMMuc/V9wtYAoRibRR1EjZCG5vqmN5+HxRmjlnmhjkqC3M0HJK312X7uRHAqPEqWlq2Cpc39IgB2XHUcfiomSEtzFpGpDge++vmvMMTlNRVzzHUveT7uQ93BDIZpeqPh02zwN+2v7ir08raYFksYe+QHO5/LX1fJRxVBqLyM+rae1wTKuTaSj90Idijdkwll2ue8EubxcG8ie5UM7hZtzZvDwupxLHmMUwya8jex8VXqaIOJ0TZxnZHPz+rl+fvClgqBl2Mn8D+7wKgw+sDX9WqnFzXaxvdqRfhcpAg9rh/JBamj46I10MlZI+t6PV3/C4iw7O/qyAKvM8ZznCbG5sEsdRCfSRuD22RCWBsjXNa4XHBWqOq2EgJ1bwI72nRw+CPYbTx0s0EVUXZ4C6Cbva++XMPBwsVHiMTPpd8THZ23HvurmNDrMEWJ0z8jKpg2/77R8lnqGWXrJnleXa8+dllZIXmsiY5125t1vsZnIq1zY45mgXOhz+222474EL0LAmj6Qh9/8ASVoZXekWV6MyOmxKJ/q2P8itRUjeK01QQXi3dZXqAgw6d6jlaLnuOqYE4k2C4FAra63gkuhJJJecVcBzu05qk6PK0rSzUmcHRDamgf3KYP1HgspUxOc+4QqNjWngrbY9oFJ1I2GmqsR0zmjx7l2Sd7hbULuR9rFCpqV7LqKKFjtyZgf9lwujhgLjvBQmk3lC17rrjBJG7PG5zCObSQfiEPrMKp8UqoqqsvJsGNigicdxrGcPNGWYGNnlncI4GxHLKwizXWuGlMjpzdTOiGXnb8E5hyPzNOQnQnjoTfREIq+bLknLpAOzr2eP87qvglR+jPhlbvRP3NeDXc/FE62Bs1HLs3u2mXNG8dppbwVCmpzFV/8AdaWd+vEK/EyePtXy+7+yKBwdqOPFVZ25p.3tjMPA81kqrayxNraVoZDMQ2pZf6mb1m2HJ3EKrI8Zh9kf2RVwbR109PURvfSVR2cuXk0ndlb4tKqVmGTUtQYnt7Nsj+Tm8nA+IVHEmZomtPC4LT9m3Z/hQ+SM2DgPA+aihcJWyQX+sbdvg5vZVJr9PtK82J8b2usbtN+/glV0hjq3OYNyW0jLeKDvgJjFuLdL+CjDHdyaLVERzfWR28y3h+Chlp3s8lbiidmD7cT+B4qzsj9W7l70VoZNtSlj9XxaX5lvL4KYRZojpvM/pK5RVkv0c6jk7Ebi5l/LgqtCz0h9lXWwFtPLu+FlHFTviI+1+CCubmxRthwIJ9wvdX4i4UW9ck6Dy4ALWdFXH6Qi/i/pK1lT2lk+i7D9IQe/wDpK2ktK+Q8QjEoGbTuRfDvqP4v7KjyCbzV3qD/AGwutoCCN8fBRq6qnJJXjRN5O/BJJJVvoOi73/EfJMd0eovaf8R8kWSXc3ioTTw+wEDf0YonfrH/AIfJL82KT9q/4BHEl3O5Lq0PsIAei1N+3d8AmnopDf8A4g/cHzWhSXA4hc6rB7A/FZ781mf8x/o/yuHot/8AI/0/5WiSXS6651SD2PxKzLuir8wc2oaNQeyeXvV04E3KY8zWt47oIJPijKSdtn9671WHTd8Fl6vontyMkjOHMH5KJ3RKeSmbDLLHnhNoXa9g+rw5clrUknyvezI7gmGhp/Z4+KxJ6F1XtxfE/Jcm6GVckUbc0eaO47R+S26Shy6FM+jqb2T8VhG9DcQbpaP73+E49Ea7N2WcPaHJblJOi9EczPWFl0YfAL2B1FuKxR6L1uzLcjfvBQu6MV9/qh95vzW7SUbYmiczjtJxo4tmI9bLKYRhVbS4hDJLGGsbf1mnkfFatJJTOJJupIImxtLW3te+qSSSSapkkkkkkl:2Q==%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEXc/9n:/+VlZX29vZR8Bg5)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AM)CCCAM)nkjdS)MFBMVEX:/+SpJFaZ1mxzq/c/9nK6sh6fXp1h3M8PjxJU0mGkYbu7u6+vr7a2to)eIx4740Fh?AEUElEQVR4XuzYS07EQAwA0fG3nd9w/9uyYAcKm4ZEVqpOkCc5csuvBr1/6dUCYKc1AcRpXQB+1uM?ACYSLQGSJXdDADgACYCYADmAhCZvQFu0RuwVkVrwOi+iWO15zynAQ?AIDTIjEk3J9ZVd0?ACEWW9AVj0a?CAVAI?KD3Jo7uI6S9AXrhAZ09wO0N)nBaJGHLu55fGpgI?IBVCYCJAPj9?D2a)GbeGzA0ui+y0RoQS/d/wIPn9J8G)7udERMd+tAboopWNAbm6u8pFgG3PbW5cRL4vyq+T3zUA/UjRGb/WGHIf4FgmH0ApP791MXeXvASw6z8A9mWVoVsPwGc7ZrjjOAgD4Y5TjHFgef+3PWoaG+W2G91KV91JO3+Kppbhi7AJ+Q2g1SFltJWotlFr2K1itEX5WbdtqvX3wmK2P5ccFrSD6754E6Ca2lrZYF/DOtlcWnh1AlgCS4xCUxIEwxDtnDvfWLIKPVP2R5T2okoftAIMLwMsgjUH0U2lZ3DnxbOON1XwpOfeKQO5eAKfjBRZqLlHNPZ7oqk+CPwbB3gtavQ0PKV8H2L17QviZOFKNXZFnt59E14bwwfpDM7kXshrce9Ih0MWeZ4M1Lx+VlF9DTBtsbjUHWCDz35M1WjG+lIDwP8gvAI4ryvzAuCJQS8BkDGUzgDDyOnxk/IILG2daJt0RzMmPBi3PF3WAHgYlvueZEYOmTmV4QAJ4Gy8tpXXyZK7TZ4JEqbMBTPLdgIYUlb/lkx1ASBhKnNR7qZO4JJt5?WQ9xxLGDnIStiNh0lICrCXGFpVVeAQizsT6vxkBUxm7xsPwFI3VKAzwCFj5ePvh+HSOo4OtydawCYv3fbrV+00XY0OtpsawaA1ZTE/ji30S8AshpA308AZGFN5qJseQ7vY38IOIZ8Arjs8RZXeGJ9B+BjpLDIAJhGhKgeVLI+QfEA1uli2+hrgFo+TCuADxl/AaAfZY+8LIgRALFvmh8QLwAg7P3mTQCBzLgAuH6VQB/J3gwQhaX6fYCY/eiM27sAYn3PUvfX2j8CCGfr/BDeBQCOw8Va1tqF/gDAm2+30LcBVLFH7eWc5vzkp/YFQKkngNRtJOkCIMJdjf0kHqrXAFyryhaXaMbcAVVL9hp8CWBkFg4u3DyBaGUZ/NcAlUeQilZlwfF6gQc5hqheANwTmHRbXub2nqZt7l1wAVBmyVLGBvZLZsqEdN2FbD6LUlJspVncIvAFgCuOJi0p7MK3C4AqkUMCaQrXADfOHk71uwApL4uDwFfEtyuAG5ft1PI7nkCdLgBMxCkA9k4uv5aZYX8V2JWt756zkILsZA3t1BkAy0J1XJg+EUQYUPL7VyMhIEupNuXMGcMmtrDzBTCTkF0zV7W4z8YVuNZ9qauqbHbIQvmTO/H++ksms87wMNB8yqF12Nxdr+AI81prXf2X+gH4AfgBiM72fyo627+lX8J4aocOcHAL)AElFTkSuQmCC$/9j/4?QSkZJRgABAQ?AQAB?D/2wBD?cHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwf/wQARCACrALwDABE?RE?hEA/8QAOw?AwEBAQE)))?AECAwQFCBABAQEB?ICAgIDAQ))ECEQMSITFRYQQTIjJBcf/a?wD?AB?I?D8A+kQ))))Q?AB)?wD))))AIGADBAg?QLpGOgEXQOl0DpdAlOUKWQMAw)))noMrQY6AcpEYBkRUjIjBdCbYAVpgu/tmapRkKWRqI1ED))ABUGm0GQMug+HLElxXQXB0iBdMukC6R8TaoJ6KOJZmuVJrlVKnhyrhHKolKIG)AOgEZptI02mqM7olcL2/YUc1E1PFzUT1Niul0uDqQnpHxPTh8TascFpUFGZnKk1KTxcUSotKp9KIzIG?AabTHE9Ck3QVGWtGv1YXf7DX1Z3ywl+hzyxBejSeaflmn+tc8s/KEf1n/ZPyjpeib5IcHqXv1oSppZBIVGZqIjMLik1UXErikmogYACLZP/AE1SM7pS5Gd0fFyM7s1+rDey41zhx78v38h0Z8bm15/n7Jv/AFIn8n9s9Q/6Vz+R+2SNeNc/kftFY+jbPmtskqeIuG83PyqRhY1m1o4fspK81Ia5ZmuEk+KhKhlVxcSuLTTMgYTaapGVqlstaNpGN0pp6sdaU0zlyeTyfsOjGHneXy/fyHb4/G87fmvftNjrz42c8179s6NYaZ81/KHPrDfPl/aKw143X4t/KWO8OzOqJHPrLozqmxuGtt4E+rTF7SpWerpz9M01ofEmZKiuFVKiVKhH0yFMM6qLjK1TSMdVUXGG6ptlyeTfIrjfGXn+XyffyHX48PN8u/tLu8eXDq21FrpkTLeotFw2xLUsvXLs8fj3+Euff9bu8XissvUufesvQxifAcm3RnMDn00mZT4hpnNlKxNbzqWdX0iHTLhy0y4rqi4qUyqumk6ZI19KXlhVtYz0a45fJftbfDzfNv7aOzx5eV5vL9/Id/jw4ta+WTqzlEzbfpjqnderq8f8a3nfpn7Md+f1duPBJ9RPXLry+zrzj9Ew1tvnJsrpvmGy06Mw2OnRmRTHqvgJaJ4kFwJ/8Liimvk+Di5pSVyhK+mldCE01Rz6nyuNWWqqNHF5tfFaOrxvE/kb+a349Lw4eV5N35Rp6GMoxm6rm2rVen4fBJJb81z2uHyeV358c4hy622mP0TP2XMmhcUlcUmt81TLTpzTY6UaSmioBGRcB8MdElArXIZ1oENAhNhnGO58KjXNcu7ZGkdGXl+ff22y7fFl4nn1b1o9LxuL1uryMd6dM165eh4PDJPpyb05vJ5fZ6Xjx8MK4t7dEyTHq+BJmCUAsNc6UiujOlMdZay/AZ8KmcE10uCqSlchpX69CVSAq0JCySV+h0Mdf9U1y8/y6+2rrw8nz6+2s07MPL8uO34V7OvG1eHw2Xtny596Vvy+3+L0fF4vpzOfe3ZnCHN7NPUkDgHS4Zp4o0qUqLKtc6UzbTQZ8O3ppa5x/wBoTrTfKWNaST8BB8AOQF1fPgkggVKhz7vxR1crzPNftc06MaeZ5ftpNOrGnPnx91+j9nT7/wCLsx4pefDHVL39XXjHJzjGsNbbTJM+q4RJsM02GrqOKUlSiUFQyaymhrj51P0bLf8Aq6pCYNMwkWtZCRTBKkCTAJBppBzeW8lBvJ8t+1Stc1x6nafXRjTXx+P4+hdNvZ14wjo1p0TMSyuhyEXRYDQak2KhopxbOqVCMziirSKTXR4v9gx8jskS52khVCpAhcIjB?kGm/Sabk8v1TEed5c/IaZc8x2hrK6sY5/wdaSt85IWtOBPSpGiwHCpxTOxSohSoiz5UouHDVIoutJD4i1tmWWUM9O3HLOorl01hIVISTAMEAC4g02fBWBzbnSU5NY7fo1REx8hbbOYVVK1mSHT9YY6mwHKiwKibDUixSmdiouUuKPo4odVMmnrXOTQ2zkmbbMSy62lpM7FdSnhg?AGkiI2O4OGxuAaZjlB9XIS5VSDg6ODg6Vg4aLkKT6mrqblR9Z3JxU0XqpXsPRQ9lzJo9mkyEdayJQsJXAk4klShJk?aSBBnqGaLkzLgA4lSuAdPlA6ngPqbCOJuTUn1UablR9HqZ+x+p9L2V6jpeyvUJtXwJ6qAjIjkIjAMEZECBUAqAXACsBiQGchAcAKz4A6XArqeGfS4Z9L1A6cyYP1MunwF0+AdPgISESpARgDh?GCBAUBIAMFYRiAHAR8?MgCsBlwz6OAdHAOnwEYAM?wRkQ)?IABIBGZghPsGYIwARlTIqDIAwBAD)ABgg)?A:2Q==%iVBORw0KG;)NSUhEUg?AQQ?ACyCAM?ACTMkHk)wFBMVEX19fUej:4+PdZXnmDkriSVopNQ02FRmrU/P349fOuZ2J/eGy4jH3MzP7aqo3t2bfoxqP568Tt4v/++tjx5tUFP4zq9dYpj9SozvKGuuYOgc4Ad8tlnux4zf3::C2/RHfLgzmf/a5/Xg4OD6+vr:fIWnvPz8/MDUqDj8Pzt9vpQsP3r3OK46v3v5+fl5ufw8PD:/v29vb7/fv19vz++fbt7evq:DKysv68uS3t7n5/v72+v3m6ezq/v7UtsW7oLON?AL4UlEQVR4XuyUB26EMBBFucU0m1q295p+/1vFGAeFZRUkgiIF9ska/oBg0DPCO6TAowbSg5dOWEYNT1Jvfx67hPPem2zGLmEz8bYJF4ml.9IDztsUztwsnUSFkkoDfR1OA7mR4uynTqSqRjDjYR1iwQGEWBhtqlYnZJZLamPMRZWlrJjv0SJhUzAV5B7EiLEsKw5ojISeIHE3yXALyVA9aCfUx8S0DegWGBGBQFJiZoFMcg9CdGF9DqM5kTASm9DfV3EXyqlesV6ajEB91KLiT7GWMj3yUUIpqZOicQRu0sNCXo5lZXSH1ORXKOV8KbEwf8IcRBJJaF+AmOKqSlBrAR2ElbPHBsJInptvbbsWOvucIfUfUyd5pcAwRxE+cQ3EjIiFV1QJxK9I8FqqbNQL4H0JpQBAC9UMCslKARXaxKAEJXkSO7HyESKI5WbKEOA.sIpEElYbQ0JTwkP.8JNDIsRKeMn9nOO3+HP+U+d1v3fXDJ/Vl4NooDEbxkMSoRlSpNyr0UrEpUmlXjbWzqu7:6/uU47B2MG8OT3uIV9EfLyPXxKJeIRwyDACXRO0tnB3x1+3KvQtyj5AaMVxKOaaEBqIu4kSgWD4KwiNGGR+LwQc1JcSB68ncz0I0q1SbFaxREg9Xk9qOgSwckp5mOJvhdC4LOpzTzdKBZwVUuOFoKjFIDROFAuP73OlWlffl0PcmDgJAmOEpuAZux0HNRdC4eo8FAOEJJEIy+RWDDcSJwgvBaHdkG1u095MVOMDBIwUJKpE4SnbwdV6YYIFD01KrGSS4NkQtJrHrm54nOwKm+uk4mzXPGwWGeZCEG5HK9zQMHcY2fq6YdPW0wzfYjQ1P4WACnj3aIeNT2uLsuhUOozs5WwI0AWUY81Jb5HYZnuPGDajfJcv9mH0QpdfhA8pT5phaT2sRIvY5Gc+DULuRcKhB7YLrNDTKY9OeO52MDa81gyHMIBAhaP1vgYoCAnlUhBuAa1p/7DJCMGmjae96JC4ldMglAF0uPU1Qzh1Db5dOh+CcBh5IpcNTAptHFiZMC+REHmyFARV2iwU43SOEIRDXvRwSJw.TfKo0dsaHMrrNDReyFMNBtCmVs/Xoa5f4Nw8XVGwmIpCCh3mFH4nBD6BFlkiPYYI9tiIoTGZzvh65xFp43F2NyVoLJzitrHIX1UVYeeO/V8QMk5a4K6jtViECAVIxlUhyw5p82h3p9Tca6rGH8OQd2hYeHzS+5qVR0X7eO13iM1CwJSjYlQm6NWiAI1ErXF+KgRokSLQYBASIUMPGQJiB4rnnJsxoXCHqdCuvoFehwaz2ecE/7bf4ejTYxSBXaMZ50YJQZdEV5bssvk162/DUoJUSrVQpnoVX+CcO0GXWF407W7ryGIWd/aZeojhHs2KsneKV5DWfcPrN37ff+L2LJhcRuGwfBpFLgBBggUZGadIrH16gqzrnRw+7j7/z9rUq6ljDVLW7LbS+0ksvXaeSxKHEK03TmZiEBI/p2AM7x5KuRP5yDc/andnQmAESLJOQzzsAHMcEJ98oVXTUO4+JDAdT2EnYHhw+fF9y+az3gazgYBDJnLgQIV7yx7aAhOQIjUyzZCzHg9hEfDzbdFnxf90+6M50tXYC4IrcstHSIvEbB9NvqRskxCaB3VdEkx3CfK10PY2vtFj9uveb3mY7aZ+WXoiMtslYDpg+1LuIOoB8xqAWnejguOQsAEti0xI9pph/GD440r3OAGCITLdcZ+fYJgjFyotpoBTOeDQB351cJYWl411YAQOAgb+gDXNA6B9tI2STwrpmpVf8SCzEDVY611A4RE5UYIy+X6BCFq7x6pA+pkXggb5iwtuXFpJRbYHyCsqHko+8pjEDqsGYZUsFqGm3ACw31xPPZQVjUHBOV8I4TQslcZtGqKKMG+llkhuKXt412NAwKCHSsBU0seBBqthIpZoGFwEM5uZxpOpKiF0uDkjyDR3QDBnvtg0D+900NyEH6lPjcEccswThKVIEMl1AyrTYkBlDYGwZOixygAU0E36KThyhNqONkmIJiHUeQWCLrhvn96/ElyVFMdDoqLt/kgUHVfsHB3CKumzIc/RlRNYpV1DALFQJx17C3KgFXFTUmViw+aGztXjeFU4PqPJSBlVgIZ0VwQpgQAI5Vwbip1834xCoTkf0MgbPsCF0EwxI8Z5oOwE3gDYYZJGVKZTj1NndLfIWx/E7+FnpUnha5LU2PqpPQXsWbAoygPhOGmLUVaPsCwZyC5r5IVw2oOpQVYFHD:7+6qe66l6yn64bsTWLShr7TyZMJRV6QvgThUiy/I5z6H0hrdKUTLoT6y5s+Oc47R51lJpl6z1v/4TH30oRzTfpZT7q6svAGhFouaCzlR10XCHqox4Gg8ct/3alA7bxsX+jhFXvqC0EFXaVXpIEQ8Sco6J0nxP5Q3w9By4YmlNII67dcMNIa42rqCgLFjgKhWlp05k5qkze0o2C/xsd9cOm7ghGAgA0VjLX+KOVMsP8VNuvfVxk5fi31OEHV1CYCEt8Noc5oEi9U9PQ0vBIsm23hZM62KHcraeyvsSDsAzvHxXboQyuS0ul326GCXy/BBZNOAyNUbgbtXIAQS48c6mLonO1Q6q7ZZrCqabLNdq0zvGlUs8UaIEAimWV3Q5DzH0/t3Dw6P6qjoH/ghPZcMBbJ7uiljwaBM5IHhMRLKzLmJ2c0cxmZKN/O69QjJOoCJizaO5cgWM9Q146bsnybCArTn1NBaOcKQfaC0V5DJ1Dj5dwP4fQH6gwBsBOXRDxxeNIpT+QlGg0CmH9puLfJs4HwzONs7ZMIWsJA6EPXTp5tcO1p9xECcQGdTVNO1p7xDR0Oa2kPpjqbcAZOcu6zeV2FNmNx6XwZwo+kqc28h0QkyfneONWByBUaEYL5yIAweoQws+dltXMFXZcGwsmtpit57r13qeKMUBla0dKicurO6RyKgyTKI8QggdkktCMpp1YuFbq/E9RjAhTgxcqA9akTjFNsdnOtGZ1I6YzaCVNyCKy3TpCqlwEx7Z1Ln0hPAJjwYidASeZ2qjiVgbWGKU8gSUiis6ke2vnLfmYgfOGI1GkBr9bixzPB3meM5NxAgBFLVuVoEEJO5i4jp044+DajD4LRlfIt6ARzRBw8Ji5CoAddQSd0U84AWsAIMSSXHiPiDQK4/eZ7B8j3hSMSKTUMSunzXP5q29Wm0c1QLNp2sdajQEB6U+CHdrVroZBN0Qxmn0XWto81yjYZ6o1bXcnmwj0BpMaQBJXuHtp5h2Q240m3KapdO2+MqV5skbPJIOevU8H3Q0C6rvGf81Iq3WOEU11KmY72xJhiY0v3ssSo1BjydpC8NBvoEkDDhdQJ9oJE6pIUosQwgtpSf++y2OTBoEF9inAJVzUMulPBtyHobw+cZZ8TLF1ijosb0tIjJIZVt+IahOLbI/u0QEqpbks7s+p2XPsXmX1/IPQvpL/ZpQMa?AQhmFowr84EIAB8k5Cs/uErBrC9h8BAgQIECBAg?BAgQIECBAg?BAgQIECBAg?BAgQIECBAg?BAgQIECBAg?BAgQIECBAg?BAgQIECBAg?BAoQKb8i5gxMAYBAGgO6ikKdiIYTuP1g/3SI3yP3GnMaGOYGWrjGpEcuUteRGgZ3Gmqg4tRhj2Drx2rNj1ABiGIiiuYUkvhiDSON6ff+zBZYkS7r0syqE64dAFqPr+rSu69KH3nJHeBH2i6CJskfYBWmOsIjuPdYIJ1jT0M4Im+8aYwQFUGWOcKpyNWW+IhOi3n8CS6YIU7+vlCnCBFvSWN8OAX2UpDPCJPQZGGMEKaHLdxJm/SiQMkWYoEeSmpQpwgRwM0zKFaGhAuiWbBFOUQmQxghSQBYpU4Rz96RXpkwRJvJnFJZMEabhVihSpggDwUhSplwRitLWPtYJVFN3384IBakTIWeEASIoV4SduaUF0DJFSICUdtWSKcIQ8dwKpghNKiGON0JLBdsZoaC0zREGiKbkjKAVQB9ThClJenajIcLfrM0U4cnanBGerM0Y4cnarBGUQMocQU3KHmH+baAvend/ekVx5PI)ASUVORK5CYII=!A$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAL?vgMAIgABEQECEQH/xABO?ADAQEBAQE)))?QIDBAUGBxAB?ICAQEEBwYGAwE)?AECAxEEEgUTITEUIjJBUVJxBjRTYXKhFSQzQoGRI0OxYv/a?wD?AB?I?D8A/fy)BgAgANkWwej2Np2NmFbG07GwNL2aNnBDSjIwk)))gADB?AjIGUpORMxqDNIVupR0/8AoMjP1NpAVCkqBScKSZJM?g))CIyBgENmYIbABPPi/aGXlZ+7zcemDDfo6O7tkyf0qXjrtXLXpnrtvXT4118du9wVpzcPKy91gwWw583Xkyd5emTp7rFj6unu7xa262jW6xqI9+wpjXk9o4a8yuacPLz8bBXLjpgrOK17z3vq9FsmWaxPRWInfnv8Axrhx9sdOHvuTxvfOeK8bJXqiYjpin8xbpmPHcz1b/Jz+ic3lY+0PTuPx8duXgjB04M2S/V4ZPby2xU1Hr+GqTrx829cna1K9PovG1XFXp/mb+OXw3T7t7MePrec/LHuYbdnZ7crs/icq96ZbZsOPJbJjralLddYt1UpebWrWfdEzuHU5ezsfJw9n8XDzJp6Vjw46cjuvY7ytY6+j1aer1eXqx9HUC2qFIVBFMqgyBJUCAIwkbAUEmAYIwaZKTlMmqC2NkWwelbLZbAPQLf5Ap9xge/ySPfCLW9WfGK+E+t7o/OT0mZaHD897P+3tud9huT21Tl8W3bXD41ORy8daz3OO+XJeuHFb1/av0dOuve/HXjG/b5Xafa+Lt/hdm4eXw+551L5sVLUt3nd4Yw9f/Z536ss11HlH1CX1KnzfB7bzcjt3m9m5OTgrj4+S1MWLUd5avd1v+Jv1eqdz068Pix+z32lzc/j583aN8WPusFeR6sdPvvW/99/VjpiPOJ37vIi2+rN8pwftHzM3ZXaObPbD6dxMUZ8daR6vRfHXJX++2/W3HhPwfQcDm4edxq5sGWuXyre9PZ64iOqIIpl17GyLZ6LatlstlsaLatntGziQe1mmFEqEymVSmQuEkZBYABgi8TKfKAUlPV8f3ZXvWlZvade9fvhy877pm/S0pG7RHxlhmtNaXtHnWsz/AKhlHa3C37f7NK9p8T53xtfan6uvE9G3Cx/m+fp2vnt/bV9X/EON8y/T+N8z5ujarGeLT83TXtHL/wDL6fHeuSvVWVOXgfd6ulxWjVv8vTpbqpW35bMbBEoTJbBGUyezhKoAhcKTCkS0gpTK5RIaQmSUQUQAMyKdKTIhMp8Nx4y5Od90zfpdTl5/3TN+lrj9uv1hzcj+jk/Rb/x8XX2p+rqxuOs+tP1dOOz3Lw+NxT4u2jZyUs263Partpd9LwPu1XU4+zp/laut5WT27fWX0OGf+Kn6YMFsJaAgRlJwcJhUFIhpCkwpLWBKZWnSVwnRaWWjVtOhpWhoDaNJmGmkzBwUstOTn/c836XbpnasWieqPPzaUnVon4TEsM0dVLV8uqJj/b8+jq6p8J821Jt8JfZegcT8Gp+hcT8Kr0v4hT5JfPx2Ll/Fr/qXyVbT8JaRafhL6r0Li/hVP0Pi/hVR6bT5JafwrLH/AGV/dPZc/wApT/Lum0782VK1pHTSPCPgqckb84/Zw3nqtNojznb18cdFK0mfZiI39F78Z+hblHeV+aP2HeV+aP2Srq/NRF1V+MGNFs1QiFwFQ0hSYUhrBgwlSdDSiB7LQ0YATMJmGkpk4TLKYRMNJRK4Z2ZyDklM5BgAtm8LkZb99bxnze4+e5M/81/q6ON7Tj5vhWv1He3+aR3t/mlkHV0x8Hn9bt4OS3pFfGXtPC4E/wAzX6vccnIj13pcKd4/8qhcIhcOd21aQpMKQ1hQASo)?pTKpTJlKJZy0lErhlZEkckpnJGAZB87yf61/q+ieVm7Ny3yWtuNNuPatZnqnTl5mO961ikb1LzQ7/4Vm+MD+FZvjDp77H8zh9HzfIy7P+81e683i8DJhyxe0w9Ny57Ra3q+Pg9DiUtTHPVHjs4XCIXDB2VaQpMKQ1hQASo)?ikykylEomGkwmYVDOWUwWmmi0raEaGl6GhsI0NL0NDYRoaXoaGwjR6VoaGwUQuBEKiC2rRwooUiWkGACU)?CMAJ0mYWWj2nSNDS9DRlpGhpehoDpRoaXoaA0jQ0vQ0BpGhpehoDSdHEHo9Fs9EYMjf/2Q==%iVBORw0KG;)NSUhEUg?AII?ACCCAM?AC93eDP)MFBMVEX7r11HR0f8yZHLklZZUEmyg1P8uXLjoVmLbE5pWUrAi1X+6tPVmFfyqVx4YUz:v3zEySO?ABHElEQVR4Xu3cS4rDQAxF0av6+5fsf7ed0ANDV8b1GvLOCu5AWMhg83w5UkOgpeP58k5IyKTfhIZQeyckpNKTA7GDhFiiIdb4KmZmZmZmZnadH1ysdMYHpxOc4ISbE5zgBCc4oesTKDG7WGrEZGOtGpPBWjkmlbUu+TTCNiUA4nl8gHoeB4B2S+wsF390lnuopxGqehRg1z6YmJdlRqBIp3FelgWFqp5GyOpphEu6JudleSFRxw0xs1xHxDZqR+Tc7k3dQb2syy4ruO0A2tO6dBYb8pOy62/7PWZZfttHBXCCfhy7/PXCJj+sI8vfLwwQNwwU8j0PW0ZkHyUiytiRMDMzMzMzM2v6gIRY4kDs0H/wrv/s/3/8/ED/C4gfHWoMKlwF198)ASUVORK5CYII=$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAH4A+gMAIgABEQECEQH/xACN?ACAwEBAQE)))?wECBAUGBwgQ?AFAgMEBgQJCAYL)?ABAgMEBREGEiETIjFBBxRRYXGBFSMykSQzQlJ1obGzwRY0N1RygpPRFyYnU5LwJTVDRVZXYnOVtNMRAQACAgEDBAEEAw))ABAgMREiExQQQTIlFhBRQjMlKRof/a?wD?ABAQIBAD8A/VICE.)