["$ dictionary..G$ ","|Add method$ContainsKey$TryGetValue$inline out, TryGetValue$foreach on Dictionary$gets Keys|benchmarks foreach on Dictionary|int keys$LINQ$ContainsValue$Dictionary indexer$Remove$Dictionary field$","IHYXQYYusing System;Yusing System.Collections.Generic;YYclass ProgramY{YIstatic void Main()YI{QHYIIQDictionaryQ<string, int> dictionary =YIIInew Dictionary<string, int>();YYIIdictionary.Add(QXcatXQ, 2);YIIdictionary.Add(QXdogXQ, 1);YIIdictionary.Add(QXllamaXQ, 0);YIIdictionary.Add(QXiguanaXQ, -1);YI}Y}QHYIIDictionary<string, int> dictionary =YIIInew Dictionary<string, int>();YYIIdictionary.Add(QXappleXQ, 1);YIIdictionary.Add(QXwindowsXQ, 5);QYYII// See whether Dictionary contains this string.YIIQif (dictionary.QContainsKeyQ(QXappleXQ))YII{YIIIint value = dictionary[QXappleXQ];YIIIConsole.WriteLine(value);YII}QYYII// See whether it contains this string.YIIQif (!dictionary.QContainsKeyQ(QXacornXQ))YII{YIIIConsole.WriteLine(false);YII}YI}Y}YYQYY1YFalseQHYIIDictionary<string, string> values =YIIInew Dictionary<string, string>();YYIIvalues.Add(QXcatXQ, XfelineX);YIIvalues.Add(QXdogXQ, XcanineX);QYII// Use TryGetValue.YIIQstring test;YIIif (values.QTryGetValueQ(QXcatXQ, out test))Q // Returns true.YIIQ{YIIIConsole.WriteLine(test);Q // This is the value at cat.YIIQ}YIIif (values.QTryGetValueQ(QXbirdXQ, out test))Q // Returns false.YIIQ{YIIIConsole.WriteLine(false);Q // Not reached.YIIQ}YI}Y}YYQYYfelineQYYusing System.Collections.Generic;YYclass ProgramY{YIstatic void Main()YI{YIIvar values = new Dictionary<string, string>();YIIvalues.Add(QXAXQ, Xuppercase letter AX);YIIvalues.Add(QXcXQ, Xlowercase letter CX);QYYII// Use inline Xout stringX with TryGetValue.YIIQif (values.QTryGetValueQ(QXcXQ, Qout stringQ description))YII{YIIISystem.Console.WriteLine(description);YII}YI}Y}YYQYYlowercase letter CQHQYII// Example Dictionary again.YIIQDictionary<string, int>Q d = new Dictionary<string, int>()YII{YIII{QXcatXQ, 2},YIII{QXdogXQ, 1},YIII{QXllamaXQ, 0},YIII{QXiguanaXQ, -1}YII};QYII// Loop over pairs with foreach.YIIQforeachQ (KeyValuePair<string, int> pair in d)YII{YIIIConsole.WriteLine(QX{0}, {1}XQ, pair.Key, pair.Value);YII}QYII// Use var keyword to enumerate dictionary.YIIQforeachQ (var pair in d)YII{YIIIConsole.WriteLine(QX{0}, {1}XQ, pair.Key, pair.Value);YII}YI}Y}YYQYYcat, 2Ydog, 1Yllama, 0Yiguana, -1YYcat, 2Ydog, 1Yllama, 0Yiguana, -1QHYIIQDictionary<string, int>Q d = new Dictionary<string, int>()YII{YIII{QXcatXQ, 2},YIII{QXdogXQ, 1},YIII{QXllamaXQ, 0},YIII{QXiguanaXQ, -1}YII};QYII// Store keys in a List.YIIQList<string> list = new List<string>(d.QKeysQ);QYII// Loop through list.YIIQforeach (string k in list)YII{YIIIConsole.WriteLine(QX{0}, {1}XQ, k, d[k]);YII}YI}Y}YYQYYcat, 2Ydog, 1Yllama, 0Yiguana, -1QYYusing System;Yusing System.Collections.Generic;Yusing System.Diagnostics;YYclass ProgramY{YIstatic void Main()YI{YIIvar test = new QDictionaryQ<string, int>();YIItest[QXbirdXQ] = 10;YIItest[QXfrogXQ] = 20;YIItest[QXcatXQ] = 60;YIIint sum = 0;YIIconst int _max = 1000000;QYYII// Version 1: use foreach loop directly on Dictionary.YIIQvar s1 = Stopwatch.StartNew();YIIfor (int i = 0; i < _max; i++)YII{YIIIQforeachQ (var pair in test)YIII{YIIIIsum += pair.Value;YIII}YII}YIIs1.Stop();QYYII// Version 2: use foreach loop on Keys, then access values.YIIQvar s2 = Stopwatch.StartNew();YIIfor (int i = 0; i < _max; i++)YII{YIIIQforeachQ (var key in test.Keys)YIII{YIIIIsum += test[key];YIII}YII}YIIs2.Stop();YIIConsole.WriteLine(s1.Elapsed.TotalMilliseconds);YIIConsole.WriteLine(s2.Elapsed.TotalMilliseconds);YI}Y}YYQResultsQYYQ28.117 msQIDictionary foreach (measured January 2017)YQ83.3468 msQIKeys foreachI (measured January 2017)QHQYII// Use a Dictionary with an int key.YIIQDictionary<int, string> dict = new QDictionaryQ<int, string>();YIIdict.Add(Q100Q, XBillX);YIIdict.Add(Q200Q, XSteveX);QYII// We can look up the int in the Dictionary.YIIQif (dict.ContainsKey(Q200Q))YII{YIIIConsole.WriteLine(true);YII}YI}Y}YYQYYTrueQYYusing System;Yusing System.Collections.Generic;Yusing System.Linq;YYclass ProgramY{YIstatic void Main()YI{YIIstring[] arr = new string[]YII{YIIIQXOneXQ,YIIIQXTwoXQYII};YIIvar dict = arr.QToDictionaryQ(item => item, item => true);YIIforeach (var pair in dict)YII{YIIIConsole.WriteLine(X{0}, {1}X,YIIIIpair.Key,YIIIIpair.Value);YII}YI}Y}YYQYYOne, TrueYTwo, TrueQHYIIDictionary<string, int> d = new Dictionary<string, int>();YIId.Add(XcatX, Q1Q);YIId.Add(XdogX, Q2Q);YIIif (d.QContainsValueQ(1))YII{YIIIConsole.WriteLine(true);Q // True.YIIQ}YI}Y}YYQYYTrueQHYIIQDictionaryQ<int, int> dictionary = new Dictionary<int, int>();QYYII// We can assign with the indexer.YIIQdictionary[1] = 2;YIIdictionary[2] = 1;YIIdictionary[1] = 3;Q // Reassign.YYII// Read with the indexer.YII// ... An exception occurs if no element exists.YIIQConsole.WriteLine(dictionary[1]);YIIConsole.WriteLine(dictionary[2]);YI}Y}YYQYY3Y1QHYIIDictionary<string, int> d = new Dictionary<string, int>();YIId.Add(QXcatXQ, 1);YIId.Add(QXdogXQ, 2);YYIId.QRemoveQ(QXcatXQ);Q // Removes cat.YIIQd.QRemoveQ(QXnothingXQ);Q // Doesn't remove anything.YIQ}Y}QHYIIExample e = new Example();YIIConsole.WriteLine(e.QGetValueQ());YI}Y}YYclass ExampleY{YIQDictionaryQ<int, int> _d = new Dictionary<int, int>()YI{YII{1, 1},YII{2, 3},YII{3, 5},YII{6, 10}YI};YIpublic int QGetValueQ()YI{YIIreturn _d[2];Q // Example only.YIQ}Y}YYQYY3Q","A6rEABBBEAfAAfCfAsArZ0#~C| 788mCC/B 89894}.B 89469466}3 8945}.B#BcB~C G588G74G74}.B#~ 588964}XC 7846565F55/B#~ 95565}s~ECE 557}XBC~ 5576},CC 766}bB~EXB(CC 55759563BXCEcCE~E0BB0CC.C 5756}cBdB#B(B)B#B(BZBjBZ~CK(X","Dictionary."," In a city many buildings are found. To find a structure we can search the entire city, street by street. But this becomes slow.","With a dictionary,"," we can map a building to a location. We can map \"park\" to where it is found. Then to find the park, we can skip searching the whole city.","An example."," We add 4 keys with values to a Dictionary. Then we look inside it with the Visual Studio debugger. The Dictionary has pairs of keys and values. ","String, int: ","Dictionary is used with different elements. We specify its key type and its value type (string, int).","Output: ","The example program has no output. It does nothing useful. At least it does not crash.","Debugger."," Let us peek inside the Visual Studio debugger to examine the memory. The Dictionary instance is represented by a collection of key and value pairs. ","It is fun (and perhaps helpful) to open and close the data structure elements. Learning often involves experimentation.","The pairs like (dog, 1) are the string representations of KeyValuePair instances. KeyValuePair is a struct.","ContainsKey."," This sees if a given string is present in a Dictionary. We use string keys here\u2014we look at more types of Dictionaries further on. ContainsKey returns true if the key is found. ","ContainsKey ","containskey","TryGetValue."," This is often the most efficient look up method. As the name TryGetValue implies, it tests for the key. It then returns the value if it finds the key. ","TryGetValue ","trygetvalue","TryGetValue, syntax 2."," We can declare the \"out\" variable directly in the method call. This can make the code easier to read\u2014the statements are combined, but have the same effects. ","KeyValuePair."," When a collection that implements IDictionary (like Dictionary) is used in a foreach-loop, it returns an enumeration. A Dictionary will return KeyValuePair structs in a loop. ","KeyValuePair ","keyvaluepair","KeyNotFoundException."," This error happens when we access a nonexistent key. With Dictionary we must test keys for existence first, with ContainsKey or TryGetValue. ","KeyNotFoundException ","keynotfoundexception","Loop."," Here we loop over KeyValuePairs in a Dictionary. With collections like Dictionary, we must always know the value types. With each KeyValuePair, there is a Key member and Value member. ","Foreach ","foreach","String, int: ","The code creates a Dictionary with string keys and int values. The Dictionary stores animal counts.","In the foreach-loop, each KeyValuePair has two members, a string Key and an int Value.","Var keyword."," The final loop in the above code uses var. This reduces the amount of typing required. And it may make code easier to read for humans (like us). ","Var: Dictionary ","var","Keys."," Here we use the Keys property. We then look through each key and look up the values. This method is slower but has the same results. ","KeyCollection: ","The Keys property returns a collection of type KeyCollection, not an actual List. We can convert it into a List.","Foreach, benchmark."," Here we compare loops. A foreach-loop on KeyValuePairs is faster than the looping over Keys and accessing values in the loop body. ","When possible, loop over the pairs in a Dictionary directly. Eliminating lookups will improve performance.","Sort."," A Dictionary cannot be directly sorted. But we can take its Keys and then sort those in a separate List collection. A query expression may also be used. ","Sort Dictionary ","sort-dictionary","Types."," Dictionary is a generic class. To use it, we must specify a type. This is a good feature. It means we can use an int key just as easily as a string key. ","Int: ","In this program, we see an example of a Dictionary with int keys. The values can also be any type.","LINQ."," Extension methods can be used with Dictionary. We use the ToDictionary method. This is an extension method on IEnumerable. It places keys and values into a new Dictionary. ","Lambda: ","The program uses lambda expressions. With these small functions, we specify a method directly as an argument.","Lambdas ","lambda","The example uses ToDictionary, from System.Linq, on a string array. It creates a lookup table for the strings.","ToDictionary ","todictionary","ContainsValue."," This method lacks the constant-time look up speed of ContainsKey. It instead searches the entire collection. It is linear in complexity. ","ContainsValue ","containsvalue","This example will loop through all elements in the Dictionary until it finds a match, or there are no more elements to check.","Speed: ","MSDN states that \"this method is an O(N) operation, where N is Count.