?gSI?YgBg?ARcQBKwBUABpYFxAo7fZmAaMuQLkM7e44ScpXtxIxLhnteHICePU+4i5doo0ZKQeniFLSWc@Eji0iLiBW4hCwgVuIzCU6WuDMXaQrmGYiyby0lx7ROluO264CMhneVoQu0ZZj05CFePQ64kLVbzF08BCFg?B)AgAgwXAEiRFxBnoALCDEeYqs+8CNrCDGJ9xXzlF5jmSpDuvrXP8Ri9abKtminh3hA8bImSf1h7/GY6OGpDzvWds6457PtqM7cQy2Ga13tTH6uuS8U13deqVCLSaXNqVQd2MKGyuQ+5lNWRtCTUo7ERmdi5EVxwaj0gYTpseE7NrsRrrraHo7NzU84hZEaVE0RGuxl3BfSn+i3GX0NM+4WM3RPQqTRcC0J2l06LGekwGHX3UNltHVqbTvKVxUd+0wiZa9dXQw9jrDWIZ/UaXVEqn5TX1SQ05HesXMm3EpUZeXMekWWmUeE6Z6Z1/AFTqEdOSrUVs6pA@9tp1ks+74knKZcyHq6LUU1eh02pNF6uZGb@8FpJRBc3iI2mI6tzbZJVxPzHjp/SdgmNLXGcxBGcktubFbcZK31JXe2UyQlVjuRl7x7DMdxZssidxCUl4WFa5RO3lKP0iYUqU9mBGqhsTH1ZWWZsZ6Ip0+xBOoTmPuK49WSSSo+PmPKdLNMjVbo2xGzNaSvZwXn2lc23UINSFpPkZKK5GOhgepPVjBGHanJ+Pm06PJc1+UtpKvtMN5IdzmOZEr1Mm1Wr02PL+GUnZ9dQpCk7HaIzouoyIjunXQztzsOj2D4xTcJ0/FXTF0kt1tcp+nsP05SoG1NDD6jiJttSTY1kXJJnl7SFkz0fQ6JjjDlfrr9IolSTUJbCFLdXGQpbKLGRWN0iyX7iO49CEw40aBEbiwIzMWM2WVDTK.hPgRaEL8yEraYcQV6k4dg9cr1Ri0+Nm3VvuEnMrsSXEz7i1Hlf6U8FZCdcqU5tnjtHKZLS3rwso2rHflY9Rhp/V5nT3W0VpDXWoVLi+hUOmXxajWb7jZH8rOSEmZa2tyMfSfWAREy5uHq/R8T05c2gVGPUIiHDaU6wvNlWREZpPsOyiO3eQ6yEknxCiUWuhbx3OxcTFkq4AHhSozYdNhPTqlKZixGE5nHnlkhCO8zPQh5AulvBG7/pvJHV7MpcR9MdXg8aMh8D+UMM2O1i/pZep9QTt6PhmKxJ6sr4tya8ajQpZcFZEIuRHwNdx9GUSXEKQtBKQosuW1yt2WFVERpDMqM1IiutvMOpJbbjaiUlaT4WMtDLvDh82wC3+TvSDinCcXcpOyYq0Bj5MdLprS6hJfN2iMxEWhZjH0gCEg?AV?w?FXD3DFgmUfqFeX2ifKJGcVWvQY9t3ii3+8X4k80yHOI5UpfEPfeHNkOB9KsuSzM+riOjhlX5z+7+I5Dih0aAvV/wDd/ENvHwmC/TRrNEo6T1f2XYy+hpn3CxrwEr+oOGPoyN90kc/pLV/ZdjL6Gl/cLHncG47bhYQoMaZhjFnqafHQl1mmKkIcs2RbuxNeh2vrbSw513Yh6/pFfRH6OcVOu/Fopcn7pQno5Ych9HOFIz6crzNJitrTr7RMoIy18B5WuuVjpHi+;1EqdEw684n0jOqSCZdfZSq5tNNXNRZ+BqUSbFyO4+k7qdxsiShJZU8iIhhzZZpj691o6zsibNbgU+XOk2SxFaW8v8AZSRmf1EPneFqHUcb4dg4ixVX6y16UaTLYptNlqiMRmVlmQi7dluHlPVSleBFYfRJ0RqoU+XBk/ESmlsr/ZURkf1GPnmD65UcHYegYaxHh6uyZFLbTDYm02EqSxKbTutqui5oPLlvmIrGIwZZtTcR1Fu/UrGnRjhNjBtemdQky5UenyHW3Js+RJ3ybUZHZxZlxK/DiRGPVdF36LcG/Q0P7hA4dbrWI8U0Go0yh4MnxOvRXI/WqzIbipRnSab5Em4szIuRpIbuieZMbwzTsO1aiVOm1CiwWIjrkhotg9kQSMzTpGZKI8vDiXMaIvbj17o6be3TyHzrAf6X+lT/ALtN/wDUIfRkch4PBVPmRulPpKlyIkhqJLdp/V3ltmlD2WKSVZFGVlWPQ7cDF6ZOVdie73AWHcgpYdE9FocHFWFaDiptn0/TkSHGD9S+hSm3mv2XEmSk+RjyjWEERFf1dx5imC5csjcmQU1nuLK8hR27iUXMekxNiZ2hzth+S+IKlHyEvrVPZbdTczMsuXaEu5acEn9Q8qrGMbP8Cwni6TJvZLfoxbSb/tuZUWvzuYvUjLy6cHXwDiioy5eIKFidcVysUN1vPKioNDchl1GdtzId8qrEq5X48B6xmqRNon1vO3sn/IeBwjSKhBdr9drzbUer115ClRW1Evq7LaMjbZqL2lEWYzMtLq07T7CSO5BlMZGT1F69HkqbTqpP6YOkVdMxRMomtOX6iKw8TqTjWK+1Qq1jQvgPUegsRf8AMyq/+Nhf/EcqvwqpTcVtYuw5B9J7aKUGp05C0occQlRqQ42ajJJrSalEZGeqeGocnHEL/hnF+1ymrZ+h3uy9s1st/wB4LW+TrYYwoql4vfxJVcTTa1UXIBU718dloktE5tCsTSElfNzMe4RIb+d9Q8fhqsprkaQ96GrFK2Nv9ZMEztL39ksxnpbnbiXEd1hQE87OwlxPaLZ09oxtKF1HveYqnm1CBUlKylw4Ba3VdhCNLcjRlqCvgrnl9oW7McTfRHuGCVOccaUhRI8iF60Lvmr1glTveFrcO3EZnHOIqpegbpi57WdM+0ZHUH84gzMdwtQOdhqJZXEH2kNtII/W69n4jK9xIbKSXxvl+IZNvh1Ww1/khn6Rv0XYx+hpf3Cx0MBLP8g8Ma/7sjfdJGqZDi1GmTadUGttCmMrjvt5jTmQpJpUVyMjK5HxI7h8GPHhQ4kKE3sosVpLLSLnuoSRERXPU9C5jBl/rLrUhuzK7RIpcOJs+0hxsn9TJ6Ki+ZQMh9wnKYVjmYnorIzd5i2bvFU8RfKYfS8/aEidROUChrx2+KqltAlwPPgFqG2vaBEs6lL7THEU8/8A3h+4h3lJGM6a585HvMOqVmiejiLQpSt4z8QvZmO76Mc7Ue8wqRTXGmlOXR7zDYuyXx+dOU0a2z3FGNSZT/z/AKiC8glKNRJPKYaCdcc+UY1sDM0gbmUBZ9Z20tC6vaMS2kQot4/ELMaEqLKXgQS6oJJ7dLXkQU68XaJ4q+4VIUOa+rQPkO8Rz3XA6GPJct1XEaCaSq26epcCGFxQ6cQy2zevL8Ar1EzqEYdWnSiIm8Xql+4xY4Rf3KvrHTQYcOdkzXie7o0wVeekwzzJysr4dhjRS2Db2uZCk8OVu0ddfEhTKNFM1ppESbT08VtyJFkmdwW1Fb6hs6mGqIPzn2jpaDjZy7R0ycGO+Ov0pc+xdgHC9We;lQs6fqjFa4q77F+VWrZyGjKMrB+sSNYZ7dfoWRlIVctoLhb3IMrX8Kx3UC7ibilwyFuyQ4ZswZnEF2scFTy+BueX2i6VCs380X5faLV7q2n4y4KkCEo1GjILIb7hpYPIZQNzKAppA1thdpPpBiEhay3uHMPLgELVvq8RQ63ZwClFlLXkFuSe8cVMrQteQOsd43e08/+723uv94yqdIZ9rqIbXx8RM10muWLb2dmIdCHbbo/zyHPSOlT8q5SE2Pgf2BGaJavT6mzqtp1GlCdAtlOVWT3DWhGgwXrb6dmkaKyhblkkNmQKdazWE1idHxLCoyzGVjuM7qivxG5TWVSjGCWjUtNTD1tqZhdt81K9tXvELQVjzcAtpOZwlWJKL6X5gDel5SS3lqt4h7T+1I98z7SMwlKCtwLzERiPras6SvbTsAhszk2Wa/mGodNabpWq3iOVU1LyObrm6R5cpc+8aqWpS4SeOYQho60Vj3lcQ3MaiLU/MIKMVi3j43PvD7CEKiigwVWM9vKtizHNU85Yt9XvHSMhy9mpRFqQyY7V+2bNvwc28589XvDc69d9XvC2mVdpDS23qNWLJTl3L420hKAxLYchAYSBprdbgUhIckTlFrCdrRXSLjMtW+rxGhQxuHvq8TEwrkfMkPaFqGpdH030TTv1CJ/BT/IHoun/qMX+Cn+Q2fu6/TiV/RMv+cf6l83QsOY5+I+h+jYP6lG/hJ/kM8ODEzv/BWPjD/2ZCk+pj6acf6VesTE2j/ryTKdeA69KZLrTeYu37B2VRWeterjs+z80iGhmOlCzXs0JP8A6S4BVsvJtxej9uYnZZMJ2iMpDRlFsu8kWsENqmUVUkNsIsBO2VxsZHY5X5jpmkcKvFJbspDpobvu5DMj8xK0ScqMWTLrYQmGm5aq0Gyaw65FcRGcJp626u19R5RjrUHEMSMxPdm5z9ei57vbzPhxErbeoUwTid6/kLsR0tnzzdphNZhuyoKm48tcRV/jEFrl5l2+4cHCjr/puTGYnOzoCW82d0zvm04X8wIepcaJxGVV7dwGWCaSeUzt3jkYknyEfAKZ+eupPev8Ujmrx/z2DJgB2S/AldbfefUTpfGrNRkVi7RCHpsoLC4ADZdtRWwbYFiGe1EbZ7DmoHYykDKQ5/tWRavJz2xobGjKQungL4aTFtyj;XAMMSLjdi8;hIYAO2ghzgOe4r1ivEx1wC0WLvj5eUAEgFTVRhYdSy6/nv7Z20G8?yJU1nz51jRnSLgAEFxIW)L?AKmObVY70myW2yyp14kOoYqAOdUUS3qWtLCMslZfOLQr66+A4cGDVIeyRGhpZ3y2rudClLK+pa8C8B60AE7Yap1zq5ej0NLczbyV9nYQ5dJp0r0wuoSmW427l2aPDuHogAG3KqlIjydtI2Jrk5eSzTf6xkwvTH6ep/bs5M5FvZi91iMehABCACRFgBAjkLAETCdqAF7AsEe1+UlixcBcAiuL8jaBY?2tVQ?Aw)D/2Q==%iVBORw0KG;)NSUhEUg?AOQ?ABrCAM?ABQb96y)YFBMVEX::9/f729:6+v/z9P7v8P/o6v7s7v/e4P7+/v7W2f7q7P7g4v7m6P7j5P7O0f7l5v67wf61u/7EyP5vb2+rsf6jqf1PT0/S0tKurq6UlJSRmv0nJyeKkv2aof0CAgIxwEfw?AH5klEQVR4AdzZb4+jKhTH8R8gKLV25w9dxXGm7/9drnDSQ7PmZkGNczvfRw3JJH5yENksMlLKglK6rSv8wGTbtlogJOp2TuLHpdqQvnvnalDC4qdUmVC7+I2qNbXEU2eVRUw+wJQJ6Yd19ezzqxASreHfcbkWCNWG1p83GpNESNUPFiGlxQNS43nTXUiDssCyqgtJPGPZY7L6YbdaHJBNYXuZp4pQAryh5R6P/y/czszKdNnPLcyGjWvXhvUJgeJPPb2d7XrisUxVd51mZhnSHGEEtUnZvcxpFKZeQvqIMWLwc5uU8iVWPsr5j4w9YqvC3+a+BQkl5SHGhFyvFHG71jiihPxPOi9wuCPnVivlrDRi062+1Jix/qhOSKxF0tV0ddLQPigyDmM/P3fvenp8QQGVn5ec8+A1S0SKR3lw4hyqS5DAeEslJOCnG9UPsP8jZHWOlRjpsRdIiyGt9RV2QkpdCWxMr0CGeU2jj/N03oM8QE/rcQ972DuSNrWbW4HUTdNc1Obt2syZAiQNbADt2gk8SF53YZS8iZenawFSNaEOG5OzshP5xvTZI9UdY6PZLdaFTUhbjNRNDJuTCtgD6eIuDdFI7V/INbf0KhovOKIlcgDgeVvyKzkOof2Q9Dbpo5ECJh6ffogfDHe3ADduPyRU11w0DkYGjVtalkhAFCAPSVRSZCItqp4pIyCeBSnnjX9WeUgaZdyq4wBYRjpCcwWn6xHR633JQ9JDD0ny+AmZ7uuG9emkYuU3DTKmspB04/EVr4vlrS4dSIE08BoKjUpht1QZsk8U51@uAWS74FUEZLuKUZgr7qMy5OlwsimW6qvSMkHEiMpvtEzsuwlqrFXwpzPRuQh0zNTY9qw8G6i+Q4GlgMGF8+pMiTdds5Ymb5+fryySZEByELSKzb50TkXJ9enc/Rf/0FAxmOQ6utz7hWxXx+fvy9F/9JKd1SM/EWMscD+3Qoj1KbtevqMifS7K0HyB4G8U0TavFDQmoPHnl7fKxoeIRXmrvHnG7KVoMPVjd6P/f2dtJmhLCEVSiLOh8GcjrDfSMj3EqS/PTYZ7E/Epj165VF+1WmqXw0ga63yX0rODcC3C7nXiPxATJ9OCjHxNq/+AuqmOV2vb6cs5eBdgPbx8opvp6X+dG9vy23CUBSG1z5ICCFAwJgbT/v+j1lJzbTJ+AC2IXb8derr/gWEvKP0H/foicpVKBu7+dfxcOhXVX7yhLyl90a4PEvp8918ODAuO03Yt06YcBsd50N7ZYs+lcjZ4Ipvfe7IOhcYqxhvsaiOzqcFKF1JwjVbFLIKPpj;uAC6zLCCuUCEZZQ1U1zanS47uFEcn3vKxTGXfuy7grFMrf+PQj1XrHk0fu06zNFFlJicAYFKQs+C6sjh3+L6mbuT8z6wv7LCOH/sb+Gvy77SaDVkQfcgpd2xbcnkjF0GmlLJCOrbNNUFd218MQS6XEDf0z/K4IFN11CM01Tr8hin3hGRjFlVB9FTY6UC6evl:Jxx43qH5lAzZEU9bXyEJqNCcrbV0ajeA+ZAiL2Lam/rw1OmJDZpgyRkGMMzg3KnakLrG7Rer/yMvYGEZBrCzYXHAZI+Pj5rdr3U+Jxzq1sqoK1iFrsAq5QlG4tMsdBVviVOkF64gqJ8i4ahjXhN9llVx/JQUfKsYmuAsKFERYS7hAoktTnr+33bj+mWywsWpIIm5FnAmAOiwNvf0tCwg3jWJr0zgkglsJJ0jEFboc+TQ8FNWdJ3gXruTy7bpMfSA8RoZCcT+zeDTF5e0Z3z/2+q14jB+SHo/Qskm5RtoK9zEL09h1yJcXxyswXVfR5ef5LVQhad88MhR8+UdC99BGsCVWwQMkFIqv7JwaCfehfhyHDpuR7uKBJTuMHsu6C0MGFdzLj0Oi2Iq9+LZ0x3XrI4eyp9jSNGQOW3GFwan5mEUsEmN4j+1cwFbCxchj0eMJ3JBMjK2YMu8inJp/HZOAJyCfGitsx4TQyvlNXXLAZSZ2FeECnsZHLoUotlXjvDAeJrnWmNU4S/MTPTNeDjPhBrHLGGdNv7MeL0ZiCB1jNeoKxVljiRzwYtqQdITVbExa2fpK1qZh7IRCobf9ildUnKdzapz5vrHcZPeN5JPTj3J5hHtttqnT2Ctu56eM9/zGFL8eE23meRwMPtPYtq1iN1NhsRPTBSvIxHadJQCHwzgMEz6RNrPYTT9lFXZDKOq2SyzAh2EYxrEBqWEUHGObCPYSpqQn7E1SYoxRIGNqnGffJraqkYgtCHspJwIU3xEZEwH6YZjn0f7FyIxNGNdIP46ecC8SfIeYWQDkx8MQ7F+KrGZjBFdNY9LjxYmNsRFk2rWtTdIHYx0zFoRXJ4IPTW7Mfw1WasdC8HOQaRoVNUpYiYesxw8jwfsGq8XUOCnuQqZiPIXvE4vVOFrBXcR57ys8gfZTn+AbRO/L7PD72akQLKDoHe81O9wbT1mPBeT7hB+dHZbve08Qc6PBgsb7lOkenap1XazxDBpbRmHainBe6zOHh6i1hvBcIWcIviBCYXzW4qdT75IWBbEKINE5S0ioc4ngp2tcFv5P97SOIbHIyDSG8OMZ9y+pDOu6yDHpOsL7qNsuYSTUtjb9MeWzJbwRMk3FyGpbcGUTg+2IEF6G5pPCBlJVlSFspWZVZbwMNkYJqEWwHdGM8Na4ELw14Yzw1kiyGu9fiW38ATmf0klBB/jP)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANc)1CAM?ADlL44O)GFBMVEX::u3/yVip9lX2u3qMbU1NUaGhrgvv4d+TT)DUElEQVR4Xt1ZW27EMAgMz9z/xm2jFtkjz7KRVpVi/ixHhgEGsHOguGWmmZ/fInJsIp5/Yuclu8FKvWDtEbDIPXHZgOu8ZKdwmburihzHc+pG2I+oiCxs1qcVDDRd19TJS7xgPY5BvrQ8nhsuyUvWlvtz66APIWGxLFy70OvB9T1f4JKOXm7XB+pvTI7ieqz7RKhlmsvvIXKdqrXmes1U/ZTlmZxeWUKKomeJ1S7jp2bqIYPz9PdUt2n8rGUao7WCZaZ6Fjr4AKJWiPm0EZbJhiy0/dTyjMzcvXYGILUEYFTvika2CokAaKIkso1n2e4GSVEEsEmLen9kZHa4JFchAdAsHlnCvSuT7TbtR1JBnR0s7L6+tKyh14za1F0bAqJTkQN1xLhmFcvqI3dVw4D09DoitE5wdygIo0ODeVc7DpQ7FGKkpMNMgCt8BhSJsMH0QIYq78ozEic0t6Fk4d58BxegVKxxCSaWky5FqnzXlX20iY+RQxdAzwRkGiyJ7jGM6Pp+OOyHXiQU6QQver43OJa6JfHAodCS06UZeplRwnBhkvAch8kG1zLoBRiysL8dDhVxoVEdLsOmyHM8AEcsdRuYi57jdy+yeTbEA1wNeTE+mBssVwSmh3LwrbIhYCwjHnp7+VmT42Xgas3SkNMrOL0wFbhRaOVtegnkBiWsJppLPOcfoRfi6slbjiY4IE0pvaKnlzT0YjvkWs2TpC8b1FFAr493ZWvLBvKzyXFGN46LlL2W2OhCjhh7bE9ewNHRi1yB4bOeXrjZ47J79OpxxHu49HZXRs605OBd+S69TpxnKC7N210ZVfMtDFdPXsRB6aUvcBUs1pXvD70IRAFmQ6++K+NYva4bCpf8D7z0TkicXCpvduWeXvNdxhJxcR5y1bPEcGE3dmPX94degbWzI+d3Ahsygvzbcv3ZEdajUCybx6h7Q2809CLvMazsCX2KQheiRP9w1A+9HAecSfzpiIv/Y6WqUbyJVkcv3pWRXsyf5qeych74xMZVo4SRYH2gKzvPFR91WqaZrd7ndcYlXDX5WVAPTXL8j4ha/ec4uITW/5AZNTB7D8EKtY84dK8tBLvXRgLz9F708k3pFXukIfY1k+1wbVrlpdJwR3ptl4ZfyvlePH52Rk0)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKYA/AMAIgABEQECEQH/xACP?E?gMBAQ)))?AQIDBAUGBx?AQMCBAIECgcCCgsB)AgABAwQFBhESEyEiFDEyUQcVI0FSYXGBkdEzQlNyobHBNGIWNUNUc5KTstLhFyQlJlVjdHWCovCzEQEB?I?wcDAwU))?QIRAxIhBBMiMTJBUXGBkRRSoSNhseHw/9oADAM?AEBAgEAPwD7+iIgIiICIiAiIgLxvhSGeTBdfBTXSO0zzPGAVM0jwgXMxFDu/V1iLt+C9kude7DacRUXi680zVVJrGXa1GHOHZ4xkPwQfC8BQ01pxfh2w3anrbJcqOOQ4qaOp6XQ1kksZCU2nWWzr0/U5c1ixqEuGMcYjttHJLuYgt8fiYDmm8nPXVEVPNo5/wCmL1eZfZLV4PsHWS6eObZao4K7m0SajIY9Tc20Bk4Bm3DlZbl0wlh683WhvVzoRqLjbXEqKfXIOjQW4PKBCJZF6WaD4T4PRqcRX/DFhrZZuk4bkuR3Yd6TUYRShLT6tJ9kZ5cvXxZ17HGFJF/powgGqXbq4ynqYxmlEDkphkOEtAmw8u2PDLJ/PmvolqwhhyyXWuvdroRp7jctRVs+uQtes90shMyEcy48rMsNfgbC9zv1PietoikvFKUZ09U09QGjZfk8mEox+1tPHz5oPMeFjDENbabjiiWqnCS2WycKamikkiDe1bgzltGGbjx5XZ2WPweYf8SYXDFlFPNPU3GzU8x0cxySj0gIt4pBKUzfyhFxFsm7l7m/WC04mt5Wq9QPU0RkxlFuSRZuOeXNAcZZerNTY7Ha8OW6O02aF6eiid9uJ5JJctT+nMRl+KD4HhXDVJjTB9ViW5YrmocRV1ds1dbLPyCOsRipzh3I+1rbR1ZZtkvW+FyKSK/4JhhCWo6VMdLUUsM5QdJAJKbTDq1gIat0ubhl3r1xeCrwfnd/HfiWLpevc7Umxr9Lo+va92nLz9a6l8wZhrElTTVd5o3qJ6MdFMYzTw6OOrl2JI0HksCxyy43xJJV0stFNDtkFFLUPPslO2uTsGcfN1+rqbJfTFxqDC1itlznvFFSvHX1Llvzb0x6tb6i5JJCH2cOHmXZQacdeU29swuRQyvEXFvNnzLMEsxO2qFx9eef6LWtsE0MlZuhp3JzOPq7Lu/Fb6DHIZhloDX71jjnnOXQdO4Bk/Pq/wAlsIg49zul2o5ijorQdbHk3lBlYOOXdpJTZLndbj0jxlaTtm1o2dcrS7mrVqyyEctOTfFddEHgq/GmN6WrngpcCz1cMUhhFUDWgDSCJcp6dl+03HJTevCDdMPYJPFl4w8VJVhOMHik6luyR6Bk3tn8NC94vI+ErCldjPCs1it00UFRLLFJuVDkweTLV/Jib/gg9ciIgIiICIiAiIgIiICIiAiIgIiIChFDugKFGaxnIINzOw+18laQZUWv0iL7Qfiylp4vtB+LKeUc67VE0VWAxyEA7bdknyz1EsUVVP8Aam:AJOqXfVLVgUTOY7bNy8Wz1EsEYzegXwdV1fgdSyXOW49MGVh/wBVmKAdOebsPpcetdZcPDtrqLa1bJPIJ9NnKoj058on9UvWu2oEooUoCIiAvB+F++XbDuCai52WpKkrQngAZhYSyEz5m52JuLL3i8/jPCdJjSxSWGtnkpoZZI5N2HTrbbfV9dnZB6BERAREQEREBEWrc6qehttZW0tMVbUU0Es0NGD80xxhrGEeBZObtpbg6DaReLw3i7Ft5uEFNdcHT2ejlEtdbLUtJo0i5D5LZjLmXSu99v1DcHpaDD8lwptAl0sZxj5vOOjQXV7UHokXMtFwuNfueMLaVv0adGqRpNWeef1R6lsQVhy1UtLJDt7bPzas9TM+TPll50G2iIgIoUO6CXVHdHdUclbQgiWlXF5Jvvfo62CJalY/k2+9+jrNw/UitRWVBXl8c4numGYLZ4mo4q+tuVU1JHSyOTZ8rlqHT5m8+a2M8tIeuV9S8rgDFv8ADPDwXaSMIakZZIKmCN3cRIX1D2u8CF16Z1SWXqORgO71tzqcSRVk5TdCuc1NT6vqRgXKA+xezXn8NYcorAVyqKSaWUrtVHXVG648kknNpDSI8revN13lz8r4vuySdF1K+VYl8JV/sWILvZ+j2zattK9eEtTNLGUsWYaYg4fTFuNkPU/evd4VvU2IcP0F6qKQqGWsj3CpjfNx5nHu7JM2ofU6naHaRQinYsvmvh2M4/B5VbZOBdIpuYX49tfSVw8W0+GaqzSQ4u2vFOsNzfMow158nMBC/X60Q7qIikEREBETNAXOxBcjs1hul3iBpJLfR1FWEZZ6SKGIpdP/AKroLmYkt893w7d7TSkI1FfRVNLCUjuwa5ojiHXpYnyzLjkyDHhS8y4hw5bb3NGMMtdAMxxA76R1e1dhcPB9oqbBhi12atIDqaKnGGUondw1D6OphfL3LtoJWuJ0vTCAXbpWjm6+xmyzrhQy/wC9tRFk/wCxsXq7YIO1uOm461dxNxZeRG2Ypy7mVAqCKRgybz/ksBGqRF5Yff8Ak6tMJq9PY23SJYyJQRdaxalExEktWqfybfe/R1ndYKr6Nvb+iy4epDWFeHxTg284mxVbLhMVL4ktwGMcfSKmCqY5WHckHo4dfK2XO3rXt2V2WTPGXzI+feDjBmJsG1tzCuloitNeW9HT00s8pxS5vp070QZjoLJ3cs+DL6G6hQq44zHpB43wSfxhjj/v1T/fJfTl53C38Ftd1/g5tdI6Wfjna1ftn8pua/rezgvQrm53xfdl9nyy/wCAcXXLFV5v1OFmnp7jRFboIq0p/Jx8mmfTsEO7yexe1wRh2owrhqjsdVVdMmp9eqVmfTzm56A1cdI55LvqUNLKVCKUJXg/DBDv4IqY/wDnwf317xaF4uFJa6IqutjKWESEdACxPm79xOzKyHQUqEUiURFKEKFz+lT+l+DfJQ9VP6X4N8ll7nL5iNuguPiytqbdhW+XCjk2qqkt9XPTy5NmMkcJmBZE2XAm86zPVTel+DLl3EyuNLV22sfcpKuOSnqIuzqikF4zHUHM3LwzZ81fHs+WRswVepa3Bllu15qh6TVU4HNUSuEeuQs/ujn7F3I7nbpSaOKrhMyflEZAd3f1NmvE1uGLHcbFSYarKXctFC4lS0u5IOjQxAPlAPcfJjfrJaVs8H2ELRWwXG327Zq6Y2kgl35y0kP7pykL+9lP6bP5x/P+jmj6NNWUtO7DPNHFq9MmF3b1cVy6bEtHVYglsEDa5IqbpfSBISDTqENPt5lwr5h2zYlmhqL1TdKlgFwiLckjyHPV/ImDPx71sYawvYbFWyVVqpNiY4niI9yU8wcgL+UMm6xZVy4GUm7robdrcTcWrqdNS2ORDO8imA/Lj7/yda2pXpn8uHv/ACdTcfD+UMktXJuEOTdb9/f7Vhetl7h+D/NY5/pZPvP+axOrY4Y6nQ22Omy9w/B/mqyVUkg6SYev1/NYEV+TH4NtqkFp5XA/R83tZbzUMXpF8W+S1LZ+0F9x/wA2XXZaXaeJljnrG66RfGbjVagi9Ivi3yU9Ah9Ivi3yW0pWp3/E/cvyz4eJtHgxs9lxNLiijuNx6RPUT1c1EU0fRDkqGPVqiCIezucuZdy2cTYAosUXELlUXa6UJhEMGzQVIwxcpEWrSUZ8z6+Lr1qLHzW3e06ebwxgukwtNPPTXK412+DAQ3CcZhHjqzDTGHFVq8DUdZXT153S5RnUG8hRR1AjGL/uDt9XvXp1ZlbdRWjabTFaKUqSKeeoEzc9yoNjNuDDl1Dw5Vqhhmm/nlX/AGrf4V2lKuq1egh0LoO5Jo06dzV5Tr69WS5c2FKGoBwlqaog9F5GdvhoXeUZqRKKmp1jOYhF+DKvMnVZ1K0HrZe4fg/zVenzZ9kfg/zV1WB1V1Kqt2Kq5rRP6Qva/wCa3VpH2y9rrLw/dFQrZKGWQRV7QyW3R/SP939WWIQW1TBzv7Fh4mXhpGXbi+zH4Mo24vsx+DLNoU6FgWYNuL7MfgyMEYvygzd2TMs+hRoUcxp5+oqRGeXkPtk3Vw6/aqlI23uaX79OXFZzJzmn4NyyFl8VR2W7hek+itavSxz+jP4f5rJLK0TNykX3WzWRFZDPaKkTq3DQfYfjlw629a7EtQMJadBlwz5Wz/Vc61ftBfcf812Fy+2X+rfpGbDyYoZmm1cpDpy7Td6yrBDKZzTgT8oO2n8VnWqsIpM2jYeVU6R+43x/yS8svq/gktm5Hlrvjux2e7PZ5zmmqwbcqBpo3l2Ay1aptPVwy6s+tl37LdqW926K5UTlsS6tOttJcpOL8OPnZfNcrlhLHN9ulVZKm6269i3R5qMHmIeryR+iz9WT9zZZr6Rh4W8T03+zhtRZPqoR0+TLP9zhx61k8KrpqVClWiBYJqqOEmAmLU/otnn7FmzXMrZ5Iq6GTYlkCMS1bYOWbuz5ZKRtw1MNUDyQlqHPJ/M7P3OyibsOtGz01RF0moqB2+kSahiz4izZ9a6QsxE3DP1Osd9X3i08r9HOJU867GzF6A/Bk2Yfsx/qssqjXeji7y/D5LGVJH3l+HyW66o6yTPL5RpolSh3v+HyXJlbysg/vP8AmvQ6Vx5qGqKaQhj5XIn626nf2rY4HE63muunuixrCswK40NV9n+I/NZBp5QfmH8WWXLPH2yn5RpYBW3Thze5Y44y7ltwg+a1uJktFtKnSr5Kclh2li0qNKyquSi1LzM89LDUVG5URDnIX1xZ24vwfN1rlcKD+dQ/2g/NefvGfjGt/p5P7zrhTNxdZ8e05SScsV0+ihFLKAyRgRgbMQGLO7O3mdn87OrdGqPsT/quunZf4nt:TQ:mK3lW9uy/ZE93PlyLfFNHMWsCBtL9bO3nZdLN+9Wk8yotHtHFvE4lys1010ZsMdTTHHG8ckkmp/KO3uWXj3rWgd+kVHF8sxy9XWthYll5+xH7PksKzT9iP2fJYU4nr/AO+DD0rLZi+jf2rVWcPoS9vyVuFetRnP8sqla7KVlnEUuLJnxdRqVVkj7PvSXrrZekY3SN/KN7/yWwit3fWdf4RzdNaERFkUQodlZQgrko0q+SZKdimla8zeUb2fqtta0/0jez9XVsEIBbALXFbEfnU5C6IixpQoVlCij53d7ZXnXVZxUkxic0hahjJ2dnJ/UuHLZ7v/AMPqf7GT/CvrEHam++6zKN1OmhaIzjtVDHILgYU8ImBNxZ9A55t5nZbisoWOxZjk8yxrKYvwVNBdyxZTr5Mks0wgMWuTQ7ayy18VkWCmjPpFTw84/qtvak7vxZRy5fF/BufMXcQkEOL9SjZi9J:AL3KzAXDgizWTzuM3/dTd9qrsxek/wD97lJMAREIv1qVWTsOoupLqSdKS22bt82LNM1CLDtk0ss0PZf2rXWxB2X9qycK+JTPyZURFssQiIgIiICIiAiIgIiICIiAoUog1nqaeMi7831cPOrnLGEbS/V4LKijSWqNbTkTDm/Xk3DvV5p44NO4782fmz6lnUKLDbWjqoZj0A7/?US1UMJ6Dd/gtlQqWJ2wwTxSjLtd3d6nyWPck9J/i62nbkP2OtXbk9F/g6x8Xm8Ot+XsyYa67ZaciI34v1ed1myWGnEhN+D9XnZZ1fhS8k+tVz9XRXJVMeV1kRWuO1ZWvsl3sp2S72WfJFXuluesGwfeyyxA4D7/MrqVfHh44q3K0REV1RERAREQEREBERAREQEREBERAREQFClEEKju+auql1quSYjU6liLNQpHrVZtNWRSiuqhFKIIRSiAiIpBERAREQEREBERAREQEREBERAREQEREBERAVC61dFXJMY1I9auir7pERFkVEREBERAREQEREBERB:9k=%iVBORw0KG;)NSUhEUg?ANg)xCAM?ACPtZeV)MFBMVEX::8+9vsq4jom2nyyLb7+Mb55Nr8+Ov9+/T597fjfEXvxIb59q/11cf035v247KuxaNV?ADqklEQVR4Xt3a63LiMAwF4OjiaxJ4/7fdNTGcFqV2wtR0t+cnI0v+6k5joNN3xytLzsKsa5z+teRb9AVW5Izo9wN06/x+GOffCfP5l8L4R2Ar3zISlmvkltk5CqNh0B6Gzcvf0Cu/idcFoRGwpeT9sHn5VTBMuPxW2PIzMFfyDlhyJUNhVjselgIAPwkLypJzveR9CfPKuYR1bcPsUXuvyrcZgtXDYYGziYWtkhF5pmUTtNfn/qL7O7YNtQ3z2cTDtULTgD3jOR6F+WzDQ2Fw9WFs5BLPwxAdDgv5CEwbe+vBYt5LHA3DUTCLyB4MemHVmdGjBwOamVk/LtaxMJhXt2y5PMOg1ymk4q00JsBUtYLnGowvsyJt/bE4UWPH5qGzDwt27LUYAn7H/PKIhYW7iype6gTXu3nggfLcX2r3V2GtsQVWt6hLA1b1Ul041Qt@2D8UNA4WNwUkpow3vC0g6eDsAmw+aFI42D+ocANz8I2xnqvIaKNKqXHQVht7ogUChoFe3qrkWi3Zfj0BpKAkGq3MKoBLKJuFAxj42dYivst67HCBcT5a7b3DIX7ZhjGsN2zha0ZsGQQ4RAsrMpcSVCkt8DSTksodtMci0SVbALFaBidhkkxuBYMJ/6DsD?Btf/B0sdWEQ5s+rq+d2w6TRsBsLAzIGtcYpE5Nw8HAbutQlboTfpw/h+66a01b8TdmnCPIp24jowySUcCut9sBWKUTBzyzYwTPgmGDpyCwbq6zAsdm48DIp8bcIYa23oBCzRfl0E41XY9QnGeCLFTREsTHGuk00HJvcBdYSBgZEBC4dhPqPS7ibLZQmlSiVbWEBRBMT7QzBGP1cOZ+WdP1j8GLBgF6dgcm08Pu8owOwnPiW1kvsweDNfLqtiREEAtuJllPRg9vtGluxRbGJh3hQch4X8VWbAYnMX3UsGAliUFqx93+vCuhcXFL0O8wYGWRc26WkYIl2Y/aiZu7D+f2FEzYhotLASz88s4bI4dmB2QJj0AQv7B8t+OggDGDAkzPUbnvnqXPrqC8nrLLKJhOdHpZs+hRbAkKBlqcisPgQit8wsUmAufPTXXVwW59yCUHeCV6mAInBLQLGJhcXFpg/D2v6I1CjpTHCf?GvH21p04EB3IfR67BgYPuyBJiRnYdhAJIMzMpcF4bQkZ+Wo8nCSoI52eT6MDsgUZwo7e06gUVhOgEDwK4glwqKIiQmkZzbQI6IwnQicetfBmAgYNhF6Y7Wp/rXjcU/gjLU1J5TSPw)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ANI)5C)ABmcSrf?AC8ElEQVR4Xu3Z263jMAwE0KhRtsBi2MrUwh5YhfYGizw8pkPZhu+uA8+fBSHIAfWyfAsfSPR9cZP2EzXv90Txw/tygwwEezyB9oreUfp89FOS0KaxHu3UpNDGMZya5C3LmUnevo3k7dtI0b6OpP+IdHfZO8AfWuwkoX0bKRpHAT01.SyoH3qdKRg0YMqBckBVTUMnv/CAXhsJJnM47PWvEjK1pzk70UUxKfCS+8BeTxYDJAcz/h6Es2a6M/YIsmlUSyWSQ0u1LcgUVaS;v0ii+QQlsSpKQ8fijJl/9YJxKViGPjpIYjSZaPOx6TPnB4snFS8wNJSjP5PdnrckhbDMZJEh@/sp2ktBU2nV48mFSMyZxpiQYodQs7q2mz2czni/3YN2Z3dzSxQWtTlQkjk9J8Wx9PW4iCfeObEcO5zVE4VRfVKTCZCTaSnKqCTfZwgC1+UokNYkDMpFoG8m4JPznc1I6b6Mg1SYSbSNJsjqCmA@2RRDRapNJEpJVpCyvp6WWbPdbi+Ju7Oo2JfKqYTUmZEkdWpBGjWh2GdiJ0knJG60guQEGDM5kVBMpsASydeTcAhJ4+N9l7BIGooq/S4JMo9+fqnF/FrZ/wMSb7e8nE+SXZzQGdVTv6WNGamljbaB5E+7fzA5kbKiRFYQ2buIryeFPhc5MoG2T4oFXy9IfPijNrbVMr75KhKLeFahuJkUNZ1IJZK+Nh93sjCeI2nrt3D35H0pisXO0pXCqUxlNB06syKBSJMygw4qNwzfgr+/GYn9JHmDMjOaMkU8KyncuRo5qQlALb6KZMTmFj5xYExUlxTjnw60H0rqVoqGSip9nORHkmqT+NAdncQ4Cf1AUj32LKhrJapJ1o8ndZeiRFVXncK1EB1DoiBDCXoSFHAiifA8OozEgRLIvOeJqV8ZzsdWSPKZ49Z/I+HQvy5VeN01+8CUn8QDMFXA6fvSacIkykU6JBfJAZke8HB2EtosF+kiXaSLdJHOEugsCekPLpirci7wXYM)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ANo?ADOCAM?ABvhOxk)wFBMVEX::08+/19vTv8fPt7urj5OH5+fjn6Oj49/fe3t/49/X+/v78/PvS1NPz8/jY297p6/P8+vb7+/v9/f3:fX7+fP38NL49uz:vvBxcvz8Of6+vn+9vn:viytryXnKNucXb2+Pn5+vve3tjy9+7:PAyMjL89dn9+/P/++n839X79uLy7tr:/3/+uT/+dvg3/X++fv:f307uL/99X0/vT389/97vP:v/99tD4+/b7:vq6Mj4:j6887m5MCepJfd?AJX0lEQVR4Xu3c527jvBKAYbOrd/de03u2lu/c/12dkWyF8XqwcKpNQe8CK+XngzEpWkDS+KSusBqHqqbVtJpW02paTatpaV5izZK7u8HdfcNtBLYymqZh3l0yu7MCaDAY3AOKhaHpNDdNZskURKD6FgQRC74N7t0UaLbhtNSbTacg2xRFESdESirNpyVSTi1KacCKOOs9cN4jUxpVYGp/fhbRoi8/vywWdMFkaj7N/fXrz6YvRcUtmzYi33xaydL9+cKsjupWg/al6jQdC4AWVnNqgZvTzO6X9+RaPNkWEc1pMKDOvl0d36kXnthQkMfWBQENGO0ALYOWSBnS8ArpsDTXTcu8stSjNAXacDjMsAyhIV4IaKKaNJfSjom0mqaOi1ZPrf5A2hWlpcbR6qlV+DRSiakVZ8ckSWZP9ftJP6jCWvOkRWkQsGdxzphTBVpfOhQijO;lZ7qigp8IBP4CErZh39QX1pTuKTKN53muh3QFV/SNiUSVltypXzT1xoXoe93u93RU/OT1uXl5Vdh/NRAlrvGupHv+/O5EEINIZSxW9ZpHAftSg+ABpQyBQk7DEMbCv3QFopHjJ6dnV1jnSEtsQF3XKT3dCBpmmNJygIWMaa4UoBkSkSKMUZpExQ3WCj3FOmwNEICcHC1FeeMMNZ+ES07OppDKQ1owLYiecbTpLPJctpbEWI6Tbe8RqppNa2m1bSaVtNqWk17WTVttekftNWmA9NqWk2raYd/gdBBGpa0M93y+nGrkvZjt5NNZxcnT120kWR/twTjHhvt4rSiNJBlYDs6mhahNN0PrFKWga1itFKmbdWhlbI4Blu1aOXMmqQJNgO2kf1pIFvnEAdsFaKBrKzNc1tlaDenmY7wJtgqQntcapi2VYF2A7KtKJNgM5+mZTqaz61tLg2X6b0kbhpOAxkWV82h1zTvkY3LFs31tckd+IGTf;2w2i4DDRrW6wEIJsLNuuAzVQayHRxb8u24NpmFk3LtG2xiLNCxwWckhdMJh7YPpPm7srczr60Gy1rLU9Ps60WiiwWljVt9ogfhp7npUm8bevPPnZqw51gakjXP/41tf98ngFtKy6UWFiUL1g39APLS1Mv3qI5crf+62hXuzX2fwf+A+m/sp7fFVnzL5zwfUGtheBd348sz0v6HlE9HXV2s1Ik91W0IWZ7Ka3Vbve6o9B5bjuNM+X7c8FhepwzK/GSxKO2Lw5Ds21b0/JXjfvRvrZJz+mNxn77mc3hzaaaz+chcxQnUQTrKJfZyijaBSG8F3OwNZvNkhZzTvl8fnt7GziEOJaUHgEZ7xlEg74SzomjwHaq5xYvuJjbt7dRxBwaJ9JjoW8DyKS1Bp30OOdtMZ74GdjiDU6tZbe3LIulx32QGUcDGwFbz85t7Y1MxiJcy26t2PF4twuyg9Fgdb2SBnNTSjnF3Mja5kSEr2Uya2qZUTRt42Q+nnTjjY1FP1khg+eAlhlIAxtX;dgk05pC4BmZVpm4FrTc1M+2OJmDLomV1HArFjLTKRpmxC5LX+qZW0hOKPNZi6b98yhrTb9bROKh8V6E9zhahFFpJBdGkorLnqfjEaTSdcRc+6QBS1kk9XKaJq2dUeTcZcIEUnqFDNbGU7Ttm53NIYzl7oN4@2aSwN2UtsH2xOFKxlrVbrwWSatnEFzcfj8PS0lB0bDWbychr0tadAJ0bjec/PZR9IG3yDBrj2XWh/CVv5dxxOYGK+D7KPo91/23TfyYa7Lc+QboqAdqN7RB/ZrTygtZ51eflAOGNU+b643ITTrL9dliNRGr6svj3VyZ.39M6w97L4bQWSgMJ54QwDrKX0Ky/aG4ZThto2gCnIe/lbpBwGlZB4YDrXe5D0zBN0yqEpoem+zxaYQPZC2jWOqldx0mDeuTyJTSrpAHs6Gm9V9D02+MjpkH707QMpzX22UbMp+Gb/5HStOyFNP3INoHW358GueuDlts4YpoeWgKSyWo1cUdwECjui/zG5maiabojpumh5bRCNfJXq/H6fjxa08ZwazrNXUH2ZOUX93AZjVRjMgGsPzGSJrdpk5IGjRp5OQ0uptNGANrQAPnuNFi0+vJJNDEmBSffPrY+kObTJqtJsXWM7IKmtxEwjeHWYNp4Ndabv683/5yWX+Fi8A6J1NDtTxuC5Iho8pW04RKdGtKBaPudIYe7dbJr7A3PI8bAOkH6itXDIkiAKeuvSxIP8xhN0zYXqQI0qII0+QG0k9Z5UevksDT53rSL82edHJQm35f2cL5V6/GQNPmOtOvznR4PSIPejXaO9Hg42js+sh/OsapAuzhHO9mPZm8qPatNR0EDBpr5NBga3onxNFhpeK2q0iDjaedm0GpaTTPukb3/NoLCfuxPe0BCac7U2umDN3+86wukNhLBokj9BOmDH9nXSGdLpBhLYvWRUkSRNpDe7aC1P+2sieVgYVwvRcI073U8fh3Ntu3y/0PToAd8pZlPg9Cdvxq0a1Rm/FrDX/vcVIOGv6wzn4a/Yq0YTfextJpW02paTatpNa2m1bTlW2g310tk5lukT/pS01lnhyHbYF3PoY4Te96VJPGyLFsi3CVWNkTqpNsBLU09JFThvuUPNYe+pknKCJFAs1iSPYUqsIZuZzf3r4DmuinKQGq8hWY/pzmEM/ozAZqH0/5t62A0pM+jRdrrUU6cuFMVmq80jBDOKkTrijXMpUwpoRY/5RWtFA2SlAugOZWhdUd2udAYV0IRal0RXhFauKG5/XxuHGgsqgIt1DSLKy5sTh2gJdWicTsU9pqmPotm2/Zn0CSlyhaVpEFMAM2qIq3PhZ5ahdYaJJVdRVpqOZJ8/DYCi+vT15rkSoknWr9KNM+hrIq0NG3QYmblDmlV5KDVn0FTShmHGKMWrwRN+N0wYKynokgp21ZQxJSSmW5f2fBgNLycRjhvzW0x9/25sIHHlZpe/buGAQFtfvkb+l9Rfvn9W4Ti7bT7u8FgcHd/OBqL8u1jHvplIcxPqeittO8AK7r7fiiaFQQBi57HWBDMZm+kfR/oDmUDFgsKUH4HAWw6ezPtbqC7OxAtKGLBdDot7igN8vs30u4HzzvQeitI04B6aSqnlpRyRhmlb6XB0A4/ttlMTiGZuqmXJB5kBVP61rU22K5xBGlARWg1rabh24j5NHzzN5i2/yM7TfWNkTQIOWiZTtv/eGwWDf9SYzDt7dW0mvZ/wevPEqY/FB)?SUVORK5CYII=%iVBORw0KG;)NSUhEUg?AP)CZCAM)mcEcy)wFBMVEXW9f+41Ppyj/CltvJVWMNVZ/FGS+hPheNxdsHS4/ze7fwYbs7Tze3f8OlNQpEZI+ymq6PQz7R3en2QlpNES1DY9v/m:+3uaqHiIjy/v/e/v:/8uyxMWVo6FoZ2TT3M/Z+f/t+duKf3ASFRr::Q6/OduMS40dng9/7T9P/P8/9thJXq+v5YaXt+lqn7/tnD3ubU8Pjv8PHl4+qJpcjN7Pz+/+7i+PDX8v6Kq/PF9v+oxvfX9frR5uTC4vn29fi7GR7g?AUIElEQVR4XuTVV27jMBSGUS7hXvaqXtxL6vTZ/66GMpxwhIytlyCxPR9E6PngF0TS/Bfd3RmzWq1mM0Fumnl/n3ulIDDNioIcuj3w77v7PPf+wHyNvoAFuSEmDsrETFp6E+C0pgJgTJ+OAb12sDFmJWdwUpmWHUJ3nQublx+tIEO2fSt8lQ5WFrQGxRRgjqhFAl8VM2X3A2yEDYwe1AEYRKNyUKocM4/KMZLAV8VM2ZYxBnRIH+akwSlAhAy2Cp1SqEosqc8ZIqj0SV8ccxaZJHUOjA5Ah0hDhSVS5lhc1GUBHeaK5ahAaQrARtfShTKLYhK8p8FlOWJeQunKoKh2kY6BBgDN4PB5H88IfJFrzq2ci2JiYQquYlt@SIgBK1DhOqDcXhSnwh+im23K/IPphBkYY00pLBCNrA2ciEmwAErusWlU0feSPlJ4MSMuWPPiwSYSyOMnRfxbWe91g9m/yh3nvN84xfFWfAwJlNagz4VPaZpSOAPY6aerTTFnJDFsGffSfbLkCYsW1PxUPeab/gyW+qaPtpJ8HDoKaZmIUDn+92u/SFIAn8EcwxufWelNCY8iCarPf/us01Wt0Zz3fF10LWteM/rR3kWfI7pI/NnS6yVMWttQd4V/DSUlFM1ccG1iZNyHsE847pmm2zdmKreNRXvPP3mQ+9bOZ9YeMyE7g2zSBd5Ar/7mNPg+qur18tqnW0aw5es7njoge+MepBC9n4hv0gjTfSeBY+Ye/EXc6ScBk8z/5BfBykIw0AUht8ddMYmi.bdQK1CC0RSL3/sawgsx2ktJL63+Bj3mYMpg3uD+2pbW7N/uGannd+PF+4DOIdQMyBYEd3g2mAvx7tHPCEfbpd76/H4e1z5JnhCV9FzDbTBtvXnF8OY5iYLgQmIawZYQmmDfYB2q/ATpmLlxN+FUHfMFHqtsHav4BpVXDXxRhzkS2DlZlzKRBJKQkqB9vM9E6moG0FrEwSg1k1WJlFmYayNrAys8WsH9zFDxPGaKsG62aV+WLXXnsbxfUwgGM7gI2itmqxFaMk4zPcG+DANOzaa+r5/t/q/E0vu/Oy0pFGRPsUQJH65qfHNiD4VblJ8JeZWwd/jbl98H/++xXm9sHA/MIKtGXw7eVf8L/gr4fzgEM+H6mXWwRzpVTmA+d1kWs1X7yU+9wWWEF4ptqpLEvnymmeNA/KeZ4m3bYAvq0hDZ5ZM7ZYQkhVkYoQa+u6HlfwNJfT4p8F+a2A+aK5nh1JGDbXzwwUcr1W4H4tJz0t/HbAetbz7BAzGIcQiuEvxHZfVQPtKR2qY+1mzQN+C2AO0brh6s8uYY7gKLqPojAKCUtYUvzc7x8GIF8JcnPbbh3M1ywqy5ZFyMKng5YN9Gzsfk8M2cNHfwPGhliL5mnjYM4VcJumyZp51rJgY+fJEraE3d3t6OH79/P5TKn3rgVzvl0wXy9EgBWZmFAyIYRwaH8mlhVrKkrpHYTScPXOAWhbxbfbMOezmycG0NlZOBIDmyWo7IqPoDgCrbEWKaECKVshpoBvFLwsgUNuZs5aCzuI4UQMJjN0nCCCkmNRvPi5jJ5VVo5CnCpxOY8i2Co4aGfkmvm5nB2yjIGbEH8waHQ2jCIX3ZMXg43LwHtOj8dzWl9S2WwVHGjNWNKBrxMAFkvWWjdJAp0ajKMowgazouhY2fCsvgz9cHisq17qzYLVhBBDBjktpZ4KZ7EtrsRjQ4MwbOSPn4UsJJtV9pqmx/J8EmOdBQHfJnhR2mBjkR/PshtZdH9PChoZvIvuMSLoSvY/fgC4m585b46jFIXkhXzeFnjF+50DOCHGEEJA7Dpk7u/vQRsaE0eRGccfxRrZdUmil6UQZflQj+mhURtbpbXftd/URAyEIOeSwsbxfXQfogk1cv8i0P7lp7PEWuYs+6GyKe2PVX7s0kHyTc3hZdFCZlkhnvnSqpGVdr1hLoofiUSEJT+n8Y8EId889rEvrn59XbIyz6sqHYv+JFdAuxVwmxWvR5Udjl3QrjfP8pcvezpmvTaO4zAErnl7Nq5nUZ/60/hYiePY+C+AxWYaVvIpz/M0PxRBq0r57SiTTgJcZnx2ziFrjTE4xp8x1ysaS1WWchJSZEXRSsWbOuAbAReHPD+cYS94ccxlmo/zc8s59w/DPtYCF7yhob5mbGJjrWufMyllMr6WT9V0Krs0LbNtgMWY55eieMwrqYAO6cVfM2h9twgZAl7svSFYDYD32BBjrJqe+vqUvp7StO6b7pCe5DbAvuBSqExlWZnm6SV/KgHruVCuD/HgOIRAwbuQQq7GkGf47+ryWAx5P6XDdNoKmEsYzVmmMxG0okj7Jn+cHWKaOYv2717o9S07SBjv6ABi95pWxaX/Vp2qqRqWupbtRsB9njcyk0LIKl9TZ043M/MdezCGgldtFK3gHaXYWEPGWorxOAohtJSB2MwqLU95fpbykB+LIwzSNJcdz0TTNG7td12y1nJX8BrqZzNJJNdCKA7Z1I1H1qUfxcrXvqgr0XRSSsGR/ZjCYeit0eeBXulgiMsUQPnmwK0Qj8A9CNkGXMIvlzRd1zC2LtLe+ws4jDEersPlQlHW+tsrvr0X4kKqQEjRcl9X6xBLkoQh9AFeG4bAsPahFA7DEMcmUS2At/iqRWVC8WnhwbIEE/sb7HdCAOyz+0yIsbHWDrXwAL5BMF/164Rs5xm8EL9I209wtKN/g+mlv4OOh6NoN/8y7R3cJA1bCwa0B6+zd938gfYXSoe+PynFbwLMGiCXULGPvyp5cBTC6aPiGNO7S987sfWGuQfrhDVAZh8FAziMwh3FwH5PRPvz4zmtpL6FhjVjwGXIEuu9ZhWHfnF+A4O790nTi1Db/wJgnmcAN1AwATBayRiv4DBa48HnuzsQ96VYNt5wq6Fh7wWwBS96F69XpQ8upR7b392l9cbBHMDT9DakHVpjyfuFGLghBLy7ux1kOF0orYVetj6kAawTD3a+XQ82xoATvNjDYxyFBtPr8P3xkvY6U9sG80C3gdaNF3+uWisUdtDCediFmPoBvesvlGXB5sEB5w2AZ2cJZAW/1UvDcF2oKaZAxcTO3b5UGwev0VxPzDH3PoGh4AjjKKRx6OUxpvRxuF6r4/HpYeb6FsB60npmb3N4BUP8NfitaEwhlwuwqWUJvwEw1xCHCLHIwcHEUO17gA1aKN1aA0HuWd0IGAq2EAL5J/g+xHGM4+FK6uPD1TrEbgIceDGA17xN4t26YoUYx77i74fhMFzxfmY3AQav0g6hf3jNdUfhhiPG1AcKJhah/cuI3KS2D27bdpkdeh/QxpPxldL9Hk5hDL8txoTt9y/7vXOa/78ayH5fw20wAdiL39COYOvi/f5aEWyo9xNDYJuDRX2x4F:X/E2E1xJKVSmyuffBYbo9d3Sx82lJcxisz8C1xocerAf039ljVq+xAVeuZYp1PouLhNNfczKp358QN8uGf9tYB7MIAauRQkC7/qt1rd6fTY28IMgN2eZWvRXvhHPVKD+fBx8naqem9enfkgH+T2/HtPHy8Nwusrf2DBUzBzycetODKoN9uPY+sb1/6g5w97GcSMMy80HoxsYlSlypBlI1Jwtk6JpEvJVbuLopP:syo5SPey27RddO+S8IsIgyD08OW8HAwoE9EN9d/gKv5mBwMyI960xWxvU7mqZbhgKoXMhc2EN30jWEvm9wN+2dQ36GlakKdpWMGXYX5O7kb7dpTemB0hEgMQlMY9FP0mCwZwF1KR+kogQWUwYibkzpu48bjzjXtH4N9uF8S/tgX/MlcFDo+Pit4KXFYJIeYRgcDxIfXHUYRzLqXJ5D5qbwnSIY+NiBETqPoxUjoV3h4mVg/FCt71gvhzsXrJQJaemjtn5sNZMatvR7ICVIyITDxWUx5PhegAM6ljLffeY5lJL0wuA2AWf9XSdAYSNU7zwhEhApGjQ0fv/5HHQvoM7p67nNBL7Z1p/pURE4LkUJY0FsHLOErtjcmk9IjF1HjvtS+iNnnwVghL3HWw6WCZxREl/PUtFCxdVq9EIXaA5N7jQy33TMqdRTgCArUTJ7yEZuziYXbaXBayFFVsslAKqXvASsoyD2FVazk0xhIBOEdwpLeldMwzHZEDVISAB0Ybn9o/B3jxzCM0SEdWirA0iOAoF2Y6VX6qtZjgtJP7Id93dbbzxvzq0Ru9eO4o/IowkwZgJCx1PDNA8p9NWBE5blIDDroJ8wi1Dl72o5ae1B8J7IAcKJc4Jkpaq/0TEtC5FP3fRU9QSx1wtw+lrCbYSC+GWtpK7uKMGcmU0k/QwW8OHKS2SRJiHjt4e1cucjtAZBgvcM6kwVMa+lJLU4VdqKOXlef2ZwMzqRfWhLtjay+ATRoPCrUXfhR9Lb03QhqC3GNRFVXodsu7ZdLbaqymInbnA3OCZd8Qk6PbsfSM6fg7hZhogQQk6CZwben7UyHDWAQ5IIpgw9SEONQRopG6/9kKO4ILgAOE8gJ8kgHD01YscQkofFFoKaOf+evMHxdgX0kRSx0PLYOxZwXwnAsn/HoZlfqmAky0BAkina2DrqiycKx1sAD5fl+KLhO+yXpsSx0qrY0xdc+Gct/97BiGUsrwhKlBKS1simDS5ZcYmwSFNPU+hMWLYqq9ImvIUlm2BEDOMYDibwKfvz2zGNERIt/UXHB4K8NGB+l1pYPs8UFUMlZUVDstB2yzYE5ZhPOFSYEChJ/t0rgLtY4zo9H+QGM0us9kEavQMeqheahE35XUddZQ6wgcLJom/IYHMC3SKoIkwQaIHI2phVGHqRahA9Rem1zIsqBsKjMhpcUH7YMxrpzqzCbKEYBCfLV2Pxm46JtaeNqKfkAeA+323U6bUffQ2okZzgDgiAjU22v9YgVkIyG2NFqCTHTllJtR7m0Rb2oaBMF5pr00xVMx5GYj/KXlsVRMDogQ2L0KhT8I2NfaVEEvaf1pY55GQ5vyAgjuZmPqbdNwRIukbhm7aA4J5X4sfJtKafOgYzblsax04bGqtAwrADHlJg1x6o6HCz8CIjlHQOrPvGuZSh1hI3oge7m9ND4SsPtupZX6moQoxwSI1gBcCMpoW37YSXOiMs6KmqzfFp62VdZrL4I2qZCzmvHSqvHCvGCSIlacKPUeF8S7BG/WwsDuLS2hQUiYFENC1iK150MXrTVWyqGW0gONQgaYgWPUsRq2MQ2yr2WwozC8PBGxde4Z853vSxP/p5G8DGmzoAOdLvRb51DvC7PsUREqU/k8+ukfnr.u0AzcBV0WdrRbrQ0DQEQIubCgvvg3w8zgSMExls68rBkxkKE1dbDYus+xnLJm011V8c0aA9ggzDEh46so7mhFZHVs5k7asB9nJt4RO6rnEwOGG7HZgdjMT0IMcE8qMn7B9nlPhqELDb5frWROpamNKMBsY/oCACdY1B0o3QMyO4jlmnV4cBADhAdAKsD22PpzZLrdUKGSsZp8eCZso7QSAkMW9n/Ip+2Mh7hwMw4Cn+B5LujWX3U27RZj/YItoi41dJ@IZ8LyvfVEvmXqbSmOGUQBXHilDExjkaz2nE0jSkbrWexzO8EaEfFNjUUh50kEbYoohNEbM0eFGGUsveitBlMzAfFjE32UQzAFF3aJl+X9tJPhFwZfJCmoJSIQ7CCCHNzvsu1ZLrypJlAnopUJzP5F7iXr329s+kcKW9roqnbElyh60wPJYEle5bQHD0ioteOd3nBIa0zEPsuuOhLbWfEJEJqM1LaL8v87yYedtNgJh8zsulrJ5zPYIyXl6YHMC/xtDzk7sO+AgNMRBWwybrSX1O4BcyR/jKbZle4BUgOUh9d8TSPz1oaYzVQQ4NuE8G/PYAUrCpCJF5DP3Memwhv1Wapc9iGqvF5frxB8oRHzLT4oSYCBASnKjWngp/we3eGz33Z+omC7IqwiqNcXE5m0X8fMCq64gSRIaEFJ25O27D8KDDDNlX++iojo1YNfIJ01D5Uuo7K2TsrD2Oh/NZfcZjqccJsmE0aESXxTKKLFThYYYsuioMuNExlbIHqnVYNWW8bLQskUARM7tPCFyZ1MxERpTRiEz0hW+Ej00WtLc6dCdIBeUGlGNEcIBQ+xI+8X/iYbrvG+nFqtybRl6L8KuW/VjRg/DTwRzBHQEVLGfuG2b+MiMBEGL7Cba09N1Ohqdf5ITVqi5xNAR005OB3H+ZhqB1R2gYKFmtprvr4PiDA5/SadtD1lMewQERHAn+e33?SaMCcNl4LZdXdV1tb5O5/X9RakPfywxACNSaU:+wTtNNCX4Trcrfs1Nf3fruthBm7u1qA+fOKhXkLzR9KmZn1Pd/d3X/r13T008xfk94vC2N9/IOCfWY+gv67vr9iv19f76+MwX1Tr7qf1dUWrK38wYKXa9nQ64f8JPEvZ36+m6/q6bprrdTXgdEymiwN0HwgTEZuX9jtgx0BHQnj8gflOfxma6xzCqr0kDubmgJn4vTHbZzWxed1eAztohwkeVxP9gDhOESMg3;9HxLzbeB2Dr7rl/X9evoBk37/Mpb6Z3d3wOFADEQB+DIw7ADIsAuC1CUVdGloGvb:6xzYDnITePuUR4AfIyXhCHp59DG34F9ZI7rjYWrAYxsoDFzDN6bCG3hHZjjkdZPbt21btgdQQ7tPDjrw32oasrWv+n+hjlooFnwdzb7nkxWdce5gDGtNDBnwK8nLNR62NtR8j9UEB7sV+LFOW781FeYViUeHJkXIb7JUycaCAX2wefzqT/IWe1UGzm1MvHgq671m@9JFNpXXpSVc1WJh5ceutHaUzqbfvEIU80EBAcSY7SRSgEQNECwOtd+k4ifQUwEeDIEgtzqwlwniDAyfUUdFPNgEsQqKVzDpsfParf?w4T3ABNBAYDGBC8wUI9idRBnReLQ)BJRU5Er@ggg==!B$/9j/2wBD?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJyf/wQALCACgAPABABEA/8QAW?B?MBAQEBAQ)))ECAwQFBgcIE?BAgMEBgYIBAYD))AQIDBBEFBhIhEzEyQVFxFCIjcoGRBxUzQlJhscFiocLRFhc@VPhkrLx/9oACAE)/AP38EYm8SMbSNIhGk+RCxV4EaRxVXv4kYncVLwtpeRs)AK5kZ7xRBRASgABjQUFBQihBBBpB2l5Gw)IVSQ?qEEgGdBQUIoQqEKVUF4O0vI2)BCbyQ?CEUkF.QVUhSpBeFtLyNg?AZxozYDUc5FXEuHLkq/Yok5B4r4tX7F2x4VNtPHL6l0c1d6eBI?I3oSCpIIKrUqpBUvC2l5Gw?AOWf2Iff/S45WmjTVqJwOlmw3khY?hdRIIQAghSqlF1EF4W0vI2?AByT+xD7/6XHMho1TVqnSzYbyT6FgACF1EiqFMTeKDE0K9CSqlVKqVzqaQtpeRs?ADkn9iH3/ANLjlQuimjTshezZ3U+hYFViM+JCjpiH8yYUZIuLLZp+Zda5HmtiOonWXzNGuNMRbEQ52Sm9SqqVUgqqZGkHaXkb)pFhQ4zUbETJF4qmercYrIwvic3ktf+1SOhfDEXxRF/Yjo0RvvJ5L/s6YaK2G1q8ErT5Icr4r8bkxLSqlcZVXlHOOiSX2nh9zqzPHa7JDVrjTETjIc/JeR11IqRReAwu4KNG+motChuZ5Go)AIPMiu7V/eX6lcZGIriOuz1TtK/h+524m8Tw26kNMRbEWxkK7JT1cKcCaIAQ7VhqS)?Dxozu2id531KYhiIVTpkl9p4fc7G7Sc0PHbqQuik4icRCuyU9ui58OARyeWuoqnEK6m6qhEzXiS?Dxb3yMraN1rYk5yHpYD5SNiZVzaqxixG7CouTmofy1/EF4rCuhFsa1Y01orVZAta7s/CjxW4IrYnR4zMbcPVWDjRzFWiORFpmftvpUvJaVxbgWf6givhTExEgyLJuI5YsSGzRPiOdji41c/s6Vdnv1niyVo3muN6QLt3fmLdmrdsq8Eu10wyffpojIz8TccJ7tlqOa1Wpwqh0ek+/17bjXtkegR2zljTEFk1MWd0dnZw4T9HG7dvX6/wA8mnu3Fvna16r2W5LdNl5mwZGFLzEjo4Cw4rmTzOkQmvdj1wW9R3VzXPLUfJz9+r3yd9bdup/E8rKvl3/2jpUg12nfGa2LBk8cHYw6RGY3VqfstjetfVUp670frPRp0zQez0nvYPwnDHXt4vfd9SlSKip1ySL11pwp+Z2N2k5oeMi5IWSvBfDM0SDG/wAbv+KmiSkz/jXzRPuXSQmfw+K/tU9UEYW8E8iQ?AclqWbJWxZ8xZlow1iycy3Rx4aPfDxNr8cJzXeSny016K7kzliS9340i/1fKRnzEr28XHDfE28MRz8eFfhrQ9q8l1rIvXYkSwLXhufKPw4HMXDEhvZsRIbqZOT/S5HzV3/AEUWVY1uy14Z20562Z6QgpL2f097XtgQ2orW4cLa9XEtN2ddZ0W7cObtu+EreOPaUL1fBl3yMayIsrj0kvGbhjs02k9/uZHJ6OPRn/L60Lajwp7pcpaKw+jQsCtfCZCdEwte7EqOWkREqlNRxRvRpeuFeG3Lw2VeqHLTFuw3QI/9D14cOmCHonsmNuG1raPyzStD7+w5Oes+yJOStObWenYEJrJiczrFemt/iRFkHufEiY0o5y6s9a+BVJKH7zlU0SWgt93zNEYz3Wp5Ekt2k5obJChN2WN8EQu)CMTa68+BCPa7/AMVCyKm5cgAuopuJdqG9BnUJrG9dZYpE2FM?S3aTmh0g?ABVRPkVo5XZrRNyJ9yUajd1CSuFErhRKkoqqlaUXgSCKISQiIN4RBh+ZJSJsKY?sxFxJzQ6?ADjdPo17mYF6qqla8FLJPQ/hd+X7l+kQXKi58lQ1a9r9leZYAjPF8qZkg?AFXouFaGaQnfInQpxLJCZwLI1vB.?AePFTt4nfd9SWmzTrl0yd4GwBC1qn5kg))?8iL7aJ3nfUsw3adELeakoCN9SQ))?eVFhxNNE6jqYlVMl4ktReBsw6Ie81CEg))?AFX6vEpQlORZFJQk)))q9FoVwu4E0XgCzSQ)?AD/2Q==%iVBORw0KG;)NSUhEUg?AMg?ABBCAM?ACjORu8)MFBMVEX::/+u/NnzzWsWjGkhf/6rn/8M7lxID23qnlzqb+9eHx1Zns3MHdv4ny5tXx4cWCN83d?ADdUlEQVR4Xu3Z626jMBCAUc/Nd+j7v+22xEkZGOpuNnXDKt+/SFXkU7AYHMc6d5pY959BXhBuPTOEj6IX5G96QUJZOg+kLIUdpMjSeSCyVM4LeUFC2RRPCimyyQ+BvCAVlh4EgTklImRmolSdXa4T8Xs0pXwEqImQL1+T6ryGwFLdQd6c7n4IpAlZhRYlT7yKiC7wpBjIOppAQ99+EJJ5X9o5KhtpCBDvc+Mgjo1qz6EhzfFQSIVt90BQO2buQxI/DGILXRfSvyTUh2R+Fgh9xNcm84Jgmuc5oQVJvw+Z5+wgZ+/lPdSDjV4kRnnPvzXJ/NH2ouEyWsSS0kQ0FpK9fBb1JtGLDHIpNKyIZNdqOI6yyvv7IWlel/sQEJWy7haptXEF4Zbo7ofoUh/i+hBubbXBgJQzQsi4tZhC/F1IKSUEIhNi3loaQvwZUijxVyCBkDfZmz0DQJZgQBJvwhAHQ6CtoQ/By7LzVZ1Wc4PwvjAUAsQ9SOAWVXBQiVvzCivBkBAMhEzchUQ2Q1hDBA3J9KjpN3chWQGQLIgQW4W82WkGZR4GSdyiOoOy9v7bKF5DRMJOnIZBqDkmgGXgsiERDYeCeLkUg9LQAIg9flgQL1K2jCAakmVVDFc4DoNwS76GXLy4sIlC2X07iCpy66kgt0dgAecceGmB/iMVt57q1gLB7mgLrvn0ARYOex+hBiG9AJ6tNys5vtzzcsuFUJZue4SGQSZuUUoT8S3KBoSKOp7RELMwDFL4qC9Og5AohPk7kDgMIsh2qN8RjbAqqxXJOEhgM/v44X;TCY1DoQIfQOSic0mBTEcIyHra4JTiWR?quMobASGw:LmS/IvWQOkpamxkpB@mpFRdvnwkDUn9k0YQkZgSEV5fdvXJM7d+ENLy7Yyu5WG/kWkiwoOdBGKWh0GyGGkt4G3ebcVy83QgMAzi+pCqpx97KMxi5d04SBY7v3v4K+b3IDAQ4nwPQnqutIfCbDsGQvQaPIA/gmD5dOD2QQLe2ujHkKJzDwmyXxAZrh/9GpLWR4gfEZrv5NB+nLh+l6ronOjciCofho3bT3SjIDrko4qcCZILHxTkVBAvBdkIi5wNIhLQmgnPB2knb0Tt998Uoiz5eyGgGwLJcsvnj7wxFHYyFj4+kOPcqZLD4FwQkIOyO1lw/utxPNz6/C+AP29Qa6a+njSD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANY)3CAM?ABHJUQ7)MFBMVEX::7/f7y/f+38v:6en/1dX/tbX/xcXl+v/U9:G9f:qKiq8P+U7P+e7v:lJQSDb6d?AEaklEQVR4Xt2Z27KiMBBF050bN/X:3aQiBvZoeMZHoYz+8myKYtFeuWCDomfcY30n3EXTXh8xtnp7p+5KlbcYYXGYE1rCpZeFCvtsBpdOPiSFe6qXfjYJTWwlgBt+AVqteXSfgnQ/MXVSl/Jpd2Svu/6oUQvrVZ24zdy6RrXlUHrr4mFMcosV2Pc+jnXxArAioZcRj/qldUaPwjtSEzPi0RnMFWpFrcJIea0qpvyZ1GEfn77laieU8tZcm2IQ17ZRVXFKurzi1VZZAzLWEu56G13XN0VPO3ktNvZ628lvUP6W4mHWkBhuRgrJDA4ETGLQusHCERFSgvDafwknvaMNXRbrAEIhDqwWo7lYiw8+tAsLsyMheF8Um3Jq90hM5ZXh3QvhLtDbq90rJYpV+3G7KKNlYo2i5nCToO0YA0OkZVBifRWUYvkOoFFHVoFL/bBbzgNtQrWpIZctlok11ksfWGllOKcMCfDrtdw7SBKALpiddX5gUFZLVMuaqK43LlRLB22T6xgQS5Wa8XqDbkMtYjSwsrhxaNyUFzXNEcZ0fUL+o6C1HK6YEGuDYU21aKeJCwwoaAq9aKUHQgNF83m1HN0UcHy1so12GoBMx1hZdnte7mI/WLXMRY8qn9JU9dCBayaXJOhli1XvTu103pxhlqwXBurIpeQWndgcdMJmpLVYs42lhxhPY8sNSzMhcn4eVILWDRF0BRCallyHeCWNuPi8AywQsRed4dFcrFaHlgkV0stksvAkjaW908sLVv68cFJhnGkFrBYLlstastjLEFBD7A8sIzdU02uulo7LIVchlqP9M5IpIyl2j3dKfaohSVExVgsV9gYr1Usd3/LBbUmqHWcaGAtFs/xQ3+ANc1Y5XXA2MJiufLGeJ2pgFWRC2oNEOY4+RjrSdXCWmtxA7LsC2HRoVxQq2BNwCK5DLU4LBe1+3T/Civtl2rCIrnkozOKWpjlSK6KWlZCC+tuN2FRawQFY9XlglqMxXKxWtnEiuexeAlhLJZrq5bTwQOrJtdeLdg8pm1ILsIqE6EvC66FxSXG4pVlhKkL1gQslmt6q9XZG6XMcrE+iJzDYrneH2TFmqlWLJbr/UH2agk9NiI4jZVbWLDw47F2dSzMf/5IrfHgsUULCzFmQlmVQS0kPiOw6VCr9wXr7hBsBBFWKxvn13NYur3ZGGJODyRL+0/RdXJ63raQXIipFst1HiuaSwjLhQh2TrhxlqupFst1AgsLl43FcsE9wiK5EG+oRXKdwPpiuIIhF3ZOwLLk6ltqASH/Pdb9NVzmoh8suXAoYSyWC8X0CtuSUwmwrKudVIoz07C+ognb7hpzCKmOJTgY4bzfa+dvVSzxc96d6P5BQiyPKYZCEmLkR8TLmqis/8L7OeoQ3slfO5m8NjNArSuHNbVzx6HkwuG38XYUr9IuHajF+cVqpZ+p5f9PtW7/pVrdL1EL5/2vgvP+tTP+TK3pd6gVfqaWXlwtfk1jhl/TXDsxlcQvsXxJ75A/ZMHNEnLfXgI)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ANw?AB8CAM)1mC5d)wFBMVEX:::v:9v:9:/7f6xpbRxZnGklqPDtcX75fz:f/Vxdc?ACXjJj88:/+v+Ge4exnapWUFfdyNwmIib/9P9BO0HNvc7o0+j+8f714fbLt8zu2u7SvtXy3fJjVoz9+P9kW2T89f/jzuTEq7iri5H69P81MTXezuC6s8ObcXXAosNzYpWjfoGbpbCFmKCSYpaToKqbbJ+Gc6GOnqh9a5uXhKy2m7358f+id6X38P2rhK2uibGKmqSlkrWzkLWRjuj2?ANhklEQVR4Xs3ahXbsxhIF0BHzMIOZLjKE8/9/9aoajqS2YJynGfkkN7bT46zsVc3SoJhvlzX5NmjJ/dua3A/a8mbsB+7K8wYdZJqO65oOl7U5NNuSt7VJWmxZSpkv07QJ4IbeMc3rtPY/47yvx713mmz2h3rcB7vRtibaMiBbIy5N/aOaPb+uA/y6bMivJtzd24bcNeImxJoMXFG5iwkloT/8K3eTyWo99sVvv0nTpbdlRjheLsczVS/P89Ye/RDq5tDzwlITEl02Jqq3RW8bE7VVLs1264S6b5KyNJV18KmzzknOOp8bSMEMzooBW2qleGgW3/ilJuRnM+5nPW7SjJsMmjJOOXP+0AWDEpLccuUIMZ7SH/4elfNXM48EarBOwzkL8sqZTTq3ly25rR02b1ty26jb+YJ3TQiXipFck4fDw3BHkPKgWqa6PHOu1lgI0Gw2qcQ/2nA/rGpbrGeTD3dGdMN9XE/Lrq9vXY9QolwBIckHXGLgQu6rAJOAY+LQhISXrQmrcTtdoCcTMNMtu3ocWaZeyLPlgRX8zXJQi6OquTMloC6bDbZZBQ5NKpv37bj3myrbBvWpX9o/RA04lakQeWIeQAPh0ok0+zM1mNjPhFUq4hWaffUzmmT+uTwi/zTOJhWAfducYllkeHrkIbe3RB7TeWQ9wwWqo22JsZyq+rzhzpy5uhk4SogmysXlUbl4brtoXM48rVubKiSm7FdRrEIbKIE0J63ZWnX1Wenfms1mEzaV7fnW0PMWVTi3ss8CZSZ6pKrs4xi6LnK4PDJJ7ZxRs/kMdfsKLobVZMy9@Bd8kbvj8W9Hxm/2Tbbj4qVNVyj59lN9srZGe7d5dF5Z2wq28ZUXlqPbXDVBvSOahcZgOO3mFHNbKgVzAu0bmuVYFdmKngd6H6+BPezdRko9z1rq3EBaJAZOUHx1pcvyrpiUxlWVA3BQpiQDbKbcoq6uLvaWT9ehvtmgYHJYmTaijXYYO95JWxa9qACHXDdlW53+cJ;7jSJZkZNmN6wHLgqbIxbDikP/xF8wxcN7ofL8X90BBUpNoG3Qgf1GUjls4wHI+TIGNckGWTXZZlK2ZFwThYBUGwJ5znL5d+IgCzibf1/KNxYZeVgw1lMConbZTfZB4CPqk+poybpuk04z0h25apzMqyvFRkp24lqOWsY84xC5ePoOKYc9gs6/abDokSAnKvzAi3m0rcmBDBXO2nr8MDH/RE5Zi5POtseadxsEFXnC1l4XTZ/viDcSSa+1nIuJBwo0zi2MjCwKIEy/SacRyyrftY51C40rqFY8O9sg0fBI1snGHGpxOfP72jmsQ5bhIHEueJ4zdw0352KFgFYKPgLnrPaD3e/tC48TQMSRLyx0kZ+RLnEzh6lDiqWnTIcf7Z95a3Bg62RNsCo3BKR7ApXwvxxwkjQtOlPEtL3Fgdv69xHH1JnP98KljgVGCVFgLYrjCbuGwDTtse6HA6T+eZ+PgdKcePjCPdMp36ErdXx2/gTnSeO9Q+JNgBVwqO4qGeKQUOhSPrzU241ZPPSp94In9mRQR6Eqv44TB4ef6fk7i5HLgCZ+giVPZK4R5yG3CYWPMEqci4i4PB/j/foWA58ATO0AUYk8KGTql0w4fhDXBFmxUF1D0fgw5s3dx+7UkXl3VrYzZhXNk2vKkqHI663WRz+V/vLfOeJ05y4MXFZWBrFg4jrqJw3ci6uXHO74CAU8IdlsERzgLSBlx+HDiJ7fhnBXV3QJjtJ8UEQYAGASAHFY4DG6aTE9k6eMqTvG3JCstAqXDDIdlMXKe0Lp7P3Tfb7qXNHHGMO7Gtiyer+2bcHrZhyUZYE9c97eXPxC3kiEerwZXqlMZxwFzjULaTxG56m8GusMHnNr3N4EqbKBxH2h7EGgfciW3t76GAhjtXJKzH3bGNIguHDIdm4U5Fa3+DyKq8c4Uwvq8tnAPbsEDjTso2CjolbL0FtKaMdHD/SphhjntQNrNwg1eNM2W4gC0WjmDok7CB1qvNOlYG24Ow5SNO0l6xbYQYMFMm5klhG8rBJmmv0AbcqDomDWVjkv6C2/NXZsOIa3RBxmEOm/QXwoLGge21F86APRBEoLhksmzl51X6xh20V4a7kn9RamTojhfZ3M8HmyN0dbXrHwdShYw5iPxJvPgjaY6iwXZ6QOghE47gXKhzpzc4BCJs22UyXphoVZgVE+iqsUo9qUop1wnpQBMB7bTx03IELkllrgeBbGBcliLzTOKytJgpYLx0895kyL8uaU6ZFluiR7wuHCA3HAPHnjzs46cZRtWMzfepcXN/KsrhLzXuYiIF1C0zlgSMm8hPTadC4jEumErVdLpkHFQ4AXC3JBrFoJ0N5/PDPf7iKRxejY/k+7p7NZ8IyNWVqGZ2IyJwxAgZZ9JuBC6kucSg9Yxz5ywYD/bssMq4K9FUwNHRJqHqjYs0HnHcbxkHGucMNCTw/UDj7nzfVziCcqIx10/agNualWPlUIRcm81G/INtCx7RCWiAnQGHaFwp14IgHpYVccswWDIoAU4mJBBCMqbZa7I95rQRUEhPuNtU5hE2wiHZjYnTdXM3myHxhsOFbV/zJyWOhYQjYtxj5ZBMMlYVuGV48wxHUkZxmLYhW8jqaKRSVbfecNGcHdfahm4ZkkNnIWCOs1BhnutS8Rac7SPhZoBV2HrDyQV8lduu5IRSoDm2wNm2vSVzstiwjXRk23DpJuiWVH65RX3duALNsYU3pSKF7N6wDiGyw79QPri/km5pASdswKFqHI3bCZwr5hNhXFBse0o62IA7Ky9VmRRplp4XNU5vJKVtyDRjb7lw2cZxuV/aYrpcVtuQM+JAy3G6bsDBZuJIxMGkInDXciUA7dw64EBrxg2HbKN+Z+BcUTBXZKNx4+K2speRh8D