\" It does not run in constant time.","Indexer."," We do not need to use Add to insert into a Dictionary. We can instead use the indexer, with the \"[\" and \"]\" brackets. This syntax also gets the value at the key. ","Caution: ","If we try to get a value at a key that doesn't exist, an exception is thrown.","With the indexer, an exception is not thrown when we assign to a key that already has a value. But with Add, an exception is thrown.","Clear."," We can erase all pairs with the Clear method. Or we can assign the Dictionary variable to null. This causes little difference in memory usage\u2014the entries are garbage-collected. ","Clear ","clear","Internally: ","We find that Clear calls Array.Clear, which is not managed code. Dictionary is implemented with arrays.","Array.Clear ","array-clear","Count."," This computes the total number of keys in a Dictionary. This is simpler than accessing the Keys property, or looping over the Dictionary to count it. ","Count ","count-dictionary","Remove."," We can eliminate an entry, not just by setting its value to null or string.Empty, but by also removing the key itself. With Remove, no remnants of the key-value pair are kept. ","Running the code in Visual Studio, no exceptions are thrown. When we remove a key that doesn't exist, nothing happens.","However: ","Remove() throws System.ArgumentNullException with a null parameter. We cannot remove null.","Copy."," Dictionary provides a constructor that copies all values and keys into a new Dictionary instance. This constructor improves code reuse. It makes copying simpler. ","Copy Dictionary ","copy-dictionary","Return."," A Dictionary can be returned, or passed as an argument. The Dictionary type is defined as a class. It is always passed as a reference type. ","This means only 32-64 bits will be copied on the method invocation. The same principle applies when returning values.","Return ","return","List versus Dictionary."," I suggest almost always using Dictionary for lookups. In large collections, a List will become unusable for lookups. ","But: ","A Dictionary will still work well with large amounts of data. With Dictionary a program recovers from pathological, edge cases.","List ","list","Looping: ","It is faster to loop through elements in a List. If looping through elements is the most common operation, a List is superior.","Dictionary vs. List Loops ","dictionary-list-loop","Compare types."," Sometimes, an array or List can be used instead of a Dictionary. This influences performance. Any analysis depends on the program. ","Array vs. Dictionary ","array-dictionary-test","List vs. Dictionary ","dictionary-time","Composite keys."," We can sometimes use multiple variables in a key. We can create a special function that transforms those variables into a string, serializing them. ","We can use the string \"1,2\" to mean the ints 1 and 2. This approach is not optimally fast.","Note 2: ","This is similar to how composite names in programming languages use a period: \"Type.Member\".","Field."," Sometimes it is useful to have a Dictionary at the class level, as a field. And if we have a static class, we should initialize the Dictionary at the class level. ","Avoid the static constructor\u2014static constructors often carry performance penalties.","GetEnumerator."," With this method we can loop over a Dictionary with foreach. We call GetEnumerator() and then use a while-loop on the MoveNext method. ","GetEnumerator ","dictionary-getenumerator","IEqualityComparer."," Dictionary uses an IEqualityComparer to compute the hash code for its keys. We can implement this interface with a class. This can improve performance. ","IEqualityComparer ","iequalitycomparer","Optimization."," The Dictionary is well-optimized by the .NET Framework developers. They are smart people. But there are still techniques that influence performance. ","Optimization: Dictionary ","optimization","Binary format."," In serialization we write a Dictionary to the disk. Usually strings are less efficient than a binary format. But with binary we cannot easily read the file. ","Dictionary Binary File ","dictionary-binary","Equals."," Are two dictionaries equal? Do they have the same keys and values? With a special method we can check for equivalent data. ","Dictionary Equals ","dictionary-equals","Stop words."," With a Dictionary we can remove certain words from a string. Small words like \"and\" are sometimes called \"stop words.\" We can use a Dictionary to help eliminate these. ","Stopword Dictionary ","stopword-dictionary","Combine keys."," In this example we combine the keys of two dictionaries into another collection. A HashSet is used to union the two sets of keys. ","Combine Dictionary Keys ","combine-keys","Map."," The Dictionary is a map. A real map helps us find our destination, but a digital map directs us from a key to a value. In languages we often find a map type. ","Map ","map","Case-insensitive keys."," With a special StringComparer we can have case-insensitive key lookups on a dictionary. This reduces the need to call ToLower. It reduces string creation. ","Case, Dictionary ","case-insensitive-dictionary","Research."," A Dictionary is powerful, but it is not magic. It just uses a good algorithm. This requires a hash code. We take keys and use arithmetic to transform them into numbers. ","Locations: ","We then store them in locations based on those numbers in the Dictionary. We select a \"bucket\" based on the hash.","Finally: ","When we go to look up a key, we compute a new hash code and look for it in the Dictionary. Less searching is needed.","We try to reference items in a table directly by doing arithmetic operations to transform keys into table addresses.","Algorithms in C++ Third Edition","It is good"," that fast lookups are important. We just spent lots of time explaining how to do them. We looped over a Dictionary with KeyValuePair.","A review."," We checked key existence with ContainsKey and TryGetValue. Dictionary, like all hash tables, is fascinating. It is fast. It is useful in many places."]

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAIwA0gMAIgABEQECEQH/xACG?ABBQEBAQ)))?AQIDBAUGBwgQ?EDAwEFBAYFCgUFAQ)I?QMEERIFBhMhIjEUQVFhByMyUnGBFUKRobEkMzRDYnJzgrLBFlODkrMlJjU30eER?ICAQQBAwQBBQ))ABAhEDBBIhMRNBUWEicYGRBSMyQlKx/9oADAM?AEBAgEAPwD3hNdk5I9kAREKhIHVl2b3lEYh77poqRVKN7pu681M4Rf5j/3TWGnt+cIU1yF2ob2Y/F0dlPxdITxA3LM5fBN3w/WInH48UlyF2xHtSvw4v9qnGDFrMowejvym+Xg7upWKn4c7u/mjdIHGI8Y2v1UuLeKjAo/FSXZPVjXQWZOHqkulThCS6LpjOi6AH3SZJl03JAEuSMlBmhjSWLRZZ0qhElIzoEHoSJUoAhCEACEIQBAmunOmugCI1XkurBquZJAKx3UXHxUxFxUefHuQIRcbpe5Sbz4JXkfy+xLfwJXyRM7M91ajMS+P;xl82+xOyjSWFfJaBWBJlRAm8VYBKCLLJ11EKezoFHXQ7pLpHdAojuoyJKTqE3TRUDmgTULunCm2OotASnF1WBWATkNZKycmsnJwgIQh?hCEAQEo3Uh9FARIAaarH8VJNNHGBHIYgAtzEb2ZmbvVYKiGoiGenlCaI25TjJiSCDSFMsnZJqSwESYuly8k8SjtzO/wBl0NhRHg6cwun5Bfg72807k7nuk3BtAGe/RWAd1AJMpRNku4KLIp+SgEx807NvFLYpNdI5KPNvFNzQFDiJQkgiTHTGx6QikBkwWViMUICUBU4smgKlZk8aKyVCEogIQh?hCEAVpuiquanrb4rgPSJq1VpemUBU0xwb+sjikKN8ScHYuCEt0lFeoPhN+xJti9TJWNEAtuCopRMH75HdsLMuS9HVFW0+1DSlC8cXYpAPjyMWQ28rrldR1asmrSOWtklmB3EZik6Nfh8kBquoHVNCVUfsMWUZOLO7/WuK0Fpn49hn5NS1NeyPfHd/BMz8l5FstWV57T6YHbZSDKXfRGZGJ8j8MXdest38FQzYnjltLeLLvjY/Jk5iBR8OCOCi4JSXJk5ndQod38UgqJ+N+ieJPx5WVZpHsnb7G5F0s6TkdwWmNreyyXPyWDs7Va3UUBlroCFYM0mGGPGHL1b8r+C12kS2G1FjNJkos0t0WFD0IFk/FAooK1GKiAVZBk5IayQWT2SMnJ40EIQgAQhCABCEIAp1/sCvHPS5XzxSaHQ4juCmeoIrXPIOTH4cy9i1F33Y/NeH+mEi+kdAxfntJw/mHinaf6tREdOP9CX2Z5/PUCdQZ7lgDJ/VXfm49/xU3aSPUIt0zRZAI7ofZazdFTnk9dlJI2WXErf2VoyAayP692Gx2td/FbldmLOr69Do9JrJKbUqSaBxCaKoiACtlfekwHl8nXt8jNk68EgIoqtsS5t9D7LcRLJsXXqugbUBq2qahoczEVXQM0g1RW9cP1uXucX4LI/kITU9/8AjRe0Dg043zdo6PJOuP;8nSZFZZm81ViTJeCFBd07IrfgjcxfCiS7WIu4RcvkzLxvWfSrVazplTpEGlPRdsZ4Tqmmzdo3fmxHFuJMvUdf1iDQdErtYqIjmipo+eKK2T5vhw/3L5tiJrgVn5i+y73V/RYvJcpLoqamXji6q30dLpQlpVfDW0hzb2mkA4hKUrcv1D7nZ16ZTekeOQvyrS5YuLZlFIJ/PHgvMwc8uZ+HR/G60KYSs/FunjxWhk0@Lr9GZj1uTcrpnrel7U6ZqMpx3OnxbISnZhYm8PiughKOYWOI2kD3he68k0QZJHbJm6r0/QBfs5R/UF7/N+qzc2Dxvs0cWVTXszVAE/FPBmsn4qNIe2ACpxZMFSsychByVIlSiAhCEACEIQAIQhAHA7cahqvaXpIDKlp4wGSCaN+c5OL/DFuHBeSbQz6rrMNLNqVfHXVdPLgEgiIYhfmDl717F6Q6RpIqGoF3ExNw693DqvItTphGIsYg/TN5wfhw81f0uPjeUtTn2y8ZkfRtN2OaedoyqbmQTiXq291i/us+WKo7THPyHGMTScj9RFuorZCBh0qois3M8pdbh8LrPj5WHlD9Bl7+LcPq+Kurgpt2WaCc5GGsyAcDAwzfhy9LrV2crm07aqh1He.VMxRTYPy4z8tr+T8Vz1IQ/RcZBYiBhVeqqjj3BRO0RcS8ne/cky41kxuPXAuBzjkuPFM971zX9I2biCfWqtqaKU3jiszmREzfsceiSDX9IrNKk1qkrRqKCKM5ZDjvkwxtz8ni3gvnuoOepN5p5CkM3yN5CcuZOoqmroIZoqWc4hlZxPB+DiXtN8+9Zz/jI/wC1mstc0uj3D/G+i/QFVtFAM0tNRkAHA44SkUlsLN4Pdcc3pI1iSnm7LEFPVzVDyb2T1kccNuSIR8fF1wxalVS0g0khNuRt7Hfbpn42VKWskx3YcvFi+xSY9Bhi7n9QzJrcjTUHTfr2d/r23lVq2y9doepUTFUVAiPb4C5LibFzx9W6Lz8MRIPJ2a6sTVByU3Mz91/NVGfiDl4srWPDHHxDi+Snly5Jpb3dHQxGXFuv4K3Qi+8bv49/VUYpBszd3RbOlxiUwlazKadJFWElfR2ez9K5xiZMu+0+LABYfuXLaEMYRCHHxvZdpRi2LLJzuzUwcGjC3IpLIjbkZPsq5ODMnskZOZ?yVDIQAIQh?hCEACEIQBzW2kLTadBw5t8P4OvH9WpS5vVAP5W/Llblt1+K9r2m/QA4frB/uvJ9bpmxl9WxflDmI363+sr+kl9P5M/WJb/ukcsMTlpdQG7H9Zy36+d1QGmYt1lGPJRSd/Hp0Zb0dN/wBKqN3Gw5bxsL+Kgp6LlH1Xs0hc1+n7Kt7qKqjf7MGmpS+jm5WL2fJQzaZJO8W5FsQZ+/8ABdFT6flQlycMh8u5EdFNvACPGNuPtcbJ29NJD4xmm692czNQSROOY+01+Hh5qvJC49y6up0+aI2ydjy93iyoy0R34gzv0+ChbptFmKbSbMKKnmmkwjH+VuCs02i9o1GKjrqmOgAvakku7Wbu5e9+5XW08x8fkgtOPz+fFMb+RdpDq+lwwX7G/qBfEd4TZm3cVlkjTFmL24LcDTSv0eysNphWbgpYzQyUWlRUp43J+Nvgy6TR4HkljDv8+iqQadjbgui0yiLMX7/HvTsk00QLGk+TsdJpnBhbh4LrqaNhFlzekAVmyLL49y6enbosvKaGHpF4W5WSoZuCWyhJwZOSWSoAVCEIAEIQgAQhCABCEIAyNoxy05/3x/FeYaxE1yDdtlvHfr969T17/wAcX7w/ivLtVjDfNkP1nLG6uaV0n9ylq420zJjh3mnzCcXvct+vHxVmhoWyjyF7FC4eOPxTqZoOzSw2fmvkPfZ/dV6q3NNolZWUpyBPBSzFD05TCMiEvtUuSZHiguiSn0KPcYSk27uz9ONlLLs5CWO6NhD3SZ3dczS1O2QbJx7XhqwVEAO5S6fLAHEBmeD27Xfx7v8A76fpjw6rplFqMYOI1UEc+Nr47wGLF/h0ULyFhQOaotDGnMj5TzG3Tosuv0ceTka/Nk7N14rpdtXl0rZ86uGrfTsZIx7Vut7wJ+mFu/op2oTKmhkNnPMBLO1r3ZkeUcoepwzaP+ylLRv2V1eozafo1Geoaie6p47c1nJ3d39kW4u7uoNE1PTNoglPTxl9SwZ76Nw4SZYuPc98X6I8gtHPQ6M2TcqtfQr29ldb2SKnhknkF8IgIyxbjytlwXN7E7UQ7SyVFJXR7uqGQ9xuIj3bwiw+2RkTZ3fojyPsHFDI9I4tyrWpdPcLcPuXSNp8OXIxY/BYGhSyVO0+t0HbnqApMMaLc4bj/Utz5Ieaxnh+Deooo7NiDs62oAe7cFDDTeSxK30gbMaVXTUFTPIUlKQhVyRRHJFCRPwGQxazPf;JPc/clikvg61KmxSxTxBPCbSRSixxyC/KQk3KTP4WVPWNXodCoJNS1EnCmiccyEXJ+cmBuHxdRkheSrnNN252d1Wvh06lnk39QLnT72I4wk6+wRt+y/2cF0aGmuwBCw9e2t0bZ2WCmrzkOrqWcoKWnjKWUh97EU/Z/ajSdpgqD0ozLspNHOMkZRuJFfhzJfwBsoQuX0v0gbMaxqMWk0NSR100ksIQFGQ8YQKUyfuxsL2fvdJyB1CELDi2t0WWLWJt4YjoJGOpZAWQYMXst9ZuR7W6ooDcQsSm2p0+rp4auniqDhnAZYj3drgbMQv172dCUDVqqWCtheCoHKMvksCfYTZ6e/qpBy64ynf73ddKhLGco/2v9DXGMu0mciPo70ESbmn8vWf/ij2j2Z0qg2W1uWnjLOPT6v2if8AyT4rs@fJP3YLHH2Pn6g2m0+o9HEWx2mwT1m0FRnF2eKIiEWOqKbL/Z4d69t2f0t9K0PTdNltvaSmhhlt0cwBhJ2+a1EJJS/7YqicD6YBb/A9V/Gg/5GXZadGH0fScG/Mx/0K4hIFHnXph0+WXZulq4IN9DQ1sVRWRiP6lhkAi+DZNf4rpNmtp9nNqo5/oR952Vo98JxFHhvGLEeb9x10KQQAOUBYR8msyXcFeojRh7rfYvLfRPqFHR1GtbN1ZPFqxV89R2XA/zQiA5ZY4L1RJZuJWb+6RPhr3ChGAfBl51sf/7J2z/0PwXo6EJ9/IV0Fl4i+q0uz2nbZ7MatHL9ManVVB6fFujPtAz/AJow/qXtySzXbh80J0DVmPsnR1On7M6TRVouFTDSxBKHulj7H8vRYnpVL/siv/fg/wCYF2iEJ8/kK4PLdZLDXfR1/DH+mHgvUkIR7AjzHaLUqbZv0m0mtayxhp02nvDBUDGUjb25cnJk+Xw8U70S1HaqraqpwOLfag8m7lbExyeQsTHuLxZeluzeHn82Spd3AVyC8x9DtLS9l1ut3Idq+kZYt/j6zDEXwz8ObovT@A9QXh23tRLou0e0ukUzPvNqaaiKm/f3owkP8zbxe4rgtun7RtXsTpkv6NJWTVR/wASmGMovvJ7pYBLo7S;oaChpqGIW3dLFHAFm4YxiwN9yFZQmin/9k=$/9j/2wBD?wICAgJCAwJ.wRCwoLERUPDAwPFRgTExUTExgXEhQUFBQSFxcbHB4cGxc@CcnJ.1MzMzNTs7Ozs7Ozs7Ozv/wQALCACRAL4BABEA/8QAV?B?MBAQEB)))?ECAwQFBgcQ?IBAgIFCAYKAwE))BAgMRBBIFITFBURMVIjJjorHhFDRhcXKBFiRSU5GSobLS4gYzwYL/2gAIAQ?AD8A/VQ?CMpDViVsMJrpP3lMusMrKOshQ17SwaIye0uTcXFyQd)KsXMZPpP3lSAQASAHJWbvZLa2VjWpSeWM43e5NMvcm50g?gXIbIuYy2v3lQQ?SDPEer1fgl4HmYB/W4fPwZ64Os?ghsq2VckTcye1+8gg?AGeI9Xq/BLwPMwHrdP5+DPYBXnHs+95FXpPsu95Ec7dl3vI7qc89OM7WzJfqiSspajixGkeSqShyebZvttV+Bg9L9l3v6lJaX7Lvf1OvCYtV6Tnly2eXbfYl7jbJvuVksqOKtpDkp5eTvqve9v+FOdey73kOdey73kdGExfpOfo5ctt99t/YuBuDHFYj0emp5c2u2225nNzr2Xe8itTSeenKHJ9ZNdbivcY4D1un8/2s9cEc3dp3fMq9Gdr3fMjmnte7/Y7qcMlOML3ypfogzOo9Rw18FytRzz5c1t19itxMXovte75kc1dr3fM6cLh/R6bhmza77LbkdcdiElqPPxeBdWpnzW1Wta:TleAl9r9PMmGj3KSjnt7beZ2YTCejZ+nmz23W2X9r4nQDHFYf0imoZsuu+y+5nNzV2vd8xzV2vd8zTD6P5GtGpymbLfdbarcTsB1gEMqzKZQEA2jsQIcTN00VUFck?Egmx1AEFWZTKEESb1ErYjeK6K9wIZVlWV?K1ZOFKc98Yvb7EcuGxtarWjCSjv2J7lfidxJ0gAq0ZVVq+ZkCs9xZbEdEV0V7kGQyrKSKgAFK/wDoqfBLwODAr6zD5+DPVJOgAEEOKe1XK5I8EMkeCJyR4L8CckOC/AWIZUhlZLUZgAso6jHEQlyU9btlfgceAX1mHz8GezGK4FsseCJ?BABJDKsqCs+qzIAGsF0UWUUWSRYk)rIlbAyrKsFZ9VmQANYPooumWRJI?B52nNHV9I4SFChKMZRqKd5tpWUZLcnxPD+iWkfvKP5pfwOvRX+O43BY6niKs6WSGbquTeuLjviuJ9CD5L6J6R+8o/ml/AfRTSP3lH80v4H0mEpSo4WjRm1mpU4wlwvFJai8+qz57SWg8Xi8bUxFOdPJPL1nJPVFR3RfA5vozj/ALyl+Mv4Hr6HwNbA4aVKs4ylKbn0G2rNRW9LgdxxaXwNbHYWFGi4xlGan020rJSW5PiePL/G8fCEp8pS6KctTlu1/YNdCYOrS0nRnJxfW2N/YkuB9WS)ACGVaIKyWplOTl7Byb9hGRkApiJfV6vwS8Dy9Gyy42n/6/az3eXhwY5eHBmo)BBFiLEWFiLFWirRV7TLEer1fgl4HmYD1un8/2s9gHW)ACBYiwsRYixGUyn1mVlFSi4y1qS/RmVPCYenNThDpL2t+zibE2Oo)?AgWFiLGNRdNlATYmx0g))gwqddlQSiTo))AOep1mVCLA:9k=%iVBORw0KG;)NSUhEUg?AIw?ACMCAM?ACZHrEM)S1BMVEX::/6J3/8MH/+uv/21D/7bX/2Dz:fX/+OH/44H/9df/66n/4HP/3WL/5Y:8szV1dX7+/vGxsa2trb29va7u7vQ0NDy8vLLy8umG8PN?ACk0lEQVR4Xu3bCaoWQQwE4E6vs/5vc7v/SUVGLAxtnoidGrHrBB/FQCYNCb+Rl08vgRxYXt9eoaFb3qDhW5SGbYGGb4GGb4GGb4GGb0G+3Mjy8fP/ZJmWaZmWaVnijSy5xhtZKjR8CzR8i9LQLdDwLdDwLdDwLdDwLchxJ0v7ZyzTstzHsq013sSyrZgMRAso0BAt6TFuMjwbFp0thCSgDNbYlpqfQBmqsS2Ik0ZbWBrbYicvAzR/Zsnl70+HZ2WhUKBRFgYF+fDDFTXg6Ov2FhwSlaX1upIUfBL1DDjfpSxxrAaWzaBgDx+pgSWsBsVjD4+wqGJK6FrGarAHPCpSc+taxmsuSzKKgWW05rIEMYrx28NbMIrh7OF7txjOHt6yUQwsPppiFAOL0hCKgcVLE1UxysLTlI6FpclNW4iaoi1MTTItx+GpEdvSmqcmaYueWY4aMSxXb1qzDdOUZFigUbyBgcXS8C3Q0C1aA8vCskCDXnL0tOSOBpboMBmQo8lPmv2bBnNjrS4a7FXy65ejxWdOAQONtlxOlkZbWq40DSz4f+ZoYEHOStJ0LFutJM2uLHovXoOfppOk/ieomqKKoWpOVQxT81SR+vB9oS3K;dALBbbGl00Yn6+clGcJoPYzzrpO8VFI/brhVwUH410mUgEZbgGFuTg7OFdy0J6Fdh6RKmeGjsNAL6mvIc5Fz/MaVMeT8EvYpZSkufFkpil+F4siVWK88WSGKV4XyyJUYp1seRnWaPfxZJtyXuiXCxJrxTWxVLUlD3xLpa0JnIvCiLNYmv4Fmj4Fmj4Fmj4Fmj4FqTwLXamBZmWaZmWaZmWaZmWaZkWr4slvgYWvgYWvgYWvgYWvgYWvgYWvoZisS+W7HwFgJmnk4YUibE)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AQQ?AD4CAM)98Wju)YFBMVEX19fV1T2uxeXYmIy3MoorgvqX+/N7v1LP66cjl/ODf3/7j5cwtlvsEecpgqvXB3fWUxPDK8frl6+/f39/5+/v::q5+aJkazx8fHJyc2xtLzh/v339vZtc4v++vT19/yBNEal?AZi0lEQVR4XuzUCWrDMBCFYR3gvZnR4jVpe/9bNrJVBIkaGkpKY/vDCA/?L8XlxK4a0jJJcedc8mdA3cunJ3ruXO9c2Pkd8ANwaoM9STjWCJYIwV6bod0i5ELH0hahwcjoFx3BvxwePLCyjJpRaDXpUErgv@pOpM0ylHEJ3Al2XdxVcEhVwoC+1GsBXBIixSJ4.MKCHFxb3nwQeHp67sH4D4MqMmdZAns0IfiCC6Fue1c/oYQq+MhG2I1gQ9TcRJpI6UyL8QMpEm9GTeB9++dW2hycvrNoRtAOpH1c/RulUgZOGgXJSg9fT+iYouAmSNAtlQj1rBEIkH+ByrncghFsBycAbJcJOtSMcEY4IR4QYFjH8nfif1nySZ7a9scI4FI5DAOZWHYCxMXkz:9frkOk7Vb3tjMt037ZIxQCanyOngYS2gPCmkSVVvk9bZuc1PMimzoTtmRM2lZtTaqN+VmlpVhWr2rwDce3yOlU4O09hLc4vwJhKz1tqr4NYV23dTXpeRDINTOJZUw/D4Ec79jzcthylO9BwMFC0+RZngZhVwhXLBCISK+Ijo7RNj0dAvZ5IRuQVDZHEoNSnb42E7YOJoOa8ghLqdY4A8EyT9qIgyv23uXFwYTUAmN6NoR9gLHLY2dhIpdjWCT44hTT1yDsCoFajzrctzVtXvAchD5Hy9gyjK5hC3rMmixP8mwIRtzU89y5DLPLFyUCoa9O34.Y59HyA7Go8Y5CJncZJk02dRCHGDuYLRNhis9HYKSdhzFAYwHBLHBVacvQ8Aujy0XGu6txgkIOFgIIZP1TulWCB@zfMhDDZP4rLYAqE4TQ6iOn0DggK1o0YlG2qNcxAitc21B4bRQYUw9ZDz9PyZsIttIrliZSFa4GYaipN8A8KuI7HT0TBr79TjYLD3uIsfxbHfbh5XH8X/odb+xDvBoDpgp1ZGO4PlsFJvvwzBiL8lBTrRAJxH0hrnIBgURUuSiEh2SnoYEoP0A4+DCrX8YYVUPL7oVCOrSNLacizLDUmpeupx+CVVCCf1LjK1MNE+2FG+v1nClNAsmH5LuGynzd5HRpKUdm0e0r8grItq/dVP6fWswYnI65L+hrBs/19atn9A2NKvy5jnlPm2/d8QzAf6a1VA2Sm9XZx4pdUTPfCpg0QfGtWF9m4R/K+Pxi+x70JI9NZbmJf/cZA2vHD9aCUUFzCd;Bi4R/fwPs7MNRCjvIxhJ0c5AU/+83QYIHrT3RuaQPenQm0Zqw9MpyZczBiqohsvvgtIZHYkbzH0jOl1TClqTMH5SEI+2CZedyP4Yj1IKGeo7wR6VoGxvQhBGlBixRv0QjkApZ8NRSSVIzMYRQi2geYrTK9A4FS09DRk/AaFvGvzUjVkfyL5ZgUbPAvUGYEGh82WlfFkV6Cj7Le/ILa4iMQSKuRbLgGv8u64Lqa9UUtLYym8FTV2d7CxxB2sZmKY9r+dK2/AMykBXHdvKc+KCUcYCKShW7BU4HA8c5MIIQG6MiZXl/Zl39Q+woBW8jALzAPtmHXNJNldAClyc2V2gxTBxk4dvZK6T6EvQPFm6izAEzHh+tFHfINmjyTtMwc9mT2wfH4yeNAvVoOeRR31YABmutmc55diWKbvCdsc0zq00OjCe9CqAzeIFQ1FYJmnqRAiJaRxHqy3EMUOzqILcRObS/qksfeRjGPQMgKwZA7PtgrBLiqi4aWXdwBVAz2OYdPHgdDA+SNWewKVzpgNgzXEqqZBxilQtgFmLRXnC6fQsANGtV7CK9LhTDwSFYhXGAi6rSx7AHJjY5RISh+vsBIjsNE5hEIYgMRicvUuQqh/k1Bi4l5/zjM8jGEncheWw5MvctHHWCea6gy2aiHmUriQL2dDwifrg5p86pbBSXTgWBKNcAuhUB+geiyvwlwLNeTBrRZ/TS/y4XPkPP82IsRewjejy2MbdaiN3tAgKA3EooDaDgKDt67HD+EkFIfbvbasQ7dWphsjjp+w3I+ppgrVLz30aoDdyXu5fMXY6IiU0UbKwI6/GvmzOHFzp1tNDRMLlALMJFj7Flv5HCxo5BlenCJLMPzSA5gpEG7XMbbqbN5prTedDtv0l7c7rwTgHdqc83Vw7UUnFoNZWNnFcIBlGMpVG/EL2yWkhBJer/lkERpL5yQBKVuZFCOPQgRGj2JHfExCLViqkV2quNLtXLTJERMD2yW6si6NFIJV1PVUEcgpa06HJK5v1k6L+qBMT0I4by2aoVDXfwf1HchyIOiIWwk92WSPENbPVHX3kge12cQtg9l/kN9He3GCUNBGI6Uu6PxzBxvESwh8P5vWQV3yV60KRB60V9wszKW/MleQWhvb7uG1qoLim2WPDTfMJ3ZCTNxbSIuiMKpjiJM04ZgScI1yf8RwvRjmBoC63Dvx3kxWgpu90kEiszfaFBhuJLiHgTXv47LeAwxadZDCFPXv3crguZb399cxopWGrKDPI8gwc+EFtZoJpGGtAPBQfrLzcFqklhLOw4idOPrA+G93LpbX4rQEhGEDJ1HcFu3zfXOwU9IMrwLYUABARA29WLABkmDZlt4s7CB5CGEZvALwS6l70t5RuBFCAoRVjC3s8bAbgSoEmlYTjsXQ5LZKUNZCTCawZtShxGmD4MnhPJaypU7wSIscEABqIXUZsDmJO9AgAdaEBUoDvCHJC7AsuK02QDdCyp1EKG7v24IdGmN9RMh1+u7O4HRDrboeF6bDIp7EIoDkgCmHeBAwAFmQ0D6gRCHEaZhE5tZ7x87YZwHfyJYCnwbASnT4YVeDAJQ0Nx9HCin4c6g01yMN5EewBeiqSyyycHS8T/Gaa0hMOdxnKvxSAQkXoBAraAmbAmAJbnsRYDkdvAdBixQMg2YMGmAkgGn0X6oJ98YC2ybBY8y2DBeTiO4wp3xXGyi7oj0DoSWjf2df20u6/UZscYzBsWrHL94nASIvQgS/j2CeWmQeUEWT/UVwvDn5mu6/lP6VD/ZOxvlxGEcAMf5IexxbUIsRbZjmfd/yxspCUCvQAE2u2yr2aEboDDzzdqJVvqUS6l0vCmm4tZcJY9wS2XQ3VdFBDg5zNzpITxUi7wnsCfDFuNIM4O+izeW4ZxzJ8U3feJ8RHTeZ3had5h/WQ/7LrslHoeAjouCEIQgSrMfv+NNEHYrCuUQj1bm9MS5AMtsuI:DyH2Vso0q7yFhSF4ZUAeRwh5CztEADlMX4WQD1qYBkSQjkl94iy4yAEjMX6AEBHl+xMijOXIlOljXAiC8VSMEHJ6B6kaUR2GFFq8DkGbzrx28A2V4W1ZcGOtPw8BrHEuWpMpJhR4AkHbLvOCupJCZW1J3EDKOYQh/nYIUSBIWIFQF29bxNIQB96u869B0MpxyRSGujRUGWoQMJ4HZ02P6FnfgmTYeJSCbMnB5qbVwlArncgMuQmGIf12CGiNMi?XQ5MkKT7t81DTV8qw80FTsRUccGQXylcRSD23hgE4WdlMUYXYyq50T1JqletFjZ/5dox/tshgDBg5hBBN0appaIhRKwpb9NtENZmKOmXuaYsQEaGuWAUxmgJQfcEMRNGCKu8lU5khZAv?H11KDrcj47SPev4SblPMSvQtBKHDlmw4PhBq+gQ0CkgjPQg7EWmSqWb/7vRrrk27ETuTS8xHJAUxDgfAS932Hdyv7YYNniDRUorDgMNQULNTXpKrwISIXF406VmqhLFXW+S74bO5ExBJF3fjeEaG0Gp1c6CBkguoo6uAFCNp0iU/bFRnrIbBaPIKjnEhGlCDl1Iqe+k7rsfRDi1yNDhM/ej7Vp8XddNmtoP/Tnl81zYGUKgnTfZbN7QuwwuT8eO0RwFyJ7HgTNmdwrxvOyyIhiJEYNbbDX9ZFB+mIWOTUmxAcic6fLIy6fRVouzJhFuk0XY6ebO9g+fjGLhHUZhvRof0Kyfhf3PaBLZ5G9KYxHdfukaS+VkkXu0pebNCTVMITxUQgVKUmRdOLiEIJkkY49itvHuM4bQFS7FjN1ZhDjRQjrTkS+9CAEWQ6AUya5NATNIgNPWaTZ1gy1Me9JcodhLe1dhiBebOsFsYPjgxCwoiEnw79y6QFdFkLEcMgiYU1t2cKqNGbIw6hT5qJo4uXutVre8SiE0gyGa7E4mywuCwG9UQYBoy7vUHrtyJsh/MoLcwUC1JJzPwWCmM314stBa7UUyCNMTWvcrUy7miDU0vyLCJfbeqlBjE+DUC0Pwcg/;NLsTIMIh4IBOmaNNvaFJeXg2whojs8C8LKvC28JyAX4Tjhgd7F3cr7Lus77EPTO7TBd+kChOisD949uDGqF9g76DvY+C4tCEHjeOufpVIc1Q1dCFdOkfr2JywH/cKoj/iM64S4XLinfFnmni+CuW8TZyAsHO453/n4pxwg3LEJnOp8OwS1v8+peJrezErhUxu8F4aAoYejI/TkESc867BNUH/MYMThDzji2EgxJHm/oSG+MoTC4EwhoiUJmyZ3sSAUmSkBxL2psEMtRCBEVXgG3IlSGIa4A3hZCIZ5EkdTRxw6pIJxL3BqvQOtd+gyrY+qMCRknIsOKrO1O5UAM3DWvi4E77lXCtgWbz68vb3tIbBqTENlCnngggAQJwhSCgm1IUMqkqmms00vCyGasIcgUSiEuSo9imB5qIptbYaKCXKjsqSmN4U6iZNSmF53OQQOOKdPbxp0gLAmkgk5WIagqXRlFEKY7UFVKGelML4uhCLgxMOOCJqY7SFgVagcmrdjYRDH5YBR/DZDtWk0tVS5tOteFgIrA40U2zduEqYZAg+4MiwqLomRupYS8y6VBHHUi8Mm50LswU3+0ntCBvhBDIMjN0TciJhBpuNZ5uwK5B365PyS/IQoVtWLQogfvaCPET99dv9kPHri9SA8P/5WCD9Z5NLxusvhdIKLWs5qIN8NAeaBHyI4fzZZBTGOWefTBstkmO5wpREO+rhnijg3G+m4PhrWhod4HwSoRe9vUUYzbONH4GtqUm62NW3TRQg6buLwHoBPBe7Z4F7l2ypAvA0CBsaRATZEPry1MSoEGVRSGh2gcScEza9yMwCgdJ7hNJ0G01SXMQ3WcvF1qVw5dq+FoINlAI4HyyDi6NtHrEwIQYuE8fJgmbMalFEIydGbl4c3lyYIQ3KSH2/uhrAyHnNC7MtgtliRR4hlsH1USr+Mh5QHnJqPLg6Wwd7uUt+syrDRWQxlgL6vQqpClzKoTYOYHFZ0cbDMBQZTjoR2VgK7GcI2ohR96vshaFIhHalapjCmHQepYBzXm8fVdQha99nqYBkqx8Ey/fFgmWE/WKYy5uJgmQsMDhAkTiHAQxBSSYMm2ywwdezLVuaAEpxAWOceLkHQUVId0SpffRgsUxcyWjXh8WCZcabKDRDQFv8PgWJ8EgSsuVEIhGvzS8e+NDSgJNrHEGr6z2UImQyWqSkE7OfBMj4M+8EycVeb5pbBMqcBve172ym2lJEiUL9hhoDVg8tBVjxW0pG8zTlIJY0q02YW9NURwtWNsQqBZSE1yQbTlpLEt37IzTBVxxlL2RiHnMPlwTKfR0REhKM5bI020O83RtjQEzbGVBZEklrSgLUhE8p3FHmhbAC/tieY92mwjOFhbd6xmgbLkM6RCYA6E0u+YXrifvMFJiAzBB@JcPM7oWQYc5DXjQIiHNjC+LaUH4YcVc0ciq+CEHlhp2eGhFxPj3C3C6j10ZwNFgmPXOwTBV2UWAEv7sTwm4Vhg0dz+JJpSlo8DCBTlUY1n6IXxgsM0/qW1r/wck+wrsrUIAZnFoyG+8dHqjA1cvmmanv8J/JIgWpuycgulviuUogZEtWpbMFqtK3BTriWQmMkO3izVmkkPyY8+iTZwKg7wE+S6Uj/Jn/WYLIRTGVpFD/b/VmJTB4sbVO+vjmJz8L6FkMkc+UQNdn2Z9TApHsrASSu0cJBMSc5XE6k63yc1pgBKa+Z/pUCcxFCUwQl1Y.1GwDbMSGGgALE2o/S55/yUbbuW9H1JJmkRxgyLB+EGejGeVQLAmflACVyV7UQIrCt7aquQtYCmfFJfxIgtzrASqE1dKSneLEmjI0CrnXBJJZrM9qwVGa5xYsjAqgczscbThyOfF+8awVyXQsHzoMkpgz4UExU@DLMS2NaE8cs2HIu4tjED5qGkszM45+VgLTPCnOQDjF7kgBVPSqDkC4vZcCAMDBtyOCuBLRoGwIroFiWQm69CyKBjw6agicKsBOLqTyqBHI+VQO0uZmpWtymBuSHDKedchEbOL8qRgE6+mAD0IM42nCiB76dKIC2kBPLB4gcbBqxES+UGxXv4KgRRJSj4/cZIZkjXlED+oARWzP9JJdmqS5W1AfowJKKcfv/GCN47/EwJjDU1tyiBe809ZS5izleNEXTeXVMCHa5eVAlE6XXepicpgTzcrAQ+L5yL9/YxSgIV3ePdkPMnLZNFfvo7j+Si2fOcv6WUQIA4/47sxJBGJRCyLy8HwCz+M0pg1rs4TWqLfRe/mkWis/Fh8yVa+weVQMfifWg50OXtXgkUXf3LtUipCDxJCYz95Ecun0XGvRLo8gYnJVDNdcnkLkPAis3jELLdX6UEDrVU0vKwUSUwXVUCM6wVwuNKYFka+guUwLz5qASW15VAqRE9RwRjqeCY1qU/owQSwF4JrNmYG5TAEcILK4EgDJg4wF4J3J4qgUaVwKsQXloJ5KKgD0qgFtaHnFZzrZ0bXBDC2vDySiCdKIG2B1iVwe6sxQ1567AuQ5MuQdCRaY9fJ/Q2sx