27O5OH7mHoBHQodgcQikWbDzsCOc7sNUOvP5xbFM62EgGW1EnqBKXBhW23nCWiYNO0m5k3cinaGoJx3jjv8WPC7HQpfOnXAVZPzrQSjjUjjbE2mYjQpvLXCwGDo9Kr+YJ6vl1qFvtoCOICkad+pFgJOMQTegcZ+WrblnFAK43Wwwb41SdaJQxTehybD7sZOXskUqdogdcbEThOKpOtpCJ0tj8PWxcO4qUK1ts0HrBgQYdgrtY1M1WItExlQ1hNUXZ4gbC2XFVUaVjkbBp2oJgDkPFXza5ZG8sXQkB0AfOm4/dugEHnQjzmMBDTkf1Pkfn+UM82HrA3fEZNELd6gLcgmyIlJmJCwGkD5w7nstXiGGrCXAMlCnVybD1i0MuSBcIXNyGG5VwXz7V5Is8etfTrN8/1+T3rqXXhIOtCecQznG0bfWpNquWghw+1+bQMW5KOKsdxyGbnvvdv+txf7uNOPtrPe6r3S0uPR4npkOp8z41xGss3LvPDXnXOc6HrR0nS3fxqTHbQX2iz43Zdo1bHo0TQJpVvjTjPjbg/mzG/dkpbky6w5E4AbQde/apJU+17yvcfm7JbZe4A+Eej8JhM7L4rqcOz4ieZr7bNcMu1svA13dGvuqGuOPpMg2OwYH3RhcoIULpLjnRLWHNcrDTBZrpdfxZSXcdufCocX/EbIlEuj5fcjZTmPgRy0Hl+dQtDi18whiMbnc4j2xj6wgcgFgG9gU040iHadQzcJLyC5Oi9Wz3tdW4f7udUJ6OwinfGsuZA1p+OZnLK3B7bftVdVbFAnjR5fYrbd9bsiyWOPS8yLaLPPkhbF0+6qOclQezycJCKrYuv/eAkwXEpnLFVww2jnG6tjtjtuEoZ5JvIYs25ND5FnMicO06hdvoZeCLul2QJ9bc6OgF/vuCUXGuyyujsCYur6zTDw7LwK0tdbgSYmNpTL4RKNgsjKm1YUP2XW8xM4Fr10n7FkNK7DFdN78Xkl20NCiZBVyUz4amDflX66JObDta5uaYqltxmE22hKMQStI4Cod10GMAcH9pXGTV4rAO/tUBzZ2mlEw6j8A9ocvhtrkQW+JidN11AXeLLtd02XzX5RZzTTbfLSxFjbjCZEG7aMeg6ZUhXnwvLgdywI0wWYywNanQjfJJpwPdnX8HaaOO3VgGEkaUK+c4snAxJcFyAVxxUylpwJUyO8EWs13HbhROHxDEQofLZ+BilI5xQodN/wC46uCDZ7x3ZrZZOeaxkMJlwy7MqBzpKiqHnKNy0FX7hHmE0qk1DUCmAWfnYw44Y8wBUzvmwD9F9Yo+gPPZclSItulPF2dLZH3UAv3OmC1PpFNE0Ix1Lqq/Ry+vc8hfrQu0uc6d3IeYOxSrzpYfWCPAjB0K0rJDOZMQunxvKU6o/LfxNuwtuq6FGHvLOpvRdc8ZgVvgVDCCmmEg5OuFbeDspsnCPBWcP2woTPOVwXIxK7jM81zLQ4Rk0EcYgCG1qLJt8kGJYLv1J07iVbaFcRLvg7fHmGKsCcCYvMhVyAXuUBqXgf2gv2BO2UIHxgXkzbPhFqSq268ek98BcSXLAPTZTSVu87XykYB5b9lnMGc8mQDsYFbw1N84I+aNc6/JZ/s3RrBOxATp4FlBH1l/agkt0x085ekpH0/4fK73RM24qIsnq/0vB2awDHTwTLy34Dxake8OIC9+m2ExeA1J6nEJHF2/h9L/nPJx0JYTvkH0Pw/X1nfB7YMF)AElFTkSuQmCC$/9j/4?QSkZJRgABAQ?AQAB?D/2wCE?YEBAQFBAYFBQYJBgUG.sIBgYICwwKCgsKCgwQDAwMDAwMEAwODxAPDgwTExQUExMcGxsbHB8fHx8fHx8fHx8BBwcHDQwNGBAQGBoVERUaHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fH:BABEIAL8AwAMAEQABEQECEQH/xACO?E?gMBAQE)))?QIDBAUGBwgQ?EDAgMDBAoQBgM))BAgMEEQUSIRMiMTJBUXEGFBU0QlJhcpHRByMkMzVTVGJzgZOhsbPB0iVkdISy8RaS8BEB?EDAQQJBAIDAQ))IBAxIEBRETURUhMTI0QVJxkRQiM9Fh8GKBobH/2gAMAw?AQECAQA/AP03LWvb4aN1VOTfgtulA1r2ppbr1kVbI7ezI7VE5NuK26VBZ1NLlepuhslwIUCFAjMAuAzATmAlAJu)AE3))Acepgke3h4Tv8AJQ5GvtVlIp4JGN4eE3/JAaC1WMnXDrqqBGYCmYCMwEZwGcC2YCzXAWuBKKBNw?ABNwI?S)MT6eB67zE9AENp4GLusT0AJ5mQwvleu4xN4Dly4/kere1ncfHi/cGlLaFjsyoxr2QfyrvtIv3BHSWn9dFFx53yV32kX7gdJWPVRHdx/yV32kX7gnpGx6qHdqT5K77SL9wOkbHqo2qav2y5XMWN9kdlujtFVUvurbmDZt3Yzp9td7a2nlDIyMeBkuBZLgSigTcBcCbg)BNw?CAKqBoY58E1f0bgPJVffMvnKHzPU/kl7sQYUhKUCywWdLDZPdf9uz8x4e32L4enu6zZQ6zPE/iBsMcBk5gCATcBcCbgSgEgRc.AE3?VUCqgc7HPgmr+jcB5Wr76l85Q+Z6n8kvdiDCXS3k5wMNLiFDVZu1amKfJy9k9r8q+XKugZJQlHtpubIQ26ST3b/bM/MeHuNieHp7umyTyh121A/iBstcvSBla5ekC6AWuAuBIHmsa7IOyGlbV7HDF2EKOyVmdOT4+VUA7uFVElThdHUSr7bNBHI/TwnMReHWBtoBNw?CUAqoFHAc3HPgmq+jcB5er75l85Q+Z6n8kvdiDC5fZRRVtbgFbS0S+6ZWbmvHeTM2/zm3QM2nnSM6PDex/2P49TY+2qnp5aWmiY9s21arM+ZujUReVvWX6g6Wtvww7X04OQzRP93p/Sx/mSB7rYfh6e7oseHXbtM9NdQN2LL0gZ7N6QJSwF0sBKWAnQDwvZPJjm2n2eM07qVr19wxzxwTZPFXTVetQPX4O5ncihyNVjO14srMyOtuJZFciJfrA3UAkAgEgAKqBRwHMx34Kqvo3AeeWmkqcSWCPlyPXq6VUPnPAld1GEe2tW3ifY/NRU+32qSsumfTKqfeG7r9iy08M8sufk5sUbpZGxhybdvOVItipw98Ee0zI5vhacA2r+i4cct+9qhppav8AEW/0sf5kge52H4enu6UQdhtRcAN2nenSBso9tuIFmgXQC+bQBmQD432fUeBf8iqJKKel2szXR1sU752uiqMy5pW2XqS2qeQD6tgEcMWB4dFDIk0MdLC2ObWz27NtnJw4pqB0LgWQ.LI?qoFHcQOXjvwVVfRu/ADgrNPTYis8ab7HrxTReZUD53xZ2tRnHyq28Tx2prafYbHZMumfVXX+4N3X7Xuai3hjjz83MidLFI2TKvoDkW8oSpLc2Kmtmnj2ez87jqG3f1UrkcdzUyP8VfQGl18ko3+Ip/Sx/mSB7nYfh6e7oxB121FwA22AbDAMrQLATcAB4rEPYwoa+srayaqXb1Mk8sXtTdzbsRtn63fkXebq3UD1uE0PaGGUdDn2nakEcG0tlzbNiNzcVtfrA3ALXAsBZAJAqoFHcQNaojbJG5j03XAcCvbhkMzmSVFRtvEbLJ19NgxcCHpp8KJh8MkbZGzVKZk+OkRfxBwLfpp8MEmHfzFT9vJ6wcC36Wu6hd8qqft5AcC36afCvaTvlVV9vJ+4HAt+lnhgyLy3yOtlzyOV7rXva7tecMkY/w3I2hLaiaBssTUDOwDKgFwAGKslWGlll8Rqgee7p4j8e76kT1B5Hp6/yh8V/ay1+KNtmle36kT9Av03qPOMaf6r+xMTxH4933eoI6dv8AKPxX9rJimI/Hu/8AfUDp2/8A4/8AU91cS+Pd6E9QT07e5R+K/s7rYl8e70J6gdO3uUfiv7ZqTFq/tmNr5Fe1zk6OfTmDb0O1bt27SEqR8+fL3emUPQKOAwv4AeWxhWMxKbd8Frs7JcjuCJwW/RwQDoUyZ6SJ115Cau1XhzgUkjA13ReQCmy8gGRsXkAzxxgbEbAMzWgZWgZEAsAuBrYl3hUeYoHEw5rO2EzdC5esPBaLdxHQq0Z2u/N0f6DqanuV3uUHFWyBYyBKQnFkpme6YvPb+Ib+y/ER/vlV65Q9gqoGNwHk8ZlSLFptY+CcuPNZUYlk1ReIHYpM76OF703nMavDydAESRgYXRAV2QFtnoBlawDK1gGTKBewFkAm4DiBr4j3jP5igefaHz1lVXu5Tld9dwy9de2qcgWxXyBfFOQJwNmE4MlOz3RH5zfxDd2d+eP95vUB6lVQKuaB5vFWz90ZmulmZFZr/a0RzU3U3rXTnA6tNHmpYt9ZN1N93PpxUCXQqBj2CgRsFAbBQMscW8gGdGKBjVNV6wMicEAq/mAqBIGCv7xn8xQORSUklRMkTP8ASdIeI02mldnjFv1OCyQRLI16SZeVpZUDpX9lStxypXJp5A0cV8gZMFsgWweJxH2TaGmxB9NBRPqYI3K19RnRvBdVY22qdaoHRhsyWPXV7LCqunroaaspnZoJsr2ennTpQKaS1hfp/G:AMeoDvoUAB5rFFj7pzZo2SatTferfATmRUA7NEqPo4XZUZmYm70XTmAyZQK5QK5AJygSnEC11ApbVQF1sBDrgQgEgYa7vObzFA52G1KU1Qkjk3bZXdNlDyWgv8K5lX2dSrxKnfA5kV3OenQqIic/EOzqdfCUK49bmtYHIxZMgZcVsgXwfM672NsVbWuZStbLTOcuSXMjd3mzJx08gdiGri+gdj+EtwvD6ShzZ9jynfOc5XOsGpa+6/l/ex6mwdZAEAcOsZLNiFQzNBG2NGe/NbruouiqmtlA61O1e148ytdupvM5K9VuYC1gIygRbyALIAsgCwFVQCFAhUArYAgGKt7zm81QOSwPGxZmNDYizNaGeLK1gZsVsgXxTkCUsZ7Y3rQMun79HUDqFgIA5VXgfbNXLUOem/lytsviZddemygb9LAsFNFDfNs2o3rAygQoEZQIsAsBFgIsBCoBFgK2AWAw1jV7Ul81QOUwPIRZ2BsxZ2tDYZWtDPivlC+KQncNbvt60DJZ79G+G+?I?RbU.IAiwEWAWAqqARYBYCLARYArEc1W2AwJh1L4q+lQw/T2/TH4oyNoafoX0qFuDD00+F0pIehfSoTwo8qLpTxdH3g4ceVE7CPoCcKck7CPoBhTklIY73sDGnJcL)UC?E?FlAWAjKoFQIAWAiwE2AkCUAlAL?JQ)?ABzgFAgCAJAheIE5ksBikejG69VvKoGFarX3tfS31hi40OaO2/mL6W+sHHhzZI5cy8nKvFL2X8AyZUr2MtgkAlAJAk?Ak)?BQI?AI?AMFZ70nnt/EKz7KuPM9+0XUPNXZ/chsjukIzdGjVc7Op36B3NF3W9YNwsBIA.?Cbg)?AFAgABKAQqAQBgrPek85v4hWfdq40yLtF0DzN3vKonkCvW6dEi5mdTv0Du6Lut8N0?S)CAS))sB)ApLGkjepUX6+IQ1nUL3Le7PQvrDX+lgjtB3zPv9YPpIM0UDmKmZU4KmiW4hmhCkexmQLpsAs)Js)))CwE))UdLG3lKBCTxeMgGQ?AX?S)))CwCwCwCwCwCwHOqJHtV2vhfogaGsnXq3KQzP2iahq2rssm/Tquyb1B2WQ?sBNg)))))aNRGy66t431ciBrX7cJd6u5SONmdNW/90DDCxbpXqlRvQo3Zpqi+VA319)B:9k=!B%iVBORw0KG;)NSUhEUg?AMk?ABECAM)cNuEx)YFBMVEX:/9rp/G+1vilx/X0lcz61er3stnye8Hxa7v4vt7+9fruTbDtLqeyzvfGTbv96/T74O/1pdPV5PqObNPM1/biOa3r8v1gf+F7r/LJdMlPme4ujO31+P6SvPTg6/vPqN7UTCZ0?ADTElEQVR4XuzY2W6DMBAFUD/MjFf27N3+/y/rNogBJ7EodUiIuG8XoYETyzKKGB1NkRRiQZEuEnwtySpZJaukktJ2ACV/o1iyrMhwDXBhklWCIKWEf52aSD5lW4wmH5xDwlIQouw2UcU2x8FBcxg+g7zDnovFHwe4tlFaSVxqRWkdu6ZIlNDs1IN50swncZWHcGiCxFWDCYN5kE4C1KYYdeRYM0ESC6Y/HHGUxOnEEniYBBJL7J0lJSoG?EXdZYYJJb4hngh0WTZj9pxAIlLeT9JaCXfiCmiTfjqXHlGn8/bXvoGDJ9FwstvJ0r4HNI3fhpKJVGyTXlDAlwnS+hCjjHJez0un+F5ErfS/JL6bVwOy5CskpK3y58l9FQS5D5NYl5BAlwXKRGuSyGEUY+QaCIbfgsDS4KvFUDEAR2NCA5L2x/ogK7NKLD/yF6TpCdLRvxLFNzCEsYKcLdCV2YQ9hv2mwwluyzLPobvnHU5pZfopJL4umTMPKSXGPsqEoEDgIRnk+xqn1ESQY6jTPEwyTYf5HytObXeJg8kfOem/omX7DbHvM2X5x/zbVSSN3s/eN/k207iL323Ywe5DsIwEEAJrL2JELLsOPc/5k:I;ZWqE0oKbqLGeB/doKUjSFbW2SHKo1pGqVouA4ldEqqaK6oyebzKkIlguhNKwaJ3RSEn1OPJbMsJnEXhKXFpBdETIth8MJ.YlDheTrZNEtwzJlOC0iuskUVII95KY1GhzClmeSpiKbC1nAv+GpCHbqe18i8Tuldh1Er1XIhdK/K0S9U2SjYgrgGP3dDciqyWecgmSyCxaRgzGKZPBuAYJfKjywHo5eTuBEm6WBA+nau8ZVrA+kvW/m3cd95JYZlfPD4FxbRJ8MIV+EkQqVgy4Rgn+kOReyYJXRYn5IuFYgmvwhRIpK49ebTitoMTfIOGPlPwkPwmux30k8WskfmDJBkeNlHlEyXR0RLLxJRJg4DgShnchs1whiczsdrVwjoAE/kE4TqklkrosMd0nTysGLnj1vEvMk@DWHk9F3512iwk+I3Pb17df4xk+xrJZF8j8aNLXn4pEoeUBIeQiQeU4At2F6dpHUuSs7oCsoRHJZ0ltyWSsag6o3DJgD8mppDriaC+Eg)BJRU5Er@ggg==!