1YC3VYWAmMXR/hmMq+5Adpsn40PbwIQYfnPeEUqd+ZMlxaCcwA4UcJfOnIXlcJfPxTHl8O2Um2NimBUeOgBJ4bYKrpTVQlMGV/7XK4HuC7EyWwCc2pEmg/ZjCwKUkdiTm9AWs34eWVwHh8E0WitouzEvg+KoGHrv6DEji7MUmUwI3kfPF1IRgzXxokR0z2VAlsVAnMHEBUv2NWAnlIkxcZQZXAuHth6QOND5zBbMPZRm24UyVQ9J+hzrl4P1YCm2MlMH91JRBmJTCcUwJVBCvEBasoQG7oSAlc75XArv9nlUCBsMUqhCmVZsgLQ0dKYPlvKYGNImDv4h4ClqoEpjx8UAJXkxK4Xf8TcigdlEDXvr35iHDwIlUJrIwhmErEujEelEDDxawJm9fdE6KDPfeIyTmEkyoIxG4H1jqQA+Ua3fjD2k5425285DLsFxDGFxkiEdPxYYRJOgGI2UcvUkcJ6IPIgfomeCUIP0rgjxL4M1jmjFp2MkpmmjQsPx9TAvX275csRO08wOfdax5v;DBHzvi2FCYPyGuchpG+4juVQJ3NQ2VaTZhKBs4w2BtaKg5YOlhsXvNn4Z2xhznjYH4oATSqiKmlD+gBDLkZhjrBvub1sPcuDJqjGRoZYzKXMvda/4UArPHbFYCW5faUyVQW+ceNV8UwsqHbeqd98n7Hayly3PUR8Vf0W/ZxqXuNf8RAiH7vQgWwkcbLpWEjymBM4R1zgy5MYa4eMc6H8VAqEhubD6iTgvca/4cBDqvBGJJ2/shyG+nGQJWbLayNgppwUvBaDlJPWQWCDqUY4F7zX8KgYTBMQTK4gwBK9oi3A+h4hlC3lRMPMgB61RPZh5Q0g6CNW0rHlay1he41/yZyZNx3hMEATfpoASuubV296gSqMvBSxVtqwfSkartuTLmci2vwLQclrrX/GkgEcajQWPsE6aDErg2xjy+MerI4aY2TEMZQDz8fJDFLctcM9ABp41x+XvNawCeufO8QKABEXHNDyuBmKnortdMO5w6TyYfcrw5koGSh/jX3Ws+rgSowKBwtxK4DkN97vb8ydvpBai5xapJy99r/nogxucrgYdwB11B+3TxUu6w60ODP1kkpp/BMstlkbo17o8+mTcMqFVJjK8J4fopMkvoWqZu35+TG0OnG61ePK0p5Nv0ihCuXyxlMXoi2x4NkWhrTf4wYtzpH6i5EYXfaRYIqOc7eH0IRDRnkW96r/mj3EG71UpqXL1zfpdsN10CJu+w5HZtwXpwNr4+BGQ6N1jGUDusSuaK29o0MhYJy3ZNjQykZKaKBkliCP8FCOGQRRYnENi0mAKbhtqK24qGuKupyrWHUdxA8iX7sk0vD4HZn2aRR8OmhpqGkjemqYjC2I2RciaUBIithZJCKKl7+eVwEM9ibOVfwuHsIJl6TiUH06zNf1OuhTUsiwZVyQtB5ruszfvu5SGEg/QcMQvUYZoP+7KDWoaOhi6VHnWgmc7pTn25TaXhZkXbVHr4ty6W4KRXeczWAFF+yl9n+2S+/RGo85CyV4Twc9n808f409GqEb9NnIHwbeM6hB8IPxB+IPxA+IHwA+EHwg8E941DAWS99eEbh7e9eJ7Wf+uQqcyQdb39xtF3GWQA0X3ri?ZInzz+F+7dmA.QgDUVT5JYQ4JJD+2zwWFo5r4UYBC3hoRhIzV971i3ARLkLFRchN2CM04I7QoPJGqIF2TwdB33QQPTcdBMrM0x2+CKnHoADa+8UYgDZhjTAQKWSOoDyYIzRqoKwRcriFMVN76nHpPu79hAIob4QAhglrBMFJwXJGGPRsnc4IzaxcbV4YB3S7zT3vOYi4LfcF4Y7QAOGM0AIE7YwggIHljJAiNrR5TQiAd0Rni/DtxG/CFiFFvSmBL0L2a6AyRsjviM4aQdD3p4roCXeEFMgeIaVnPzNl/3FrA+WNUAdmz3FGKBBTcIwRBAea8b4ODMi8JuQAsk8Hsc/fInwAdFZHH6unQsc)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ALQ?ABwCAM?ACAaqqi)MFBMVEWj05zv+O7o9Ob8/vze79v::j8uH6/Pnr9urg8N70+vP3+/bf79zG4sHR6M61269duYTT?ACd0lEQVR4Xu3a646bQAyG4fg4ByC5/7vtFqlqtsV4UcvaI817Bc8P5wtBeXx38h/KhZ7oiZ7oiZ7oiZ7oiZ7oiZ7oiZ7oiZ7oiZ7oiZ7oid7wvTHQm3xqCPSrJET75uHQW5Hh0E+R4dAqw6G3IqOhty6SHe2T86OLDIh+joh+jYh+aGK0/5hUbkED0h2T13cibs870NR4hRvQP7H8ejxuQVf+SPtVtN9OvgddVt7Tchntdxca+VeVRkF3/l2DQdDK72kfAQ38R1jSo6nxX1VKjq58UIPU6MLH6ZIYjWyFJSu6s91aKSda+azWM6KBnXRJh6bGbkjJ0Mh+3CAVeuGvpT0RWvmrYcmC7nyhSinQ1PhKDTKgK19Ml3B0WflyWILRyEYK0E5OOwhtz93yEYkI1ZPTDkTrEejteJCNMA4Nhx5/xLlRCNqeu+qPOINc0uJel8/h3vMK2p47RHRGXOUSGuUkvIYubAXOM2uPQyMbNZI9MswoYejOVuCMeIlDKxup88xaJQwNbLV4cxeGpsZG1fkU;ShK1uRN3cx6H+buzg0HoOZG52POMb98aob10q1e3MXh1Z7Fs5HvEoYGuxr9uYuDG0MA5CIO3dhaHTfNFZr7uLQ0Nw3jV35oCUQLVRX73VMNeYuDH36668BGQ9LawlGiyx69qZRjbkLRovYp41gzF08WqjyhbpkQBunbaSSAG1sm9mSA/122n5VUqGFkN0aJUPv8+cEkg4t0pvzKcyIFoKV7Xo6tD9/KOnQ/mmXdGh:qpkRdvf7I3Sof3TBsmKtr/ZVdKh/dPu6dD+aaNkQ/unvZZ0aP+0q6RC+8HKjUZDC2EXox88iqN9rB8Rz)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ALM?ABNCAM?ADaUqWo)GFBMVEX::j++acpJ3N+dO798PBz8Oq9bQ9PT2cwewa?ADN0lEQVR4XtXa4a6CMAwF4J52G+:xjdXS6Y7aMcQwvrXNH6cYIuAvJYuXmrpUZD7FpvNbEaz2Vxm4IGezAzMaMaMZmAqs8iMZjlMhtYMVH3gA2eaRfrNy1oZXqJLW:m8l9Nj/oHnxLKq6p4ydJf6j0Wm0nMZq0fPNEpSLJ+/RnmvNluK7ptUv9kO2hQzGeYPRg2O5q37hNt32P2M8t+bq6W0Iza5WiwuAKLm+UEM5HZzEE/0fY15qfZTjDr0m3OdaQ80eVLzNmb8XvzC1nV3maIwM17rn1z8ztNwXyW/fO5KuqkltUs5nODg3bzKmJSdjN+v1N4twibqY+C5qPy0ZKCPYhhs6KSX83rTuGQFjj6Y8zGMbMZ6Ed/JDfmUs002LeCRo3ZKObjZiYbJDTXlDxo2wSpm/HdjFGzSiWHZtSgHU1ZBLNQm++13ebaahj6C5pAnjoKLTZbt3mAzOMO9qitfeIxIzjoQTNWs+xt5f/6mWIOzTZgzhRzf9BwNHE85oTQbONm6uzrbb4005LsMaf9ZvQfLe8VnzdtzG5GaLZxc2cnj7u3TQSKucecRszUOXZXhQcdbmLmX2E1NzEXCc02bK6pDAfdu0/YnE43c9AijuaYTzcXMne1a7BPbmDmcRfsk5POZ7o02Nffv0/YjEvMHFawT25kRhM0Vg;5huYKa1gn4TXG5eYedyJ0NruN9slZh53uRlf1mvGJWYO+jVmH5xyMzMfNsfcb8Y1Zt4r2gSAcPFXM6408z0/hZvlXLPvgDJgVr7nhzhmQWPGkDmNmdGaKeYgr4vNHHT/XlMK+@zbmOGxxyZCX2dWTZjtj2HmlmNHnMi89DJYRRz36FqBmAGSFbV5804s1IsMJcxs7zHDI85qrzzIRCbE5mHgs47riz1B+YyasZIzCI4aE5HzKJBzAF63FzGzZkGXWfpMXM5YFbeJ/3qcXM5Yg7WdsTWV7j+V0rFABvQjMd88+L/J2kCstKzwvsXPZOdLOY0RcyY+UVmJ6cZyPQ8/u7Fr8zMk/KSp4gZrytXnWy3DZcrPcgpyQRmeqNxAvMsJ7N+ICfILGZN9a3ROczqIWOW1fcAmwFd4j+yEVzwdc6J/)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANw?AB8CAM)1mC5d)wFBMVEX:::v:9v:9:/7f6xpbRxZnGklqPDtcX75fz:f/Vxdc?ACXjJj88:/+v+Ge4exnapWUFfdyNwmIib/9P9BO0HNvc7o0+j+8f714fbLt8zu2u7SvtXy3fJjVoz9+P9kW2T89f/jzuTEq7iri5H69P81MTXezuC6s8ObcXXAosNzYpWjfoGbpbCFmKCSYpaToKqbbJ+Gc6GOnqh9a5uXhKy2m7358f+id6X38P2rhK2uibGKmqSlkrWzkLWRjuj2?ANhklEQVR4Xs3ahXbsxhIF0BHzMIOZLjKE8/9/9aoajqS2YJynGfkkN7bT46zsVc3SoJhvlzX5NmjJ/dua3A/a8mbsB+7K8wYdZJqO65oOl7U5NNuSt7VJWmxZSpkv07QJ4IbeMc3rtPY/47yvx713mmz2h3rcB7vRtibaMiBbIy5N/aOaPb+uA/y6bMivJtzd24bcNeImxJoMXFG5iwkloT/8K3eTyWo99sVvv0nTpbdlRjheLsczVS/P89Ye/RDq5tDzwlITEl02Jqq3RW8bE7VVLs1264S6b5KyNJV18KmzzknOOp8bSMEMzooBW2qleGgW3/ilJuRnM+5nPW7SjJsMmjJOOXP+0AWDEpLccuUIMZ7SH/4elfNXM48EarBOwzkL8sqZTTq3ly25rR02b1ty26jb+YJ3TQiXipFck4fDw3BHkPKgWqa6PHOu1lgI0Gw2qcQ/2nA/rGpbrGeTD3dGdMN9XE/Lrq9vXY9QolwBIckHXGLgQu6rAJOAY+LQhISXrQmrcTtdoCcTMNMtu3ocWaZeyLPlgRX8zXJQi6OquTMloC6bDbZZBQ5NKpv37bj3myrbBvWpX9o/RA04lakQeWIeQAPh0ok0+zM1mNjPhFUq4hWaffUzmmT+uTwi/zTOJhWAfducYllkeHrkIbe3RB7TeWQ9wwWqo22JsZyq+rzhzpy5uhk4SogmysXlUbl4brtoXM48rVubKiSm7FdRrEIbKIE0J63ZWnX1Wenfms1mEzaV7fnW0PMWVTi3ss8CZSZ6pKrs4xi6LnK4PDJJ7ZxRs/kMdfsKLobVZMy9@Bd8kbvj8W9Hxm/2Tbbj4qVNVyj59lN9srZGe7d5dF5Z2wq28ZUXlqPbXDVBvSOahcZgOO3mFHNbKgVzAu0bmuVYFdmKngd6H6+BPezdRko9z1rq3EBaJAZOUHx1pcvyrpiUxlWVA3BQpiQDbKbcoq6uLvaWT9ehvtmgYHJYmTaijXYYO95JWxa9qACHXDdlW53+cJ;7jSJZkZNmN6wHLgqbIxbDikP/xF8wxcN7ofL8X90BBUpNoG3Qgf1GUjls4wHI+TIGNckGWTXZZlK2ZFwThYBUGwJ5znL5d+IgCzibf1/KNxYZeVgw1lMConbZTfZB4CPqk+poybpuk04z0h25apzMqyvFRkp24lqOWsY84xC5ePoOKYc9gs6/abDokSAnKvzAi3m0rcmBDBXO2nr8MDH/RE5Zi5POtseadxsEFXnC1l4XTZ/viDcSSa+1nIuJBwo0zi2MjCwKIEy/SacRyyrftY51C40rqFY8O9sg0fBI1snGHGpxOfP72jmsQ5bhIHEueJ4zdw0352KFgFYKPgLnrPaD3e/tC48TQMSRLyx0kZ+RLnEzh6lDiqWnTIcf7Z95a3Bg62RNsCo3BKR7ApXwvxxwkjQtOlPEtL3Fgdv69xHH1JnP98KljgVGCVFgLYrjCbuGwDTtse6HA6T+eZ+PgdKcePjCPdMp36ErdXx2/gTnSeO9Q+JNgBVwqO4qGeKQUOhSPrzU241ZPPSp94In9mRQR6Eqv44TB4ef6fk7i5HLgCZ+giVPZK4R5yG3CYWPMEqci4i4PB/j/foWA58ATO0AUYk8KGTql0w4fhDXBFmxUF1D0fgw5s3dx+7UkXl3VrYzZhXNk2vKkqHI663WRz+V/vLfOeJ05y4MXFZWBrFg4jrqJw3ci6uXHO74CAU8IdlsERzgLSBlx+HDiJ7fhnBXV3QJjtJ8UEQYAGASAHFY4DG6aTE9k6eMqTvG3JCstAqXDDIdlMXKe0Lp7P3Tfb7qXNHHGMO7Gtiyer+2bcHrZhyUZYE9c97eXPxC3kiEerwZXqlMZxwFzjULaTxG56m8GusMHnNr3N4EqbKBxH2h7EGgfciW3t76GAhjtXJKzH3bGNIguHDIdm4U5Fa3+DyKq8c4Uwvq8tnAPbsEDjTso2CjolbL0FtKaMdHD/SphhjntQNrNwg1eNM2W4gC0WjmDok7CB1qvNOlYG24Ow5SNO0l6xbYQYMFMm5klhG8rBJmmv0AbcqDomDWVjkv6C2/NXZsOIa3RBxmEOm/QXwoLGge21F86APRBEoLhksmzl51X6xh20V4a7kn9RamTojhfZ3M8HmyN0dbXrHwdShYw5iPxJvPgjaY6iwXZ6QOghE47gXKhzpzc4BCJs22UyXphoVZgVE+iqsUo9qUop1wnpQBMB7bTx03IELkllrgeBbGBcliLzTOKytJgpYLx0895kyL8uaU6ZFluiR7wuHCA3HAPHnjzs46cZRtWMzfepcXN/KsrhLzXuYiIF1C0zlgSMm8hPTadC4jEumErVdLpkHFQ4AXC3JBrFoJ0N5/PDPf7iKRxejY/k+7p7NZ8IyNWVqGZ2IyJwxAgZZ9JuBC6kucSg9Yxz5ywYD/bssMq4K9FUwNHRJqHqjYs0HnHcbxkHGucMNCTw/UDj7nzfVziCcqIx10/agNualWPlUIRcm81G/INtCx7RCWiAnQGHaFwp14IgHpYVccswWDIoAU4mJBBCMqbZa7I95rQRUEhPuNtU5hE2wiHZjYnTdXM3myHxhsOFbV/zJyWOhYQjYtxj5ZBMMlYVuGV48wxHUkZxmLYhW8jqaKRSVbfecNGcHdfahm4ZkkNnIWCOs1BhnutS8Rac7SPhZoBV2HrDyQV8lduu5IRSoDm2wNm2vSVzstiwjXRk23DpJuiWVH65RX3duALNsYU3pSKF7N6wDiGyw79QPri/km5pASdswKFqHI3bCZwr5hNhXFBse0o62IA7Ky9VmRRplp4XNU5vJKVtyDRjb7lw2cZxuV/aYrpcVtuQM+JAy3G6bsDBZuJIxMGkInDXciUA7dw64EBrxg2HbKN+Z+BcUTBXZKNx4+K2speRh8D27O5OH7mHoBHQodgcQikWbDzsCOc7sNUOvP5xbFM62EgGW1EnqBKXBhW23nCWiYNO0m5k3cinaGoJx3jjv8WPC7HQpfOnXAVZPzrQSjjUjjbE2mYjQpvLXCwGDo9Kr+YJ6vl1qFvtoCOICkad+pFgJOMQTegcZ+WrblnFAK43Wwwb41SdaJQxTehybD7sZOXskUqdogdcbEThOKpOtpCJ0tj8PWxcO4qUK1ts0HrBgQYdgrtY1M1WItExlQ1hNUXZ4gbC2XFVUaVjkbBp2oJgDkPFXza5ZG8sXQkB0AfOm4/dugEHnQjzmMBDTkf1Pkfn+UM82HrA3fEZNELd6gLcgmyIlJmJCwGkD5w7nstXiGGrCXAMlCnVybD1i0MuSBcIXNyGG5VwXz7V5Is8etfTrN8/1+T3rqXXhIOtCecQznG0bfWpNquWghw+1+bQMW5KOKsdxyGbnvvdv+txf7uNOPtrPe6r3S0uPR4npkOp8z41xGss3LvPDXnXOc6HrR0nS3fxqTHbQX2iz43Zdo1bHo0TQJpVvjTjPjbg/mzG/dkpbky6w5E4AbQde/apJU+17yvcfm7JbZe4A+Eej8JhM7L4rqcOz4ieZr7bNcMu1svA13dGvuqGuOPpMg2OwYH3RhcoIULpLjnRLWHNcrDTBZrpdfxZSXcdufCocX/EbIlEuj5fcjZTmPgRy0Hl+dQtDi18whiMbnc4j2xj6wgcgFgG9gU040iHadQzcJLyC5Oi9Wz3tdW4f7udUJ6OwinfGsuZA1p+OZnLK3B7bftVdVbFAnjR5fYrbd9bsiyWOPS8yLaLPPkhbF0+6qOclQezycJCKrYuv/eAkwXEpnLFVww2jnG6tjtjtuEoZ5JvIYs25ND5FnMicO06hdvoZeCLul2QJ9bc6OgF/vuCUXGuyyujsCYur6zTDw7LwK0tdbgSYmNpTL4RKNgsjKm1YUP2XW8xM4Fr10n7FkNK7DFdN78Xkl20NCiZBVyUz4amDflX66JObDta5uaYqltxmE22hKMQStI4Cod10GMAcH9pXGTV4rAO/tUBzZ2mlEw6j8A9ocvhtrkQW+JidN11AXeLLtd02XzX5RZzTTbfLSxFjbjCZEG7aMeg6ZUhXnwvLgdywI0wWYywNanQjfJJpwPdnX8HaaOO3VgGEkaUK+c4snAxJcFyAVxxUylpwJUyO8EWs13HbhROHxDEQofLZ+BilI5xQodN/wC46uCDZ7x3ZrZZOeaxkMJlwy7MqBzpKiqHnKNy0FX7hHmE0qk1DUCmAWfnYw44Y8wBUzvmwD9F9Yo+gPPZclSItulPF2dLZH3UAv3OmC1PpFNE0Ix1Lqq/Ry+vc8hfrQu0uc6d3IeYOxSrzpYfWCPAjB0K0rJDOZMQunxvKU6o/LfxNuwtuq6FGHvLOpvRdc8ZgVvgVDCCmmEg5OuFbeDspsnCPBWcP2woTPOVwXIxK7jM81zLQ4Rk0EcYgCG1qLJt8kGJYLv1J07iVbaFcRLvg7fHmGKsCcCYvMhVyAXuUBqXgf2gv2BO2UIHxgXkzbPhFqSq268ek98BcSXLAPTZTSVu87XykYB5b9lnMGc8mQDsYFbw1N84I+aNc6/JZ/s3RrBOxATp4FlBH1l/agkt0x085ekpH0/4fK73RM24qIsnq/0vB2awDHTwTLy34Dxake8OIC9+m2ExeA1J6nEJHF2/h9L/nPJx0JYTvkH0Pw/X1nfB7YMF)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL4?ABaBAM?AD0j/E6)GFBMVEX::yQmNChfJfX1+Q@C4uLjV1dXq6uomAbS5?ABZ0lEQVR4Xu3aMWvDMBAF4GuJpbX9C/0FgXfZDYoze5DTVUNMVi3N72+tUI9FB30Qt3qz+TDo/DiB5dUSWfL8Zsj2/RepzdO3L9X5Zb/5zW/+cVyA2LN89DIlCXuij/7v+s2/p/mP2D/N77BEE9fHgewjUc+3Q0/1Df3TfM75sudz09+XpsfoN5+4vtPE9e9Na/fnscr3gCZmP3wAmom+dAEA9jRfdlzfBarfAZpJ+9s6PzzfFZ7oayL3zz/dP29r/9Tdxm3+HNbzrbyNG3w/B8D;zf506LjOLL8okOE5us575j+KEL1h6vFv8fiAxqJ/hFLpsTy5RbZ93cXub6In/qN9qcbrgbfnQrQ7et9QN/rfZzKEmfyAT1X+zjki2k+SztDK/fbACiA0XK+c6yffx/Lyxjnx8X6+b9AE3F/Lo8afT8H8HwXg2E/tPabj1gyJJLvVp3l65CJ/ePPeSv7Z/Ob/1Pa/wmfEePG6VyNvUw)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AIw?ACKCAM?ABPR1IR)MFBMVEXg4OD:/+qufHN0+y8xu729/mMoeyWqO3c3+/x8fGfsO/r6+vl5eXn6vqEmurt8PsdAqXn?AEVUlEQVR4Xr2cC27jMAxESX38TdL733bThUs4xEIL8aniAYTX4XhcKpakZlfbf2p3pbfa2FKi6+unlmVZ10M6q6pV/VzpSNJVp2h2MKUT5lSr/MnSu1QVrQ4mSWep1Wowa0QYFdXkxM3RPm2uSb3CqKg+HUy0T/ZXXU1KuYvloSqmrsFE+/RFhfkLk9Eq1qey3IVJ/cKo2BN5WybWp3W5WEKr7BeMlo+nIKUc6dP2prgvUnrXuGCeI/qU3jBAGIPRg/fpua7LVRHjqcE4C5vEPUsVg4nY97zB6PIi5pOq9VgvmtAK9Q5TXuSxlFO3400DhVEZElii6bikWcPCGIweTJrtG+aqo9t0D73B8JdcTkYTCTwHQy38DXNcLEdIGIPhFi4/0hz9Td49jH7xPl2VemVVD6OamDTJaKLCGAy3cLlogDAGgy2c07v+oqQSCDwPk9k/EskqBwLPw9QXkqZ8cyBhDIZbOGNhDIb/j2V9igWeh9GV9SnSpd3BjLJwBsJ4GG5hIIyH4S+o0m9fbcAwC2cgjIfhYwIQxsPwMaF00p8NGGzh3AlfGzDcwkAYD8PHhAyEcTB8TACB52H4m?Cz8GAMQELYzDcwlwYgwEWJqUtGD4mgMBzMLMtrA2Y2RY+GzDTLVzbMGhM4IFnMPMtXBsw0MJcGA8DxgQeeB4GjAk88AxmvoX3Bsx0C2sHTGBMoIFnMNMtXDtgwJgAhDGYuRauHTBgTACBZzBzLVw7YMCkC4QxmLkW3gMwvzYmaBtmqoX3DhgwJkBhPMyESfcMw2wOpkyAmWrhOExxMHmqgb2FJ/eprVv6gBkiTRxmczBlZgL7eo6HecxtE39rN4cEgxk78vNHm1cMpv7Oe3sPweRAz?LG8zUcaUGYDY8rfAhzurA9uXjLR8P+ODPZ39uYVEwUhIL84ly/s4VH1T4nl57I61M2+2cv8V4NmDmb762YXjgcQsLCLzhFhYQeMMtLCDwhltYQOCxasHwwOMWFhB4wy0sIPBgVfCD6cxf/HngcQsLCDxadcbnB/z7GR54vE8yVJjCLCxDAy+xqJGRgZdTRhaWkYFn7EELy8DAy/07OE2YRAKv2N4W/tCUHz5I7yrEwkIDz38PTFJYaOD5L6UzsLBQYfw35AVYWHDg+a/rwcwiJPB8l2ifhAeedQn3SXjgWZdwn4QHnnUp1qeHh+GBJ8mqhKNGeOBZl67TTSk8W8q4Mzx2CC0LPYZWxp1CK1ELy6BzX8ZiogYsLCDw8MlFb2EBgYfPdHoLy9zTrm0Ly5CtqmwsscFvNxgeePJ0J6SDfZIxZ8eTnR0nfZIRI23V/MOykD7JP65qCbzqngYT6/PDYHThNzE4mBTaHpGbMC9wR0W5WKJfEJ+q+JYVk3j7hiFbTBfMRu6fMfO9YYIRbquMu5mnLEv0ITB9Rb/QnUU2oW63Ocf07b4Mp3zCrMEo1yXsPLOw1NcdZonfc5VuMJFui+of0SaCRwqX7V8)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKQA6AMAIgABEQECEQH/xAB3?E?gMBAQE)))?QIDBAUGBwgQ?EDAgIFBwkEBgs))BAgMEEQUSBhMhIjEHMkFRUmGRFBUjU3FygaGxQpLB0QgkM2JjohYlJidDRIKys+HwEQEBAQADAQ)))?ARESITEC/9oADAM?AEBAgEAPwD7+AQ?ICUlcxw9KNLcG0SofLsXmyZr6mFm9JI7qY38eB8grv0hKvXf1dgseo/jyOz/wAiNA+9ZlB8u0T5bMBx6pZQYrCuFVUio2N73I+Fzvftu/FPifUbbOIDMpbMVspAQyAqjibkiSCLi4E3JK3FwLArcXAsCtxcYLArcXGCwIuTc.QSQ)ACACAkIBXoJS/NGkK13KRykOwxkv6vrnU0HZjghVc7/bxcfccH0A0SwikbRwYXBNs35qiNssj/AHnPT6bD4xyXt/vKX21n0cfoxvAJfFOVfktwqnwubSXR2BKSWl36yljvkcxV/aM7Kt6U4WPS8i2lNRj+jT6CueslXhTmw6x32onJ6P47FPX6Wp/ZfGW2/wAnP/xuPk/6PqK2XHOrLB9XhD7mUcWKu4BGK3L3MaqEXYSYvci5W4uMTi1xcpcZicMXuLmPMLjEMlxcx5ibk4he5NzHclFIwZLkopRFISVuZW8FIsGVCSEJIEgAg?BBVSSFCUFegkjoJWfnnkziezlHXM1eNXxRepx+hm8DA2mp2P1jImNf28qX+hmbwCXhOVDSqfR3CJKXze6op8ThlpvKmvy6t7m5d9uXvum0+W8k+lTdHMSnofIpKyTFHRRRNhVL5rr2ujePu+lGA0+kuCVWE1CJ6VvoXr9iVvMd4/I+dck2g0+GVdVjeLwqyoge+mpI3J2VyySfgnxCH1xFWybLdfcQq7CLlbkpxFwilLhFJTxXIuVuRckxbMLlLkK5CcLF7i5iWQjWOJxSs9xcwaxxKSOGKthFJRTXSV3UWSZ3UhFGyhrSc93tLJOvUY1XapWjLHM5nehtMe16XapoEtVb8dpUdEGvHUJwebCKlr9B?ACpBJxcaZpE50XmOSFjdut16Kt+rLsUlZ1yF4Hk3VGntM1ZH09JVNb9iNVRyp4odXBMehxqmdKxixTROyVEDucxwS6hdvAqnAsn?V2FlKKSlFymYm5jcSvIXIuQc7G8cwzR7DpcUxadIKWJP9TnLzY428XOd0IhK2Olci5ytHcepdJcJhxijhnp4ZnSM1NUxI5mOhkdC9r2tc6yo5i9J0XO8CRLnlACYpUgAljoSQSFUkkElaJJIJK0CSCSoF2SOjXYuwoWZG967qfEgbcczX7OnqBWOna3a7iAMhy6nSHBqSsjoJqyNtTIvMzJu+/0N+J1FRLL8zyWIaBYBX4iyuyOi3s1RC1VySX+bV9gS9FJiWHRRulkq4WxtS+bWN/M8poi5MQxvG8Wpmq3D53oyLZZHu7af+6ToJoFovmR3kq27Oserfqd+CCmooG09LG2KJibkbE2ISlMfFTIUjTapdQKlFLmNxK8UKFjXmq6WnkghnmZFJUvWOnY9yNdI/Kr8jNu8uVqrZOglkizl2LsXr2cVPhlDyhVemOKUuC6TYfQVWBY7US0MeHxZlr6GTbHHJNmXM1VRy76InSqKlrDlJg0zZpfVT0qYvvtpv6LyYXvUzXNtr46pn7zs232X3T6xhei+DU1VHjsmF0sOPSxN8rqoo25ta5vpVavRdb3VNqj1F23J1jW0L0aq9EsF8z1OIOr445ZFpNxjEihc5XNZuNarnfac53Suw9AWcu8QSnzoFjG+eJnOcl+7aUSui7KuXwJUraSMujU6jTTEmdhfEt5xh7Li2sdbdkLI1Oo1PONP1O8CfOdN+94EKtZtesMrmStzszL7U2nTgkp6huaNUcnzT2nnJno6Rzui6lGTSQuR8Tla4rR6xIo+ya70TO5OpTUosajfaOq3HcM6cF9vUbjt965N5OKW2laKF2sc9d1LmaOm7fgbDWo1OGwqMLKZOL/AzoiWt0)BVzdhi1a3M4Aw6pesJF3mYgCLJYhSxVQmKKY3GRTG4tGT5Yzyumeh9NpRSRzRPdS43h+aXB8RjcrXQzbHdGxWOVqI5FTgeqKksnsx5zQ7A8TwXDpvPVatZidfM6srMquWCKWS2aOma9boz6rtsnBPRLwUFJHoyNznEpzpifI2Nu8poS1L5L/Zb3FZZHSOzeBiUhFLkXBlZR1MnNjW3fs+pKlYrkZjZ821nY+aFVw6t9X80DHWvmIVxm8hrfUu8Ci0VZ6h/;1VhVSiqHKt+pSlyLQVTZo8TqaJ24uaPsO4fA1URXLupfqRDq0WA1E9n1K6qP8AmX4dBUdqhxOmruYuWRP8NePw6zeNaloqajblgYnvLtcvxNkg))?BBCkkKEqKUUylFQleVhUpYyqhWxZklYzn10u8kSfZ2/E6VjgyyZ5HO71C2oUNY6RyMam1Stzfoo0yazpdw9gRWekpo4l4Zn25y/gb6Gq1crk7jbbwv0BSpQlAiFkQhSlibE2JI1V4mqX9Zl9931NyjwaqqrPemqi7TuK+xDvwYZSwSOmy55XKrszttvYbgQ1KTDaWjT0bN/wBY7abYJI)))?IJAFbFVLkWJWlY1KKZVIsFpWvKnon+6q/I8zmPWOZmare5Tx77te5vTdUJ1bkyZjtQNTUx+6n0OBmO7RPSSmjd02yr8Acmaxnhk+y74KYgQra3kQshqRzOZ3obDZo3dIVtZLEkI5vaTxJunWQqk)))))AIJAFbCxICVbHlMYgWnrX9mTfb+PzPW2OdjFCtZTbieli3md6dQNeUzHQwqrbHIsEi7knNvwR3/ZzFvcXJTr1ypt7wcahxjVtSGrRXM4NkTnJ3L1odaOaGZPQyNf7F2+HEhGsgAC?ALr1k3XrIAE5ndak6x/aXxKgC+tk7SmWne9z1Ryraxrmam56+wDb)))))AefxnB1crqulbt4yRp/uQ88fQTlYhgcFWqyxLqpu7mr7UA8kSir1m1VYbWUirrY1y9tvN8TUAuk03rHeKl0q6r1z/vKYQBseXVnr3+JPnCt9c7xNYAbaYnXetXwQumLV1+en3UNEJxQD2TY5MrXZV4J8ydXJ2VNyH9jH7rfoXA0Mj+yvgZaZFzrstsNo))))))ADXloKOb9pAzwspsADQXBcN9Qniv5lVwPDfVfzKdEAcpdH8O7L/ALxjdo/QfxPvJ+R2QBwX4DRW4yfeT8jUlwqmZzXP8U/I9SAKxp6NnuonyL))?f:Z%iVBORw0KG;)NSUhEUg?ALQ)xCAM?ABEbnNr)flBMVEX::n:rD8efE8uii0MZ3pZvH9evq:q+7OLL+e/K+O7N+/HQ/vT9:7e:jY:ZEcmjG9OrP/fPM+vD6:7b:fx:zR:Xh:j3:3F8+mCsKbI9uzV:a149mNu7GXxbvu:tsmpBSgHZfjYPO/PL0:zk:mr2c/J9+3Ac952?AFiUlEQVR4Xs3Z13bjIBAGYEC1917cW97/BVcIIzwQTnLWym7mLol1+IJ/GAmhLcvemeZgWYM5l+va6KXKGrfNNbgmczlOjb4q/DB1gDJGO4uX8qkIufo/OkVwzcOpanHHALvhnMp1svYz30ZRfU/ywh+z3iCsDC+Y2vutnBH2KjhwQL5PU4v62moKr0HheQ1HdTkhyE55WUgpcwUo6KTPRr/Ip9iJKPlxSfVlos6Jm8D7sAV6vtwLmrhDyJUF+cA5ZRIWvp0ZBvGe5IBejJCYHxVtrQBbRheZ/eFdmxjfZjJmH9Sjo7qdrhBNL5/aUkFjU/xQxmHgjyu6TAhh6GGFuQp6BZyRXL09ekFY3Wk87XP6BRrdaD4kdJEndwVtX15+iOj3M4eKoeuRcLQ+Ai/RGWRzndFBp/YYAbMWXeIqLHwZXeEIooVGRSeEF5R9P9IVi+SyCk/pN9DO85sWaL8IFfQ+1aJzItAvob7Isr0+0g2baBqOQ/oNdHSMGxkdhLED0KdTqqJZpn2fALQIdS7JLvpI++M8ZkUnOpeElmWdVTSi6DAPMg2aF0SXFV+IoEAIdhCG9cEp2dqvl69D1PnAO4rrmhZA13XHd3gn8b6Lpru7raDBcjtA2U4f6fuy9mmi8WsvyfUrIgKb/DfQA0XzfVJBI117MfWbYTWno4mdEqGHMF/wF8v4++iTaVNBFwbeKKH9pIYtRNdakFzByNMxCLSLtkGf9zxkHe/9vPq8/mJG4UIGINYZaDMEIdwCfTbxKrgtrX9F90m5CtzPs2uDQUvQWtgm24ERd2+gAVlU7X3QiTZkMgj1oI10dIOR5iMKWYo2QDOyQPtzop9oTlbCe5Fai+B0DmgtSzs8gg9Z76MvcqM4jnbGzGOnn5McthbBud0j0Fr4OrSE7H20hWQ0NS9oD8nlfpZLDDg1JfIqM9palnV4WWWPn0BnPBwqGn3WXnYg0scYg9biKZuH+wNoZ5lnDdoCl8ljouXOshKcivfDH0dTM0RrgOo/wu7hBSegaPluCf0MmmjR7ifzJUV6uopQ9zM6rDB96vhhNCFaNBSysqVIN0HLNfU84H9GwywMukiHRbMO+UvQptJe9nKki4Jrwl+C3oH2AlrL4Rlpb21K4y9BY9he4C/4Ax5mmNL4JWjxRH2Qpx6vz/8Tw9yNX7J7oIO4EI54QutJS/AckZ9ZlOBhC/979E7KpqVGOusZxhOnQ6Aj/ns0lgZXIz2jnQXDzuFmdPS/0egERrA/iXRvJNRSz+jlLq8Fm4wqO+jRzftoOMSgRLrkh4cBz2M2zmgMH373Eiw/a9FdvxF6B9rL/jXS0XJMm/XGuGCIYSwHeUc4nSelyWrRHtkIjUF7uYBtez0GpO1lJGRGzyPeYHDTXEq0Fp2QrdDo9OLEcCO7s0gb5I5Qyc9pw4gCXA3tkWrRMdkOfXhJxA5+5w4/D28QunN0wgiCdsbADNDAvCF6B462QX+8sUgvlyb8hUnLDIOwWSAbGnRCtkRjMYYJI42iZ6QJSZLxifaPPAfKAaRrpSo6YorC2BQND/Rhb27geatB88EUCIPD6NPB3IutG3RV7OCqyPqN0XvABXfXlXTeOqMLcZmmzgIjbgUYut8KDRcPbBj4I5PQ2YQQnGr1tFaL9hP+zuVtdA684ACmHCW00bdg1al1ziH62DYc3XcrGpdvokVHUfuFlxkSugO5Us02erxiouPaofoaxet7xO5d9F6NNK+GpUOoP2DHlutkQ4x4JWf4NcXwN7a3d9EPNdK8WhkdSo0J1oBBs7wszxFhQdFBuWDYnWITH99F52qkeXUyOpYufY2I5Uobfzqno52Whx+HrRGKZi/13kC/X/hxsKw5F5Zp8wvcuTADdMeqmZq4XjVzRX8N+AOuHBJq4NDiuw)BJRU5Er@ggg==!C%iVBORw0KG;)NSUhEUg?AMg?ABJCAM?ABPapnR)MFBMVEX::9amn+z879o6Lx:rj:T/MTH95OP/9PT8ubj/?Dj0cTR/+3b6drx9O/W9ORYTpHN?AEfklEQVR4XtWa23KzOgyF0cFHkvT933Y3wa4QQYPr/RPqdUenhnwjLUUSmYYRs6tinqaQiACAvoVhIAp3q3KOHwmyFsQhMITi5pgf5PNWfoho3ETMHARDBGNxOGZOeU+kAqgOMLyFD4jC3+TIuAZRAWT2u+iewkUcjr8vJa+Alg+PSAQ52iCPbIniBT53yyVUjHDALiCYTflwFQcpSyiZFqH8F0g0R/TCcQjinOOV16HKX0HiKocKCDTB18sC/yVOCwk+XberZ/Vnwt+AxGIHd1vfLIDUuw+IdUBQAtJxSNstVhL6oNVZZ1bqSUcqkSqhkkLuPwhSL4ttYzu9HEKpZpowf84iTmc7TD1ej9IjsMq5HKTDdq5Uu+fTEgG8qh2lWAF4Ub0MiPM832/O8XL9OuLLiSOL0K9AgiSQAYI7cwJv5gTAdbSdThFauqdJnaF4nO19XrdB3hs69HkrCG8pwuwrCDMjGF2Dne19XhcQjZjf5p0AeUc+bUCYudzb7fYPEA+yferyugnij8MhoZN7O2YuaTszP4RDRKd43W4TCkd9VFJjCxHIdeQfEHeTdhT5sR/DeIrXBUTHitSYIBwwF+ZINURUQJ4cTkCkkgPGZ7mrIU1lU+LcnVYq1EAbpQ6vC2K+qz9XDj+r707d5jxju/JF5YC707cmSdfcIGrxup1ZBVzTwdf+V04J3eKmAgA1VYx7C/KBsMXrZvFNe2MCGN3qvC4L9ebelxAKSNq.AtIaPG6NdnAbpTibu3TIOWvRf6+sbOA6LWBLd/mdVcDonvfec82YToGkTgJogkScoPgf/Xwu3XsfabxqjDUI8JB+4/ll9zta/4WFtWn4Eahxes3xZF8Vk7X1D5ajbLXHCFXgfHYg2y3ZaeEcEiZz/BlPJ61oZLEbw2I0laZg5M9sTbOxsyq2ixCTFTQhGP7hBzZ6c9bj/iwCaz0Im7RDwi8FHrHXL2bOzIZPKw0lAobkMTRSQDVZOa7utj2veTBFypJAXDrFbGHH3njAOtlYersYv/Jbo5CiZ6E76DKp7cSAMcB6e/hNQjYGPptxWE7BGGzLZTqSyfM6y17eA8pKmjVDpmLe3swizZDfw+vsz5ssl5eN7aDeCDsWHueM68frYgdiwlpLcTYuWU7a15vX8eG9i3bwYET5vWmJ6h1XfsB/8ndXBdIf96et5vrAGl37RVe7wexvY7Xet12YejYqF/odfu/U6NrJx3uxlPhBK8b8YMO117rdVmr6OkpjeR14RaSKFv0Tte2nwr/lt7pgY9WrzbYKQikYLn2Qq+L9JYqeOl25zsv5sTy3gqNbvyDXu/9vY4WfsLr/fTtIwn2e91umPvp+0nwb3pdxBoFwQL5q163UchvIYBSOMHrZ/8Q97XMInhKZkRLnV4fTLbXB5M9HI8lu/kbTHYdHU66vY5+zMyyB57BZM87Y8j+oe+YAZF+geWt10gOcYvqUpleAul6aCxfGO/XB+CwRrUBODrmG4/TmCDTBGsMiqM1V1J1vVDgNJSYy0yzCJGIEH8H8R86J7+C+8H8W)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AL4?AB/C)AB0qydQ?ADaUlEQVR4Xu3aPY6jMBiA4b2YSw7AHbiCr+BuWqppOQC1W2o6KjoqChMhK0JW/Lewwy6bITNjQhI+S34L6qdAnw32L+t1HvGNVvIihBjOnPcnxrgAzTdaX3HXnUc+JK5acb/vcjB/8g7DxO3YHfFD+aJj++qO5Au2uwP5knnN537zO7/5LPADP/ADP/ADP/Cf/1Wi5JiXfCOnfOVr6TPfSK/52m++8oMf+A1NCRojJK+849cELVHf+HWMPOa3MfKZT5HX/MRrfoOu82zyVGgOl9VU6xe/QHONl8sWRXPsQH7gN37zE0pTkiDq3+Txf+6HVTfsefbvODPv9vsYLZECOn9dkZEYxSSlZRs+1V/LD/zAD/zAN0YruVx76vgFNN9c3dnr2LoBKN8IfmIOXUDy9Ym5xSHyjauedRD5gjkHkd8/mG/kwNumKmn+/oaTOIpw+Uw+28tXgrOmLos8eyMjF61LAfJ5kaUEJzFyqITG1+9oQxgan6AtRY/kd/v5FdrWI/l8Px8fyJf7+dFxfGH389FR/E7YI/n9feie82EQ4qKs/ZFfU0oIyYpn8IUb99TzD/BIllOL94pvzGdjGqO57Al8yR24q9Z8o+Y+G9FS/QS+FP1f7vk214WvlQOfPoO/bjtfq6/5CckojSHzjfqazxqakQRB5utv+MV9L0+c5nle0KP5DfqJb8bWQMKmqqP5dALgltyanEarqREAmx/jmwfcMwAyv5wB9/IxIUfy23gPv22nR/5wvnLlszqdxkhR54SW2/hL6aP52pm/bju/fTBf25fyGX4kX2n7In47n2hmu/lKaa2NMXbqVfxqXupyB74b98X83IG/cNdekHzlwAXBr29Ozr3iAyaPv/waec0nEPm9I79NEUT++Ts+rqqqYaypiixGEPmny4rv0LP5vateSIh84WTnQkuQfMXZuuU32EXpj5XSAOUr0f/jDmIES/Vff+iQ+evg8AM/8CO/+dhvfgWMH23SYwOMj7foU22B8SsXdpRgkmZFby00vkxvcePR+57RoqwbxoWxcwfytb3Nl2USoYmbZvnEbftByOsA8LVd8R2CwtcWJN98a54zxliYfGv0De6cXQLKnzRfc+HzHQv87QV+4CvrNV97zVcWFt+qbWeZ0Ph60+kgOL5VrlyYfGv0zD223xRtmukE6q2r)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AIw?ACfCAM)cXME5)YFBMVEX::b:Px:rg:TW:Hl:bJ/+zt:j6:2e/97Q/+/o:e:+ld9cKy/+WA/tT0:v3:xI3atT67hRxJ5lyqk8wJQuuot60bR24r4VrXozZlWQ2sGZ79J7p5gBFA1ImBKh?ANKElEQVR4Xu3c6XLjuA4FYHPTvnpdsr3/W14ABA2KljVKZ+x03ZrTneq/3xxCFGUrs/m/TXGfX6f8Pqd4nN+kjOMIP7+nEUiSX+DEknnOU2ZhFWUYB/w7LedFF+vEMsRJNM/3iEUo85xnXbV3VKHMcp5SjUQoqUVzRPNvVVOsSkLJ81zn4vnzasBfrE/aC0kkWv+5RlWAeWjBspcteiCKJJTzfUx52e/3l4+ysQ81zElU0otYRPMH1ah+f9xDDofD+XxeaEBUSTGJpa6Z8+1quvZ0PEYYWuQxhBgSr0otgqknAQ6EPGsweX88nRLMXKhsYc5ZiOI17qbRrFmHAcoDzMCIgX5II0kwmjEc51yEGdZiNu1DDBIIwkGVhC3JxEQYt7oZScmYY4QBwpBGsyhOivEQsnBokNc3szlKNQfSYOP6FmBAGKPD0qWYHCMKpZTBIIfqoVJXcNoUw1sEiwZRkWgBgwzBlG0vGL0SU6ZDk/swJumIh3m+mQjTXt+ub1/X61qMrNO2L92FMYcJhjuKRXOYsMcwJ9u+vW2R135xzasxDQ7XeLlVU4ftgkl8G2YRYlgTbzOMqZ2BbK8ll/sVhlgLZjl02e4C5kCTZ5wzOJAskmW7v6iQKONrK2v7t9Dtl4K4GjzhrrASQxrGoMVQ7XKj4XPKHWaYYjBvZb4rPcYow5hhVTfU83aCYRDvpJFHqkkxeYQ5wuwCSOsvsBiqd+XFXTAmaIxRIFGKMFiP9zzCy?TRlmlVNlae92B+ws7jjCb1c2wxkIUxmBocCDrMMbgzNgMct0NgLEQU0Oo0WUMTlRBE8gYSFXZymK4Hr7RyBBHx/4pRkGqrKqyBuIxFbCUg9D4F5g1mFPQVBCgVIRRQDEJJn4iIgxrHK5uhQELNTN+VZCAgWaWMZCRMaxhDIiAYnGtCOPyWjBsoUwxhjDRMn0PsxGM12QQBAnG0JkgbabgjBOMxYCFm8GKzbeaGfSAGNYQxDdjGeMEk+shxYweo+n+GM0MgGFmqkw54FCpKzADY1hThaQYn7QYGmLGgDrDCCaDWNwrcv09DGvwcqjwx2ICppaRmcEMhAH1tJmCribrzDcwPDOsgfGbYlSMSReJMVrfYd6up90Ns26ZxlEwnpOFEAb3PrcGoweH6BumbI+nK2J4ZpabEQ4UH2Foj5luw0BhS4rZbARTA9lZ2mdCMj/A7puY9hSiECIYttRzlrDUEaZiDAdkjMm/galrW7btFo7nNsE4yDwmnjvEIDppBjHm283UENz+s9Javh0QBinSTGoRDOQhpv4TjFPAsRDBGMFgLzrCbO4wtccQsWlI6jGEXoEJEyhHahNFLPJwKMVEt5QhtKusIkWWkcBCBCO3tHlVwRit5UgtEUrOFLEIZgPNjPMYtR4jzUTn+6gbpsxNb9oucDxGJc38FOOMi5Yo2e7Eki51juh/xBRrMHqCcQkmPlItYoyCZCF0s6V2aZWXMBxiyqNYCDg4sUUaTjGFRjVhKk5mFfyRixE1EmGlmDHCOHEkvTwqmM8RKQabiTHjEoYjGKlGLiO06AWLNCOY0xVy2rYWLIx5UMwmTXxeEw45Vli4XMJowBij7PHqc+qBVkeYFd8ahmN+zkkxvL0sYoq4me01pLXWeAxk+esWsaQDHO0wixbGgNTPDB5VbSaYU1cZXvP0gx9pe66YQTDkgD+ySEJ52Ex9w7R4AOBq7jH7N8jn+4cTTJTwaKinGDlPiWUBkwuG0hJmGzC5YD7A372fP9+VYJIb1PR7EVKmxSzc+3GAV2G0Rgzl/TNLMcV0ZpwPYeSSXB7eMezAtYVUDaY7egyegY2Jr4n94fDREeDj8wFGDzkijKIYwriwjRerMBDa69hCaTN7u+caBzGmvFwOn5/vCDh32MQ9Jhz3MMoYbua+mGWMrSyd9PpTuJoiDIociCqAZZ+0UB+PMFrOMwlGKCuawWVqg6XMZjCXt8/z+/sUU8zNjMMQB2SMYcoiZuBmCLNjyq7JBOMEcyg/3mvCdClG+WV2NW3lVQh4lEMfaL6JYUvfVDEmzIy5HBBCA1xPMUUrKRsbntyhXrxM6zyv/aFowYIYGjnHD3HXkO2uBwyf7HkeEXPxV/dnN9A9FuplTH+z7Ha7tsxCFMRQM8UqTO1uGD8xcjUlmO5yPrydqRk3LmCA03wPIxfjA0zajOpLY1z1mdEAY6nzGNZU/siIlWqtCVOswUDwRJU1fbvbngKmUgnm9Pa2v7wTpjwTBkMgwew4bUchEW3k1Azl0fRqiG8Gk2GqjkitNY7nFzA0v2+wPudDsxHM5oYpGQIYTs+YpgGMMw8xMi9ooZlRVkUXJJZiTR3iMAoxIe/vsxgChZSdv3dAM5DVGG4mxSBigjleFGMOHwkmgxY8KKpmGTOoBmMtgsIqAWWyTPiDtBSjsgucaOBmCWt11lBrjMHzSm6cy0TTRph6BmPfQz7KThd3GHk6mMMYQzdLfN8hTzAjnllqq5Tp0LHF7MqSME3mjFF1EaoUjOR8/shG+cxAceRhPb+lxh+CybGYW08xrrnDdB4zTjBFigGO0YxBRsBwISlGjtcLGNNHGAgMxTymuMMczlUuxTCGOTGm9hh5JHuIwWIY0y5jChNRCHM4qJqLSTVONCggjDT2ANO0sx;/x6zSSyQPkeKhCls0YwJ1SQzIxso+lzVkYUxPWMawuSMkWzOTBHM3iHB0sSgYfp12UjDmk8iD0+bBNPvOGFkCPsQo6qq6z4+2EKY0jz4vJY4gpE8wJBFMP0yRt5WKZr3YNn3iOFvPwQTNIKp/wGj+lYwaFnCcDJd4GZnD97CGKssxGPCSqWYehHTtG2E2aElxjjEjJNa4A/uLmWZld7CmKoiUPSCCIUxPMWYB5jN2E3u2n3nQ5jK1pAE4xfoEGVPGJVBCOMpk5f18htGLm3kpZiWMUwp8S8Gvx9Zhdl7jK0YY6kYwUAWMcM8pi1XYAZMIRQOFCMY4+qfYTgg68vbSQ8sbgGzv6XkgwNj0nUCl8yMqm8YPYuZgPoGQsuPE6fnMPtJjmXVNPiEQ5hwaScYP7sg7bf4H5wRltY8YOS5KcZYW1n6QFhD5CtgxkC/xdRy3HdAgSTNIIUxuc4RiBt1u6VYwoTWH2MqiHGGMHmK0Ziyv1xuFshWMabiZqQYFHkMEJ0yhm+A+Y8x0CpWTxvpANvMMaTPGFNVCWYQDESZbEvp5zBl2d9hMogxMxj/KlHWlw5at5WqtwGzsymmfoApPUYlGArC6gZIMsWlMcrkmBGTfts7dADYX/pO5zlgOIYwoJGZkWWKMKonS0tvdqWY8Eg4akckSImOQWY3BCyMmYnhZgQDIYyOMWF++0UMfzfoVFM2NaIxsxjdnU6J5HQ6eQxkMsD6HrOlNN0yxhGG8xADffUnDjvoRzEmzEz+AONHpoV/YCxWYhzumAlm9BiNmDRbKxg134xBjPUjU/p/phjpH0S4CLfI7CYDPI9pqwxCM6MUzQxZ+N1dUtEzk+P53RFG7k0SuR9LZh+uHzfTZBg60Si5mmIM3Q8II2kWMUu/1lEEjDb9braYDC3cTL4G0/8cg/de8BxjS9MkzaDlqZgxYPxW0vQtbhq7tgNLjHELGNv1fbuEkaSE1Mzf9GLfRin/N3wIApFXbnLGjBKyaR/nB7gsID/FBA1/MsSWFAPu+9d1Ob4c9VPMoMVCmKxKmnEeo+8wWjBZj5/5FT/FUDHOMSZtRnlM7THDBKMF45n1zzE6wUDWYSCC+cHvPolm4AkGjVHoiaMw4bEJJoQgBeZf:XcIsGoWYwcgD2meDJGP2hGMcYJpngGRpYJNbVgZi11UszmX8fIAM8vE0oMW2LM5ilJMaiZeZUufs2leAGGNIRRyRq9oJgUQzZz0xCVLcR+PcY55iiPAZxg2PJMDF9NHiMzE2HC615geWYxcgZmDFOqKlkmwRTPxugIs9DMky1yhNCanmkYwwGLk7eIXoXRfAp2MsDJVQ0ULZbnYvjhkEqRo4wyELA8ab9bfh/PqAzD7/1mmVUQl/tlehkGmzEQNT3kgQ6b4Vskf37xfAxwnDEuwtjJMqFFennizDCm7LsYg8PjX+lnDG93T28mh9T4Jt4RP0FtIF2DIpqZGmdmeN0y5Rh59eK467oGwxhp5lWY7ippO2yGMSSV96lfgmnFcuqaFDNikPIazE4wW8JAUszmVZhjvEo8My/HFB6j4lW6xzzbIq/aIqYUzFYwBjGaMEXxCsxImFYw/QwGKC/BgAYwW1mlBix8NTmjDGC0fh1mnGx5uwaT3X558zX3SLk3Tba8PrthzMsxNMC9rFLW/SqmiLe8XQM3p+Nu15dZ9isYrWVkSrnILR7y6mF8LWYwcsc2smIux9AHZgR4EUbaaFV7jymK38EcW7lJGcIQ9/WYNKYWzOsyzmO2L7yQJAVj0pDjb8GM/2Ga41+0TJCmb7cpSRyvTsGkk2B+/38Zuv07Mf3fhCk2v54af:9lKzS75N+Cvgfz1Q7Pi3Z4eg)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAMwAzwMAIgABEQECEQH/xABe?ADAQEBAQE)))?QIDBAUGBx?AgECAgQJBgwEBwE)?AECAxEEEgUhMVETFCIyQWFxorIGJDRSgYMVIzNDU1SCkaGxwdFCYmOTBxYXN3WSo7T/2gAMAw?AQAC?A/AP38)BPYTml1ABYEXl1BeXUAFgRml1CvLqACxdLBPUK+tgMdgshXW8LoYFLYAls?G?IQwE?M))))AEIAlzX2EdCLlzX2EdC7BgFwEc2JxFSnOlSoqOepm599WVXGM6QvrODh8dvo98OHxu+j3wut5WSW5nfHmoZ5kcRj8q10O+HGNIb6HfEPJLcz0wPM4xpDfQ74cY0hvod8AyS3M9MDzOMaQ30O+HGNIb6HfAMktzPUGeXxnSG+h3w4zpDfQ74XW8WSW5nqDPL41pDfQ74ca0h/Q74XQZJbmepcLnl8a0jvod8fGtIb6HfELJLrPTuFzzeM6Q30O+PjOO30O+F+sMktzPSuBwKvjP6PeL4bFf0u8Asstx2AY0ak5ucaiWaFubs1mwxC?EAnsZnfUtT+40bJuAyMy3P7jgxk1xrC8l/O9H8qPQZ5uOl55g/e+FDvqKita7SXU/lf3C4Tqf3BmJMbnakOL5KC5IgKsWBB8biv90dH/APC4n/6aQweq3bY+1AyqQhVpzpVFyJpxlHera0fnnkH5M6B0f5SeUuIweBp0auAxyw+DnFy+LpTw9OUoR17OUwE7ppW2n6QM/L/8QHj6HldobS+jXKWI0PgcVpDgIfPUadahDEUe2VGc7ddj6L/D7FUMbojHYzCzVTD4jSukq1GpHZKE8XUnGQWEpXk422H14H4dKiqv@/qDkn/AJx+EVU4bhZ8Jn+EOLcSSzW4PgtWS1uo/bxNWFF36Lak/YyrjJuMQykWQikMllo0iZI0iNEM3w/ytX7P5HScuG+WrfY/I6jU5RCYyWIBMlsbIbAaFc83HPz3BdlbwI72edjfTsF77wIOhlxWtdoriYyWYncguIBDGM8jSnkjojT+KpaQxuFrVMTQpuhTr0K+JoSUL58l8NUp3169Z6p6ejq1KFCWecYvO+lLoW8qKIqvLC+XNrPHp4Glg8JDR+ScaEKapRjUnOU8lsvylRubfW3c8fRPkd5PaExstIaNoVqWJnfhJzxWKrKV1kzThXrTjJ21XaufUaSqQnXjkkpLIlyX1s4wZUEpRjJxV/yOerozAVsfT0pVoqeMpUamGp1Ly+SquMqkHC+V3cFtRGhtC6M8n8DHRuh8OsNg4SlONFSnNKU3ml8pKT29Z2XKEPLrufE6Q8;w8oqen9BRwtPXKtiMDi1Wlh+Nt+nQpUpxhwyWrWuvUz7pXsQhoTJypX6yx3JQ0ICyiEUMlllozRSGiGjpwvy9f7H5HWcWEfnGI934Wdpqjje32iIZTJYgJZDLZmxlIhnnYz07BdlbwHoyPOxfp2D974BtFrahMllslmB2okTKsOFOdWahBcroWzr6QQ7razO56Gj8LQr0ZTqxzSzNbWtVluZy1cHiKUHUqQtHtXTq6GaYXj/?b4rzM38u2y9YtLXsIqPNDkTS17b2X3k6QpU6FaMKUcscqe17bvech0YmOLnXhDEL42SWXm7G3bm6toSwGLhFzlT5MU3zo7F7QsXCSjCOaabttvtMEUjNFIRo0aIpEIpEshllEFIRLKRSJQwJZSZSZA0Mlo6cE/OcV7vws7zzsB6Vi/deFnomxw/uSSyhMAIZDNGSxlIxscOKj55hPe+E9GxxYiPnWG954RloyYmbZScphY6VIxZphZwpYiE5vk67+1PcGUiw0XqaafSrHdjMXh6uHnThO8tXQ1safSjPR+Kw9CjKFWeWWZ9Deqy3I4WiLFXEqEMjhd2budmKxNGpjaNaEvi4Zc0rPVaTv0HXX0hhJ0KsI1OVKElzZbWuw8VmtNy4KfJutd3fZqHccqELQ28jVtRiikSikSzctFIhFolkFItEItEkMaGIYEjBCBAB06P9LxfZS8LPSPM0d6ZjOyl4Wembnny5whMYgAmWxkZY2Wo0a1Mm2oaGjNwW45q1OPD0dXr/kdjMakfjaX2vyH0FJmPBR3E8FHcdDIymdjVSOVLUiGb5dSIlERrFnPYhm8jNgbRZnGlKpfZ7RwjU4OWVrLr1ewOVHpa7BXkltaT6Bla3uFKlKMVPVb9yUW75Vrf6CsJjvvGh3UdcmrdYJE1abqRUdV731ksVzSMo717C76nvMaNJwjyrN3urGzSs9V77USQxq9hrYC2IAEAxDARvo70zGdlLws9Q8vR3pmN7KPhZ6huef/ABfeI?AE9hJQWGBNjOa+Mh7fyNbEyXKj7QGZ2JsaMmz3klpmHQZyib2M5CNYs55RM2dEjOwjaMjCwrK5rlJyiLUiLKy1mGIpSnlyLedOUrIhDucUqNTg4Ry643vs6WXKjU4CMMvKTvb7zrsZ11PIsl73ESyMPCUIPMrO5uRQUsjz3vf2mjiIQg?GAxDARvo70zG9lHws9Q8vR3pmN7KPhZ6huefLnP2i?AQCGAxiJlzo+0siXOj7QATIZbJZJaM7EWNWQ0ItMxsQzZk5RGiZgycpsxZRFqRnlCxoKwh3IAoLCC5IxiACGhGj2GYikAxDADfR3pmN7KPhZ6h5ejvTMb2UfCz1Dc8/+L7x?AI?BjETLnR9pRMo7HezQAITHll634Bll634CHcglmmSfr/AIIXBz9f8EKxWYysLKbcFU+k7qFwNT6TuoLD4QxyisbcBV+l7qFwFb6buIWUOEMrE5Tbi9b6buIOK1vp+4gyj4XqObKSdPFa/wBY7iJeCxH1n/zj+4sg+H6jnnfLK3QmRGlmjGWed7J7ToqYLE5JeddD+bj+4QwmIyR846F83Hd2hkFKv1M54J55wu+Ta19utCZtHBYrhannXq/Nx3dpXwdjPri/tR/cWQqOIS6Gc4G/wdjPrq/sx/cPg7F/XF/aj+4ZCuMR6w0d6Zjeyj4WeocmDwksNKrUnU4WpVy5pZVFWiuo6zQ5m7t9Yg?E?Axi)ABgAWABiAQDABAKwwABWHY)?CZR5L7LGajVsub+Js?ZwhK8pStyrbOo0?ADmqRjOuozXJyfjc6Wc8vSPsfqAnsFwFH1fxf7k1IRpxXBrLr3vcbGeI5i7f0YyIt32nQAxCN)?AGM?BCG))))))AEpy6gAo55ekfY/U3TbuYVM0aynlcuTl5KvruAnsLM8RzF2/ox8L/Tn/ANSZ5qqUYwlt/iVkMiMWjqEMBGgg)?ABi?G))))))THmooyu9gAWuc/YUTDXdl?rD?A/9k=%iVBORw0KG;)NSUhEUg?ANI?ABFCAM)IJEiL)GFBMVEUAru+g2Pf:/8xt/BpxvPS6/vp9f0TtPCISbH1?ADCklEQVR4Xu2bwY7CMAxEPWM7/P8fr9baaNSG0lIQK6q8U2vhxk9ODD1gJBE3uwS3AEkjwy5EkCajqzgZ7GLAwi5G2M2uxceEJpPJZDKZTCYTzzCBsH8kAMCeA0OOJykNkLDP4iZAMu05UjkyYnMZveyEX3QJf9iVJN6npIC6FNTtWfSI/aeRfLsSpCAnup0nyF4nPqwkAwwV5ctKrS9G4qNKPtT/+nEK9t44/0EJ2mUiFTyr1EoEdSGlQGYi+t0vpRSFS6k+CZgwh5K1FJCJRkrJ7zYk7kQdiCeUUIskCSlFY8EWmiJCpy89WaRLiEruoLEjJfRNLxTesxRjdpB0r4ueB4p4rJTrQj0poHXuKG0UGsOcapXnh5WcJEDSajnNQWQJ+LaSUBG5Dsooc6EUW3W2laqziMNKlqVElFJ/ZLoavjkeCrhBn0OPRbm11VdeSknjZXfnPa0EsjUyuhLU5bp8rFQRnfqm5HIKXayVsmeLjfZBzT2mFCyslLSUtvUjJSwqVV810BRbKSkslBirOuHHvyb+Th/qLvtSUewqtVWl6rB6V7EYlRReo4TnycWaySqRgntKeU/JTNGm2FElzYfzSlFr9p7FaSVdKMozSvmykpPE+5TaQqmbfXbjWWoy6XCKUxtPUXxUqWmBrqTSTyvFYuItYu3cxItM2DE4KLk2zxmloLwxDnFQOUpaUwnjC8dZpdh+gMrZVjL2ZL2gVreaV4aUtCHF+GD1lvQTStCrE5kIiwio41nh3yjivpKqBiA5/IWS42+8ODLDWeC8Uq0lIGPFNpU82VFMAbnrYO3+HlJ393GSGJUMg1KRO0qDU7oVUJ5yNDfExhnzPKwUoxJWr3HMUAL2lAq0ITNaTxveanPndUmxtBeJACL8bvRQri9DgNIetcm1HYdp+w3kOMmgkHBW8BsInbhHX0Ge39EkGeRDI0DD4YucfLgTLOD2VU7QTRkNSgj7JkAogMHIIsK+DSwEZPR+JpPJZDKZTG7XEwq7GG6wi4Er/n+J7VJO0Wgk4Vf5L6CD5A+G4BPe8Jfzjg)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AJY?ACrC)AChjjpN?ADfElEQVR4Xu3cIXLrMBAGYOOcIVwXeCcw7gWMcoBl4WKFPoJOIFbmAxgEFIkKBTQzIp7xjJCJnqW1K02K2mmUnff2J2pK/HWzScdey00glPFNvZ5PL3+OB1KsJudJNeliTUixymPXZ13eVB8bRRxIscpD1Gf5yd2uV2vMOynW+x5mxTDrcPzzcjr36m0kxcqpzcKatB28Kj2SYuXUZ2GjdOfXtVFIsXKewjLWXq+3afYVWBXCLGYxi1nM4rPqelm8n+dpcu5GivXxmf+bxaxBa7D0WLDSDbO2QIs0AqzyrDrm5yyvdS/9b7FyvsUaFYDUbgWoVavXVTe4fic356Zpnr1ffsYatFS6XVlYDts2KWIIwcQfXPBifenD76cxblfY4BQA6L00otmDqs/XwoUg17VPxRoedYpht6pJREgs1f2nNdYKtIo4FYKLvihtH3fhFVfM9vf7eHgBAGJjjamLcIWtqyLRVGB1XVz6rVitTy2PrD4101bXzY3CR7PGVAQ8lMSqIWtfjRm1jpj8LtsHs3DBntk6yZWspkgXAT6xdB1WuGPes/I7pxNL+OezAKTW2hibyorpn8vCr9WcfiWlgtmaLLEfsGx5FQHeDAaL1eIHpB4LFXL/j/PZSi20cdFYrAG/JYaKLBXXDsTORsEWjcXasK2vx3IZsXnN7hLSBGgBxvRbU7Xlg9oMYmcFpyVIPdy3eDVWlxSjBJBDMKF+MgtA6gTwgUIa9FBLQ4fibZ66k2DhXRFNGTrXtZg12XzrCgkWdK04NmVIsJBSkTXZfEWYBOvrG0OChRRm+Zu9DFr1a8t0JFiql3B6KUOChZRnsZjFLGYdRdsBBRZej083L9@oSRYZZiF/UKClW92sw4BJFhlKrKwGiRYB7EN1i7WI4?6y7MOoHsFQlWdzqvFD1czIfnC0nM+pUwi1nMYhazmMWsyRLbKYyjBZ75zHbEGSGhmc9KITrzYdZczJRJsHBcyTOfxafd5BZ3kxNgIaUIDVbmMItZzGJWOVp4AQIsfLgAjhaMQygJVpmKrFQNIMHKe3bsj?SrDLMwhkhCdbXmTIJVpmaLGOsvZJgIeXmprzVjMcFzGIWs5jFLGYxi1nM4gkZb9ZaFu89PnqIBAspH0VIsJDyj7GYxSxmMYtZzGIW7vEgwfq6x4MEq0xFFj42jQQLKd77ZQnfz1/v0W3UeqR3rw)BJRU5Er@ggg==$/9j/2wBD?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJyf/wQALCACgAPABABEA/8QAW?B?MBAQEBAQ)))ECAwQFBgcIE?BAgMEBgYIBAYD))AQIDBBEFBhIhEzEyQVFxFCIjcoGRBxUzQlJhscFiocLRFhc@VPhkrLx/9oACAE)/AP38EYm8SMbSNIhGk+RCxV4EaRxVXv4kYncVLwtpeRs)AK5kZ7xRBRASgABjQUFBQihBBBpB2l5Gw)IVSQ?qEEgGdBQUIoQqEKVUF4O0vI2)BCbyQ?CEUkF.QVUhSpBeFtLyNg?AZxozYDUc5FXEuHLkq/Yok5B4r4tX7F2x4VNtPHL6l0c1d6eBI?I3oSCpIIKrUqpBUvC2l5Gw?AOWf2Iff/S45WmjTVqJwOlmw3khY?hdRIIQAghSqlF1EF4W0vI2?AByT+xD7/6XHMho1TVqnSzYbyT6FgACF1EiqFMTeKDE0K9CSqlVKqVzqaQtpeRs?ADkn9iH3/ANLjlQuimjTshezZ3U+hYFViM+JCjpiH8yYUZIuLLZp+Zda5HmtiOonWXzNGuNMRbEQ52Sm9SqqVUgqqZGkHaXkb)pFhQ4zUbETJF4qmercYrIwvic3ktf+1SOhfDEXxRF/Yjo0RvvJ5L/s6YaK2G1q8ErT5Icr4r8bkxLSqlcZVXlHOOiSX2nh9zqzPHa7JDVrjTETjIc/JeR11IqRReAwu4KNG+motChuZ5Go)AIPMiu7V/eX6lcZGIriOuz1TtK/h+524m8Tw26kNMRbEWxkK7JT1cKcCaIAQ7VhqS)?Dxozu2id531KYhiIVTpkl9p4fc7G7Sc0PHbqQuik4icRCuyU9ui58OARyeWuoqnEK6m6qhEzXiS?Dxb3yMraN1rYk5yHpYD5SNiZVzaqxixG7CouTmofy1/EF4rCuhFsa1Y01orVZAta7s/CjxW4IrYnR4zMbcPVWDjRzFWiORFpmftvpUvJaVxbgWf6givhTExEgyLJuI5YsSGzRPiOdji41c/s6Vdnv1niyVo3muN6QLt3fmLdmrdsq8Eu10wyffpojIz8TccJ7tlqOa1Wpwqh0ek+/17bjXtkegR2zljTEFk1MWd0dnZw4T9HG7dvX6/wA8mnu3Fvna16r2W5LdNl5mwZGFLzEjo4Cw4rmTzOkQmvdj1wW9R3VzXPLUfJz9+r3yd9bdup/E8rKvl3/2jpUg12nfGa2LBk8cHYw6RGY3VqfstjetfVUp670frPRp0zQez0nvYPwnDHXt4vfd9SlSKip1ySL11pwp+Z2N2k5oeMi5IWSvBfDM0SDG/wAbv+KmiSkz/jXzRPuXSQmfw+K/tU9UEYW8E8iQ?AclqWbJWxZ8xZlow1iycy3Rx4aPfDxNr8cJzXeSny016K7kzliS9340i/1fKRnzEr28XHDfE28MRz8eFfhrQ9q8l1rIvXYkSwLXhufKPw4HMXDEhvZsRIbqZOT/S5HzV3/AEUWVY1uy14Z20562Z6QgpL2f097XtgQ2orW4cLa9XEtN2ddZ0W7cObtu+EreOPaUL1fBl3yMayIsrj0kvGbhjs02k9/uZHJ6OPRn/L60Lajwp7pcpaKw+jQsCtfCZCdEwte7EqOWkREqlNRxRvRpeuFeG3Lw2VeqHLTFuw3QI/9D14cOmCHonsmNuG1raPyzStD7+w5Oes+yJOStObWenYEJrJiczrFemt/iRFkHufEiY0o5y6s9a+BVJKH7zlU0SWgt93zNEYz3Wp5Ekt2k5obJChN2WN8EQu)CMTa68+BCPa7/AMVCyKm5cgAuopuJdqG9BnUJrG9dZYpE2FM?S3aTmh0g?ABVRPkVo5XZrRNyJ9yUajd1CSuFErhRKkoqqlaUXgSCKISQiIN4RBh+ZJSJsKY?sxFxJzQ6?ADjdPo17mYF6qqla8FLJPQ/hd+X7l+kQXKi58lQ1a9r9leZYAjPF8qZkg?AFXouFaGaQnfInQpxLJCZwLI1vB.?AePFTt4nfd9SWmzTrl0yd4GwBC1qn5kg))?8iL7aJ3nfUsw3adELeakoCN9SQ))?eVFhxNNE6jqYlVMl4ktReBsw6Ie81CEg))?AFX6vEpQlORZFJQk)))q9FoVwu4E0XgCzSQ)?AD/2Q==!Q%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEX/6Nn:/+VlZX29va5ksB5)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL8?ABzCAM?AD+HiP7)YFBMVEXh4eH:/+gmpvHxsf+/Pzt7e3n5+fn5OQ6NDWLi4tnZWWtra3++frV1dX88vS8uLn77e9VTk93dXXn3+Dj4+P55ujn19n00tb99vfoxckDAwPz8vL4+Pjt5OXoztH33eDep8bG?AIqUlEQVR4XtWc6ZKjOgyF8ca+Z+m95/3f8tryoRWgp25Iy101JywHmB+fFSFhpjqZ+reVuaIOmp3LFtORqZwza6OdG9amca5h8y2ApU9cIBx6LVf5Cp2D5w2W7/jnhjQ4ly8mWxvjXPd/ptvzRzLGDrgKyKC2QThnQestCRbjDIo7u+H3oRMR84OWCdsA0tIHx3Z10LbwUIsPKw5EsUvMj0gtNF4Rkgz2dBoneOcNrxhMXILl3JLn7wamt6Bn/uew4V34PPMxnD/lV1ylg+UiBkEjQB4J8kPAR54jwIHEr7Tt/YfV8woF7L73K+3aeDEMAmtMvRgZlYxfIe4QQRAV5A0fYQ/rcfksm2WISCwUKdRPKRmtVgOI7Iw9xmX0ZsSJeEjHIx2Rp+1IJ8IhKyYUShjzy9cfJD2lAzh/JgzjufcRQbVKx28V8CM9dPFL+PgFazAXXKFzcUfCYbjGoiHQvYwimqh+huRB1oPmp+IRUCGIA0jDb61C5hP9BfB/wvrnT9j7DR1hS6IjGOywhH/PY6BvAPw2Bb9F5QT+GOF/KB5BHxQLqXj/MiqI8ffwT09PceM/5L1wxi84s1zmf8uDWHKIWrOy0vUf9JbwiZ/BfyIM4uKFFIrx92s2i/Kj8iP3I/+TiJBHyxcQHwpF+1cV85+TH/hiwjfQLwOwCer/KvygFxJyCG0AJTQ757L8FH6O/qW/lqRrb6I5LeajH8hMX8b1DZm6Z6PZ1H4EuAPoYU5Z2foJ/Bh/hN905pWUKZizGqLJVRONgynflI7GqioadWvKpx.ryYgXv8xZeHi4xOgfK2bKihzXbU2ZxidO7MxbmsaR/yoouC3SfqX/2r7nmpP5J/RaLLzYvK/GJtlbm3e2RD/01cJasXzJ6P+1XrF4sP8mYTUHPlxB4cZjfz8xSob+BH/J0l+N1Tax4MTCPkzD5L8KJ8If8x/Gf7sTfWxhn7xK2UF6/9Qcflk/qmsrAy/I37uwVaYH/XTtlR+lt51Ks5C4W+mGfEnfsyDs64Qrj9+gnHTe3vrMrn714vzJ0X9pPDf5o8xXSGBj/rJBShJ/8Xti/IjWn/Aj/hT/niJ9y/cv2hfafjHcSlAov2rAz9NvYAPfun8H2XjD93wX8T5nak088dJcMj/apDktxx/0f6F+g9+foCT7l/qlh/96z0BP8ffOen6ucqfj7wQ7V+cPzbyd5n0/Av1M2X/Gpd3KOLzFzy+cf8aTC5f/8Gv7uY/d2XQdGZjFjOQqTvT@lPp2aaprrWLy/NLF:kT/Hnv/LiqQ9/19M0xlvtNbN6WR00PDyMugU/Hz/HuA:5+yLM8Lr5PX9Xr9/Px88UrVv4hfCfFDeZ6n43dGN989f1aDJH++5U/Sv26ff5wT4u/MF/+V+QX7l+3X9ccqYf5N/r8EfbhcqH/pad48P1P9NHeNAIz3xL9Y5c+Yqn+13L8E+VGAOP5DY/JU8xelUvLz/SvOj/ij/ie9f1P2X6usZP3PkP/J+xfXH/sv969W0fzLCPLv79+U8y+Kv3z/WvHXYv0rfx8fn3+V+sH6+fEmVP/fdVmv64+l/DGdaP3cxn+0b2neHyL+svV/nz9Niv51/P1Vlx15friCP1X/An6C/lXkier:vlBfv7y2/3LWnn+fJX/gvy5aYZV/G18ftZGfv51TT:Qv4L9699/awnsf71dtm:7+Xf9IPPj+7d/H+hfqP559Bsn8Vq/s3Xf8aU/WvIt/kf6ONS/T+0Kr7+U13bP6bfv71bKXnX5w/6fsXGnDC929c/xPG38r332T9q2sG5ufnh8YIzn+LoN96f2gTvD/c8deTFiqgufvYxt8q4f61f387tonmX0v8my7p+6s+Uf/qW4v+VYURmCbo76bLPCBpb84wBvgrfq0Hl6Z+Iv63f0U3OKfXxjhXBaNNCH.xzbfm999f7jMH9VdKqv8LhW/0b/GdPz5L/Uv1J9/iD/vBrN9/6xsen75/oX7N0X8i139n8X61zn/2NX/u/nrJr9P8vMX7l/T5v3Vgfjn9+p3+heeP5VNwH8K4v5VJepfbYj/3fxDdyz/078/fPbw8vXnN+dfViWr/6eE/Bfip/4ryg+l+v+vojPmi3/E9EWeP/H8C+VnpPIvH:9A/RcS/Wv7Hzy+Fz+D+X/3NzPX/ALLMH+ZatyovDz6yv5+l+gAf?RN8fcvdF/sjzF7f81L+M8iN4U17BvK+NuzF2bfIMbDDa8yN9UH0OzF8ac3f9XH8B5WupB+eaKmhvjHN6a/KN6dzZb/UU+JE+NIBWvv4U4Pf64n/1FUhNr0HzjSnJVGxsNFq9vZIa5aIZVB5NyX++FvMnRf0M4vh/1mVZVv04+x2Zmozu+41p+nGCuUQz9B/RmP6jJNURH/nTpuTnAbyspeenR8XZg+in4OcOgAHsRvA4PfNj9iLPjw7MNWg/gp/RA9/aY/zzcKQDED5/BRgEBvLYH78Dn5Kf/v5dqSP5A7rDNQgjYOn6z2O6+QGFln/ERZqfSxDpCv2E/+IXgl/hW3Uof7Q5GH7oyvoko+vLYYGe8FE6W/n7l1XsRsDS098Avz+HdST6IFT+sCTiL6DTjW74H/8FHaqbJAX6NPzIIZRR1tUbPa1+usiLXNjEE3S0hJss7RB74qfamSh/QA8xO6t/SM9BkT3UTpuKHx0gB79ftt9C/GWguMUOxst7cmHxKwzggyyNgOCP8FfoX4e/BB4HEqqLIH4bmGgXFhzSpfjxIoezKDoWkccA5Os/V1Fat9IlgSCUwUKw1sLiGJYuWEWpT5+E/Mih+Nnz26jWEitWRl+0PaFoE4X9kfwxIHs0jZZ9VYIFOHSAFaDRwCPYi4XsUf6yDiMYKq+Vach03xlNJotGe1Nov6tLpUAVmYFDB2wjJKAx?jmIH8ZKlBVBuk8n8k0N6YmMyzGD20i0xUwnr8k7ShgmVkhyeGw3wn8/7b+A5lMu+3mJ6yx)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANI)wCAM?ABTy9T5)GFBMVEX::g/dZodGSYrJDPz8+o2pXD/6wnJycNREam?ADOklEQVR4Xu2Y0bLiQAhEbZjE:/jdTM3l+gJMjW1+pDafgQKu0Fg9PbP0Tpu10G7d7TrSbpdB94V2YUkWZfk64ZLSLp3LCHpKqPUFelKo/QFSf9Hqbkl5q0H5u1ro0Q65GTm6QxYj3oQR8xmDVijHEIn/sam+gAdHgrvPqRNotKIgIMGYNURnqNjvyKMfBgliw+Wji0CXKBB1ax8obKkE4V4IbXodAb8t76KjYUOxMQINAKxJbgMlZhqOkFmCSZ7GrFc9kxGUATGSkYJWyKWIUwhqaYTXuIpiZ+TQQP8rz1q90Y2rxMyQ2VJh17z5naMOvnSsG7htWXt2JMeqai1ZnvcD0JSSD6YBMKjdKJ7t4fD8K2JCh57wUbbumM5chFGwPe4YpSosqYT3ijxcvzck1kxDy74xu+5z8vbwhzgKOUqSzrdixKfSHII35AQxVxUb9b5USKd8Boq7IfSODLsLjZJUFm9WSlXmcqCDvmwwkK5OhQZ9NKkYwnCUr5Z29Ao5XQC5CNIAmvlPxfWk31RvFmZJh8l0snb3QGTihlAyRRvI7RjPE1iKvOwxOPlYp/NN5jhkq7VKLGDmammU2/OLIoly587qkepPrR6Q3picyKKfSY4eeOjpGxhlHRYCPJnBdFnIBbs9ChRZd7Qic2J3LUk87gYbMT8oa3p0EsTc5NLwB7wBSe9lKThQ0s6M5vzDlN62AIkPr4dMlNBZ3xzCiZwoSR2Qh85tGEvN2e9eZgiIEmMrLdDfTlIZ2Zz+rik6f9Zyb99/dCOS2IjGInXf1zw9cuHlsUkSKWWFIrYjLFRmj60QcZKSfgvJ8uifSLQjJqOTx1akgl/VKul2hNJUUrJ7pA0Pkrzh5avB1+W1trPY9xy7csD7syyJ+kcPntombt+iVOSwY/aAxNvVniHRolUCUecU1JeGJt9s3ZMjFLdJpde4hskS8p6qI+9WWka1bQw3sPLXS57dto3Dy3RLPttoXRgHH57+qX1oUMb0Pr+ddDcNkZm5rscSrrJbQvyBf6eJKqxOYWolA69SvkzKk1EFHFI+OJDliE6yA3+iBoVJakKE53hySWtI5IKlYOQdi2qG5oIVrg+hD/bvHCzY60hI)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?APo?AC3CAM)M9LO9)wFBMVEX::/6v32/+rt7u6FhYXv4+745/b09PQ7OztTU1P0/OlxcXF3ZNmNfN/s8ujj2uX19PvWz9Xw9+bi4fKnm+bBuO3t6vrUzvHx9+uqrae4urX1zczokpL55OL8+/v87+fkf3/urq788/Pa2dn28eaYmJi/v7+dnZ3Ew8Ozs7OhoaG2tbakpKS5uLivr6/T09KoqKirq6vJyMjm5d3t7eP89ejOzs3/+eq8u7vf4NmmpqbRz8eQ@Dn6OT+9+nj4uJFT4FV?ANK0lEQVR4AezWR67jMAwG4HcXqvcu18z9bzV2ZCez0HKABwHmhgmRf/FBisCfX6r6v+vnt+qhP/SH/tAf+kN/6A8dpbPy1a5havX6sPIe447yMetkRqUnKKEAShDOdg0jMCkZpFuFLJtIKHOw0M8MStdGH4wiDfmD7iHzFKtpr61eoJXwetKaQT8zJL3uXPlU6+yU/CiQFnTDLtxfw4IxVEQavZ8ZkW6EOhggxJcRpVjVJib0Dz3kOpMCncyw9MSFWOeZ0Vt6lOUKMUxNvC88p1iYNXYyQ9MlpY5zhb8MxLypM8aq3L8JXinnDUv9zLCnTqmXcqFfRpqcJxPG9DPJ1jglqGepkxmYLlR8/2/1zbBGLd7RDV83HqUYa1wVptzmfmbUZ245X2sl+MXIxHkACHgT4T1IlshU67ptrqBOZlB6jnzh8ZXBL7Ktb2jX58VGUWAxpXzSy8QlY7Sdei8z6EpDJLHo0EkGqK1yRJNS5yCdaRtdsowQoo3jYe9kxqWDBUCtNfr749FsKNDoABFBCeEvO+aO4zoMQ1Hug5dfZAtqs/9lvVEQJA6MGTzIaWj6VLJpF6cQf/Np90+Dye12u11D62nVL3UJAOD3EQibXS1jsg8R0StEP7xCSY9QSBX1sVHHVj0+1LFVjw91bNXh0BLqE3swT8OejPf7fYiI8slDVvPJVNZwaXrXVVhLqd/H99KcUiV1Y+5a3AywrnWdPb6iLllOfYTLF9QNrOW6OfEYh9U1XKic+j2cD6uLR8Ue3gA7qK5AlhxfOI6qszOVVB9H73oC2XRoZQg1VU/Rwuo2um5pJLirugG2qK6V1SfsvKguorXVB2BL6okorj5b+fuKerhQcXTNQTyUqmNYkFC4UWXW8xV7UE8SSOqJBFNXUk9jIko9UYZQUwxQ+l9UqTbrmyYJa1qtyhe29R4lnOlUKNzW00JtDLw+7RRHcn1i64AGknqSzHROdP2T2qgwNUUDRk2xv9O3ilJp1js1gTRdPO2DbSa4GTsxCmTXVaSE/JoHhE6N5tW8v7lqvlADNKkp9o98c/9tFAfiuFVbMhgJrfhtt7veh2VMiAPhIRSytvj:6vzmDYY9Xp76bHXRDtSMd+ZEdLHLw0m/XM/rfDPv3FZP1xv/yP6y82cP379M9Bfnr992eKX39TeAbo/dd18BewbfgfoUK5v/TsCGyf0HtChXt+2eOckKtA9oKMvjz+2/dxSRwnH4h7Q+cafW2gSCUwSfPPo25/NnCLDUROVa/S+79O+t/3toG9/IkfLBLtrHNsVVFdqMajjeGvomx5Cfpjg2kaEhVBMStZKT571PXOOeR5k74sOdczmvZlE9Qq9JJU5wl26L/Upe2Ct1O35sF4B73REydGmNkVxukY3xMAiaE2ey86tfik7Jd57wkMlwx8fN3iBxcuwy3gI0ZVJC6Ld/D6RstTQB4Upm+y90aGU/7zFqRQl+eUhuA0nc29kPxLSZg+1yceawcyXZLiBHf7rt29bHEXqqHnlzW3aHTqxO+b9Qzbsc5GC75NKbwAdfd+meI/xK+iMMfhjcJ+x2ZPn7BbQf3zfpHhv0Rod2F4xW5z62yhpNpjuIkr4Cj0b6tfRsz67kWquJsR.aJib0nuncmsDISofAq1qxAOivcJrdC7JE7voIancVQDuom8xZXni2eVeHTyFDqFoQhC3loo3tcTvozOd4COaj9dOX428NFnwVEQokvIxpflzWuYAGv0Po675QUm8421fRY6MmuhhcoW0DmeMEf+BqNZUxRoai3oIBFhTH3AS+ztOnRuyHT9nh4Fezp9eSyZX0r5UekeAE+qafvA0ReN3rtlkdXywBDigz6e/BxzmjtdlOqIF40hnaIgEU1KYxcfKg1FRXtuSpnzKzHsf93TX6JnSSTmIdbE9ODQn0bGAgfr0lp10AVEO3SsDngePadda1UxyopfNLdUqAmFiZoYDC0fNAYKnhtxHcYGe/ra5sGOkgyID8VHCaTpUZ7zbHEAfFtaaCSgD0SXBZ0rYUAdFOalos8aWpeOlkR6aBuJwY8P5zlBl/S3kwd7+oj/Hp3JBIZ90OPZjNAHXVfL9uIAT3seGGSWgH4iu0INnqAE1MJhV4DuNTQunaMlcdDT2UwQqFXj0Sc5vAnmqkWSX/Z0mhD8Eh3Mer5x3xhSMCB1vVGxxZGdlEhTQFcljLrESFeeUZWuEXLiSi+au3RK0ZI4PwgiaFQW8o7qLYMuzHhNP5kEX4p3/YuvL6kmP6En8iFXdeAQ5qP45PqAdcb0COHj06hzawx2WuuTDPRoGnEoeJCIqCa107XYldhJKwv0Bpvi5MMV6VgExfsv0Pu8qWGQh6oSLHBM1e5QuRmfDk0jYF/bVwMHoGe9W2lIB8eSiLB7EHfx3X5ymov8TSudmyh/W/F+QP+AnrH5BWYRYODw1+Um/H8b7uyl5t5QGEBhIjQbvHtdsdFH9arcsWBd12WA1P0k4tYPo8F2kfq3Kz3c6J+r2rgGR/skiYU1Tf4i145604aBOIA7Cgk2PjdGtpM8+aWqGKVaxB6qMoH6/b/VxLF2RVZCcWLlpP2fFrKXX3POncEcv6siT18K8f69:jU+c+dz+awEBjZXT6QmGfs5Hspjx1xOqbDhnU7P/n2nt/XK6usOf/DqUvc+cJYhbm6Zc1MdL9/XY5+KYT0VgGgz8IlFukKMOpCB4zVbKbob7aCH/edqjBgW2znH8E/yMfF31saw0jnwKW+j76qHr6z1k1DXK4lPyQ5S6OVqmeV5Z1ng3nlR5+E7sDNKvcvNxqc744nFkNvb9BrUDPXe7gND+eZCHrbuNWgfGWhYfMGT8OMTki3YAbpBpSfmY5de3I60oZKvlVg2OzZ85f+nW0eSceCHqAba+eX44GQvltycYqgY3JQQ909rxmBdOKtZ9nt+Cb+jKwDR2/7EvSvZU/PFyKPpz8oOFGnDwzvb2NORlfW9DS2ljr9ncvlGHqb977jDCG6D5Fe8sck5+FbBYTo+W7ngzlPHH0SegN2RYe+lOEor7sTGx2tw48UhI2N6igfn9oGu7MZdmwRv6PGZ+AJp92xZRGphCiyIGxsDNjravJpd2xZTF747y9X6201AR2l5roOnPPU6IUQqMWUUsTSb9a3ZtTo2frpH33Hj5EFH/FWm59ell8roJiKrpWq6dKDPPFtNhX96jtn44nTKy7L6ehftLVyniq9Otd5ueDrqZpb+LonSl/L5/NK32zKJPQGLNmCLySvzo+9yKale6OD0Y5awa8/V/mk9Ea5oM3RouMy/5WAjs8bhxuy9GCUn3KVO2ho9/UN3yWgewWNcZ42vVhUCejMgPLkp7nHLAWdWTDk6Vkaem3r/5XOzJ/27mZFVh2IA7jSlXLRi1xfwI3EmPjRmkXjlRLf/61uTHlusJsDvXLA6SycP1YM/Mg0bTHoJL+WnpxMF36g2MZHUvSzr0JfLRlRtmpYP5HLWateXISOCiYUmhx+IMenqS1UF6GnM9RYq/wPTj7zbVfXPJdC5uurHVNJ41XoA1gNJHdar1o7e3tNMEpL7n3jK3KXod+B?xyXwYtSmrC58Chbt/kwqgJr0OfRQ3Et2gNUNPY2qecbG7lm7zVT0yvQrdQp6juOogcWMFfX2gBWnyRYwvPVEhxDbqg+yCkuoPZQMJSldeBlgO8fdJLgK629iL0tRkqsXaDP/JneTQuJFRKvNJXXzV9dQ363:OgLrbg+BxrRvZvw90/SD2uI/fQhd1J36wffl2bl96xs+m88sKsiTGWI4n/5x6L3OKHetLLxqj4IH7uZ9rWot1axeDIzPaDo/iEPcy2yY1hbC0dmyWl6vXYRybbG9BtZYhiF6rQXAMS6IvWjtrCmexU1N6nHgm/WlcC9WWOjKl+zc5xFhObhPdh3CNo8fCux7LWUvLShU7NEDOTQs1PbQYlGRyV4bv8FL2oLxTbCumx4mn0fkx+oXGwtOU/icrfIgxljfmYoDpI4Xf8kOZ6VNwmHmnC9KIitYtKh8DbTsO0G1J9sD0OPFMujfV9PQ/SiDd9rckxljm9GR61lM7jEtyLDs;lvoPjuhmJ7D6Jkh85Ii3aXEyTE9TjyXnjVqKsLTsdRVNGeHGMvhdKAXy2N5cDWWi54UhW2TWqYKHIv85hrIQ6RmopnFFTQpk5keJ55Kv7X6EWglTUli1O0QYznSA1/RVo3lRbtkUSOm6dp3hiAgS5jTdOZdJ4/rVaALReJI54nn0vkVDOFVPDc1F8UcvDHGsh8ONO96lmQUJsZyqcqkUBbD/akg6JCNkp0+zogz02swu8+B9sc48VR6CTC51npHUZFSVBVJjLHM7+O5A7/XQdt9YizfWlU1qv6/YZ0DoyI/JvQJeUncnTxP+hVzPEw8kb5wu7jZiuc4PjdQjLG8OfshPHpdLL0dy+Ll6puZ/SWxYQ10dMPgGIR+SYdcrXdjWBHjxJ+8kS3e4+f/VDbzJ9O3gemHA7/38L+T/qV/6V/6l/4f2JmQ+PoRofY)ASUVORK5CYII=!B%iVBORw0KG;)NSUhEUg?AKw?ACYCAM?ABOBPJR)wFBMVEX::079/97+r+6Ob+9+36+/X+4Obi4t/+:z9/uv9:j+9Pn68fX29vb96/Olo6VnYmP++Pv81uq5sbT+5vD+3PD/+vw?AD94u3+/P343ur6+Pne09fy8/T:f78/f/NwciI;L/6/v+xeP76O/9/f3/4vhEQEHDvcD9z+gmIyT17vDu8PT06u7Nzc315er4+fP8+/vn5+bp3OD8+P:otPq7vT16PX6+:08vD49P/t7ez6/+78:P0++7c3NrGCxNM?ARCUlEQVR4XrzZ527jvBaGUf8n1Xtz7y21TD3n/u/qe1msbZoRYsTyPAPFwJhBVjaoCJYGvTS0Mv5zUVjRsn+b1jy1FcUCDqK27wUyrCDtv+ZC81SZgdNaJbWSsVMQQ3vqn1pBcfh5rKqCYkFWOB3HMRYEBTK4o9HoeR15nxetn29TNhPfj4AtPN/3HriRUz0tFiesoP4Wi7nrPkz8yN1xXgWpsXlH6Dj+3Vy2yxOUl3V0vAnrZygaLrwMTdyzoGHQSoWyOmrxfLzKMm8+x/uE1Y2OdfNZ5Wy22YRJPL5FG2XZ2M9Ww2f8+EmW1a10Pp+7GJ3YlQUKhBWL11g897fAxlgAbVCkaUrc53HzeTPRJomj51sG6wtwg8E+vGBqLqUwhbQ+SSwWM4DLeiyw0HKG2YoKJFeuDx3Y8u3tTWjr8W3YY5YdgeUuCOdY1+WOwqbAci6xcI5jidWjTVWFKmo62r1JbVhGN2P/T1hKYiFFQcU45xp7lNg8jyVW1nq9pqs3qd3k3vexntoCwzW2I47xORUWrrBBwDgSewVHnCtsLvYBadEV2OQGLE4snNqTYbHKttts5RpJbHrCuu6LWpyP8XXlKSy0mvsK7ZfYGbDfb7yFtRkWtZ9lfm1jU4lljIsTLhKLSzFYPVreXsxeVd7+VJ9Y6hnHsKj4w0OLJGyVBphrIK15HMc1iIksR2KjaC1rsVTvWKSx/FyJ5FcWAKsGm6uStjLPsYa1EZa6P1bNi3Mbm5xXlhjtdEpaG4vujRVUqdUnu5BjF5SJUQhs7LpT1D1ZdH8siJWjsQy5F9gQQauxxCUsdW9sILEOsMrKXVhLYsrUaKeGFli7+0+2kpNFhA0vAzYWUuIKrF3vWEZYICtYgdVa3oldxoi4hDXrF7t4cviOsNxxyGpjN7IwTJKlaEpa773N0PaKHT5VAqesCouDrAZ2Q1hoRRZWdh+s/RkMWMPqxsCas4U6Ia1OY21tn1j1yQVeVSX+0dmFYqkNzRLSLg2srd31h0V0ZyA4ZWLlBSxMLK0xXO+jQxv2iYUWLVAhStMWy8+wCMQOrsQuCWpo3/rCkldXpKjFSiqsCVk7tV6SfIqd3Q+bKmygrITV1g1l7lyB3czM4dIeuC+WEda0WlrCLjcYotUdsYWBpcGStUv7JXYDbO9blnaBgSWrpSUsae3BbuK7YKE1Bpub1pmhTZDGJh1aum/QK7ZQ2O7Bgqoi7Qm7rpfhrEMr7x/V676shLV3gW0lLWFfouUypPcputfVMxbaQGG5xuaEJauJ1drxeImdQBFU30Uc9UQlK2FdNxiy2E1TV2PJmgQs3Exjc7TTcVQLdWK3zOvoOBr1aV1ILO0CNmQDlwVsaA02jYNpHrAL7PRl7XXf+R4B26/VxAbuwE15PLCwgzBnM8bMM0z0y+j1h2qk69FqYwtgA+YObWzCp8Cak/34+Njt0fv7L/VxxnGcvdMfdkgtNDYgrJsOsGeHA5e2rC4ZpGE+GCTGZGE9Yd/fIUWPTfN97LCjhagQPRl/DObzOJcfami0FPTmZH/KMNJfTfM/1aPTWlEPUtt6Fda4hknsTm@iwzsjVKyqoeMn2PL7snCej22L6scq8JWGssJS1riWheFLuyo7UYo0lJQT9jqDDvXk7W1l7tgevjZge3LigpkYpmFpV2LtNXGYrKPN2G/NNpWa7KW1rYC2/41cJzXxvkG9gtimqYWlawCix4IS16ytoNVe7ZpnP3+db/XWse5est2SdO2k1pTgRVZWOIaVGOw8qKwa5oG2GbfOLLmDHs9lZSfJJlkdZQVP1piSSvrsiJxm1b3Q/c9q03diafyAK4n/uT53Oo4LfYArNRGvj+pwxAvfmRb4wtr07STHY2c6lHmONdhbSpST+UDL0OrnaBqK2EPJ2wkF9X1Fi/bMX1W7MQ+6sstsI9:8j+dmO7qUEaiPRT+aBeRessO4JpWQm7ynz8Ul7pebWfeSHS1jxfxsvYlVTCOg6gEvsIrGRD+/gl9QJK6afyB3ZgNbCsYpBWmgqrxKIHhN8mAniCjdtiS0mFNYZVRNgfwOo0FlZgr7MSlbGAqQT2KJQs2sKNhBPUFosIuy7xDWWJ+W43girKEaiuGixZLSykV2NpqIzST+VrNsky78AQp8h6gV17KzFZopIVBcKaFoWJhZWwX1uJSmFGBxziNap9jxv93BmTfcmy.6vjF7KCcwiKYVVZFq/hTWtzLRy/VSe4/T2MTTLaox2IhfXEdYKM1nn0sovsfqkUifYH8JeZzWhsvUW1gdgRf5/pNtRb6M4FIZhCyBth2MktNWKBpor52asYNJcVTs7+f:ar9zsOs6zrQJ+yJAc/fo6JSiTJqsQLSG0cL486/tCeif3gqsATVaMZDwS1Hrmhf19696/vTouo7NrSm09Z38nTJpxCInjW7LjXxxvYPUW4lIrNwHVs/Sq1bqdV7S+jZrxHpqHjv5zLDI5bFUgvTCijENAasHpXTADjdac2mezTuErlGDdSlQYUW3vm1HbKB22QI8L0HIA/I3m3Hxyoc36kB2/g5ps+vaTnWEIhWBKnnoXdh0rG2QpplQm2NxWNGmkWpU0+AasJ3Hpl+rXTPYMNacKpkYHIn1OtZaUu2xof2O8p8t4a76DBt9Ye37RJtjwcQBb0CGSNGOJ9uBGrHRuhIb9zVSoQylVuEyLY4WWGQv69QLvah9s96af+CeW0WaYROtZL+KljKpWNVaa9xYsQbqhgvY7cfqOuMcsN9pKVoHHGFdo3U9Ngw2WjdL3jpOJ2P8gB36Avu+LEag6mZAbD0m1vXYRqK4A5vQYnXjNDkDrundUoKFLdxDhDQ3ZNbYGmy2BEAmWFDHs+H6HOu9Sa9CDdbwhwDc/l4qSl4LsiXYxNh6miZjcBlzrTiFmmK1p0qfrfu1VsGmGyvWPrUaDPY8cSdYMyxsmRVFrFAFi4uAJfaux14f7PYELDemWHMNG+WiHSRvlSPmV+IebP61AXASK4hOhoo9cH3bNQbQrqNrVOldv7JW63dibrDJFf+8/AOSu7F/3AJYkWudGc8Al6162SlTYoEU5Tvwz4EjZK3WBDeBJFSZ6pB8kkMYvGjXY3uUWE/u1LaGd2Db940ypIgUFaq7xFpYnXOWDpYsTtwx5UGoCFa9RDFo78CmW2AcSncAyNa0sgNlv+nUxjC2KIG1Eas1LqAia92BDjhxt5YiVqwYbHxdthjueqzburJ0OMvN1u8ra/m3wWlbCrZsBWtUV9io1dBajyVnyOAkg9mDI9Y9sNAOiBfOx6Pd79ZiXVVVhVT2WInR/3Cdyr4vN4hU07H07041BQqDxRGwhmAwRi4eu+d4srzAHbTJnzncglVXsGVRBS3meMIT9mSgBTcscqcUlSUpdfRW0rOWApaZrTEkV8EydVlZWF+OXYIdVmMPH9iqLMfJGfQM7cjUUMkVS/SuZ2DniDVJwB4Zu9sH7LH7f1iUYOUC6+TgZ+y4SawBS2hGGufX2N0Oo9XAdqj5jG2Gu3a2y7BScWYtrGW53SSJlaOqmqVvsLDKV0SJ4stdxN70OOAz+UohFW3xgX1wRXuG1kC2ub4DFVWftXh0HS6tB2DZKlhNSJ7n32J1jeZXPfNtuIolFiyNEwJ2clewCxVFLGJstLaS/YQ9Cpap32PnX9wst7pesHEPApaiVRLtpTXD8hhmHbHPYiVi7OCxe2DFdwu2vgFLsD7hqB7OwTqyNUqvW/dqj9uRDsYnVEkH7MuwHotYm77Porqq3qe3un6YprfCnc7QeWgmRbX0Q/1QNcQ6YqFoBmyWZqwMZt/djf1dJ1hod8lHR5Yqi3kehopfss5FUSalVFilx8daHR+PwCZWpBcsz+XlHuwy0le5zRnWa6kgWM/nqiKCdiwyqsfmk33cq8eIJVj9r4EV2PA0GPimB49FF/+PcJgm2zxQQ42FtSiysWaDRXDiqlSChXXBApOtwU3vBsMQzJy8sc0+TdRBOE0Pb9ODnd7oVCyVOHxV0tPTU/1vHZq1TbBc2AL0h6cBb8l/xdxxS+Q4GAbwCBeShhYVARk6IytQdrk7QpP/Qqfm+3+re950MjknTmK3rvNANwsE/O2zUaIv9hqWn07DcoLBPXAOaKC79rFzfg/ufhRa278i8Zq0mc8JWvoxYsS21AOCYhfMi+nbTNsCm6wZNij5GLFjnDoc53nsHzuuOLRithrn9pq0gTSzIrgehDnzP1iQJ/SainvZpWt3suIeU232LWFP1uaIdsR+nGfSei1IBS/EdzQVD8o9BJGaaRUf219hoGPbe1rvyZqw4XZwkfiPWYVFoBRaj2rRiiYV+UAC0t79DQGMOVaF8B5jWzif2ofnX1oLUA1RkhbpzqFv0sm6Hot2YNV7DoCFNWFPU/GgLmOVxlaDMajBkPfnqwv3rfe/7/I+u13Jykx2ZhcqxeuTtrFNwoL4QOC75vUZrSXsEUnaiNUG+x0m+fAOsOa/QJJSmyr04dbVHTp4R05TqPlkHdWktYcW/OYSS4qn59cmYZGPscPD8+sw+AFwX3kFCVsZws7LGRAcj9AQL5YLrMeKc/DTZ9UmrEPz9Mgnz34Qdmty7GJFrNZO4Gne5R5HAE+D12hgeRCR2kRqwqplzmx1WB7YF4cDG60Uby+tjQiA1+BOzR7zXhFHA+Yf8nAffr38q7FdR1+rlPVwBu3kZnQNzdtb1Iap+B0J6cuBLmGllFYijFn29TH9yMe9MMZqbS1h6dIP5xuu4ecIPCllbAj7UzF7OKWcoHXCSYUQIPfVsTLmD1rF3sigxaoitk5FvrdZ0+21NZMzozFaH8haxx7P+d5mYdV7pzXfC2WdjMVSjp+wfi+WC68RRyeW82Ql7JFYV6BZsd+C5UqgW+7w4O/vsZRMugX78v8MtKzDGjWTFtY5NZu0WSCbz39m2GKtBEQuxjWfldqeGWCDFi3xMTZb0DJYjjNTjGVYqSpWOFN6JM0/qhHaLlg6A+hpXLBzCavYrBjdfSS7XuzH3mDtz+koSVu1at0Z47SbLSfYOMqqVoVaaU3bkrWARbEX1BYJ2jrVsMlD6wzMbmG9XWKPV7HyI2u52WiN6eJsqV5tpyfGJtJyrSewAlapmhZSSSdBpWpL94Icm45s235yWtOBeVi0+1gsjoGqaxULxSIqWmOK2JchWUMws4nTmqrVC6y@Svn4ROsS9gClxKYGTbmOhbIAU+a2dQHILB2zBpm6BbzL+fjKVx9TjuXrbLY7BASsdWZAqxaTFrQuZ06xmQMlLkWyanJug5rVmPN8vMsY+ncwpqwmTbnzlXrdmx+3xZswkORhWrLUcVit2OT1sMasdVu69aN2Hq3CVvV1q11bEfaXbCuwjIbrKVqkTK1VmyO7QgbYlZhjcVSqRYpUXNrHftoQsiaYWupa1WVWrcm7PlFfmTNBs3btUhBWrcm7DK7jWkjdrcFK1Ut660Imm0BbE+pTWu2a+vWCrY+rVmvlWuodWxtWrMRK7/cStMaaONJCFIEp2DYjJXrqcjKVy63caa3nSvXUuXal1kjO1i3YVNWSJH628l2l9OaF1g3a1Pq0EStaoc0r8mGINu8OVpeD7tB5G+G3SabqLfHDpO1jkzO2okXrbSVvsW3IbfgCo9AO9Eqir2GrQdmfcgN2nX48AJI7v3UuUOByg7LVjTbD8JPNzgNFlCAB+fFZKehdFixlcADAJP35gbn13orO++7yVNEYubBVkZbGUOxln1/IrafvOh6rJk0w/Yolsg3CBod8IT/3wGS+lYAblIsYrwX3k8EQMSnth5uVGz4yN4OjPUWqylvFbT1dsVSzKqt2/Mf6gY+tVYgD64)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ALQ?ABdCAM)7WLxK)MFBMVEX::NztGY27jj5OWtrrPG69hgx5Lz9vUAplHT7+Gt48eIipIvt3Hq+PGA06jf9OmTk4xH?ABxElEQVR4Xu3b64oCMQwFYNP73PT933bN6mRbZqMilho4518aGT5BbYvk9F7KLflaTGXPmTtJSq6iVDOX616tXM3SjFxKlbg6SzkdmvbQMb3rTunsruFic3umX4mUbfPSNGeuLtLcuHRNc1Ka0ZVyMheguwTolKI9dCkO6CcBenzso4EGeovRHBpnDwnQQMe4YRsHGujPZHIOZ4/RARroeV3fRDs34ewB9OgAva4zzh5A29hcsI0DDfT469b4zQXbONBA279u4cAEtM2/5ChUob1DXHkBhDq0oz1dkxtA9Thu9QotVUKz+ode6ghaXqQ9jiyiF7KIXnxHNPl7HqCDvye3aOVxN33os7m0vEfow19yR3S95r8L3QLVtcBtk2g/GE23vIymrmgBZR0tCV+ClviX0aW4Tmig5TMtaAuf6SCVoIf85MWUWt4n0XnpguZ0Q+fA3TAaTfd4QVfLu13WwsKhcWj9lCchQTfJBtH+NOCLqKJTis/RwXe62P570Ttc/6iOUHy9eFjzGdMXQHcP5lyABhqDDEADjTkXbOPKsLjMg+vD4vo8OFdRyqw209voqexxyuS9NpbvXhvL57ebldl/m+gfLZg14bTDsMQ)ASUVORK5CYII=!J%iVBORw0KG;)NSUhEUg?AMg?ACrCAM)U5iNY)YFBMVEX::99u797t/o6Oj86tj+8+fi3tv95Mv:fzy8vH92rjV1dT138hFRUb8/Pz/+fL/+/j5+fmWlpXqxJ3EwL2Uhnjx1brOtZx/f38?ABtZV3+0qeFeG1fWVXqzrL/zJlhja+0?AEqElEQVR4Xu3cCW7cMAwF0GqXd8+WtU3vf8uKsabwDFEziWJUBPhv8KLIIqmBfvBMfM8P7olxnqdpnrlTYlIopRIlcncop7VzAOHtcNr+HIYXkDB3hOT4FZyaZkiMrB0PwWrnnAJN5AhRi+O1DcFanfcKP0mcnL0Mw/CYc05RHPfKPDlw3MQpgci/1vds9gve7IyPkbaKz68ciFliQaLR3uBfNEoZL42VtLoxZanZubeF140BFu7tbYqDwyMy3tyJYUOK1Q4gjB22Py45uznydWj7kB2PWgGEv8PmA527I+gM4e6obUHEoeBo5+5og3ZwtKPEyMARVo4EQeHQ696tR5skFkfr2qsW6GmTI+ftX3l46J2qG5IddKybKof0R5YQPB09fixBy4ow3iPy1ZJzBFcoQWvqZOdfa0n1K/2ISHDPLlMUmWvJpDEHzX5lGi/3I3JjVR6JZEw5bGRMYc?REMEMPVDEsMQSZSRgcMY323GG5MkDCDPZDpvifx/SGP8s4bYlHATm6Ihz93p93aqgHQA+atAlgVyqh1yWCALo29v0i+UBDkzgYAjMzDFWk6QFQNRGEFgQQDwepc2z0nZQPKCvKL@eEEuTqwhBekz471BsiSnhEkLwg41vm7JOwg9xtAIAIRiEAEIhCBCEQgUjQWlPHSWFXX6srwQcZBxC1OYzyPAV2+xjH/TsdiZAoO473vNnLmMMQeYQ905+3Uca1gt9OnLbCdYajjosdur/npRPzBrfHD+VzB1RsJ2dwCEDMkhy+8DN0f8ngmPkpw3nXGENfTVUDoY6IzDfWDgRog9MHdmQOx8DVAyFKKC4QqbtlAiHaDD4RoAPlAyJacHeQeKRCBCEQgAhGIQAQikEqLRinjpbGiW10ZPsg4aL8B3f6Q8T5fgND3ON4cYpyXxBj3YOAB5vi9Q2z9DmkOy4OS+bHVuIODmCfTkI/c4/hGKec0ZJdXNUZgmHWAMhZe9OB0pskvSu7zqCSsx9N9TOPUOuVXbx047Mtwzc/eIkn5gjyp2zz1fVhHlV6Geu9N0yjXE5JCiFkgDrJAPIKUXU8vG29Sei1pNyQFEHcNASF+MLB1k/P+ThAhKYWAQ0NAQkBK3h?CbFPiiF6.Upl/wiJCWQ7MgSAlIm0fYNSfhBsCRk.8ILWEHwZJLljCB0JIav1pxK/M8T04HLClsQJKj8BzBjHmaJrUVqB1P5ZLcgDTXmPKTHT84sx0b2rZckhi3hZEvqrWwA4p1Im1bLAEIKPwquPotgExKv3wsAPmcRN3EGfO0yuV4LOlHMMTZ4bMBiVY0RIWb9LdL0DTm6D3qEL+YWekwfCHojU8a0mdI3t8gOSYH6tn3hWCJm+YvQDIjSy4+OdAUhQEEHxymOaC5FoN/LXyUm4ZYhPo2O0BwcUVD9v/8VgMpPxDrgJSXKHVAyovGaiDlZXw9X63yxqr8HBmrd9AnO0CI6qqG4QOG4AYEDva6HXT1Ww7Zf0BH9yM5FKTKkSnuEI2hHFUOsXHPvnQg+zuIa4XiKQpqQHaDEBc9O1ys7wOZFHH1xiRx0kwdeI+g62muEPSDAZ6QOKOfcHCVFP6o5g9Vk3s4mHpeS)ABJRU5Er@ggg==!OU%iVBORw0KG;)NSUhEUg?AII?ACKCAM?ABRjmKi)YFBMVEX::29vbq6urw8PD09PTs7Ozu7u7y8vLo6OjmnP7suv3no/7wzf3+/v7uyfr8/Pzw4vb5+fnt1Pb:v/t6u7z0/788:18ff9+f7q4u345/7r4O/+/P/m5ub07vf29PZvdKUE?AC00lEQVR4Xu2b2W7bMBQFfblp974kXf:L8vIMCzyEKkbmIdAzXnOw+Bw4ICCtHoShzHBtpnRSzarXHzrkKG98nPJlE2h75C1QgedzeCtS/BdoUO+czh1SK88kYJaZWPokL1CB+HGeASFnDGuUzFaCw7sGO3N4a6w48ZoLcygVtQfhb0NHUrE6GaH5QwtOUbtIoesMQ4dstXeIcyB/cuoPxRcMIMlx6g90VHki/GcilHPBDPQY0SHJpvBj2SMjb6yUMgX4zYVo2maeAZHjtGgAznGi7k73BTyxTimYjQGZjDkGA04KHaMZukwK2hujCcxMAM7RhGYgRyjeKIZ2DGKwAzci2QvAjPQYxSYYceOEWegxwgz5IvxkI5RYAZ2jKhg6DHCSdBjhBmaiXqRXAsqyN9PdPgiXYrhc95vN5vFjX/joyLyHt71X12hfXUFVRWqQlWoClWhKjz8b+rc/yspgf4xjvqOm7F285ynGoNEGA/3IjkmDLgXye5XQoF7kewTBsJ+qoEKj1b2P8dYYxQYgR6jlI9Risco5WOU8jFK+RilfIxihB0jUDxGKR+jlI9RDPktNkHKxyj0GBFyjM8Z4fD2GKkY9xfk7TOmadrEBJXVR5/16WtVqApVoT5xqwpVAQxeU6FNKJxPCcY7fYcMY8B6ZgTwjy5mQXNl84WLJL6mUPYRm7lBfs8aDZpSLw4tTpV8kfwtM0FX3IvkGibQWkrEuBDwFIjRhO+3smOMJ/DsyDHGE3gmbowwAT9GMHCOHCMcgnMNN8Y9TOAsOcYmnsBaR47ReIIJrDXcGI9hh/YDdoxooMkxhh16lCLHqOMJlLLkGBsdGyjD/VB0Gx+ChxxjPIGHHSMatMKN0aGBIsc4CwQGLTvGyKD1kGOMM/A4dowuNqDHiAYtOUYvEBvQP6EHA/ZXyzeBhYElxwgG/E/oZ4HAgB1jbOAV2DGqUMAbPC3GPzZST8eWeJrK)AElFTkSuQmCC!IU$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAIsA3AMAIgABEQECEQH/xACY?ABBAMBAQ)))?AQIDBQQGBwgJE?ABAQDBgIEBwcPDQE)BAgME?UREgYTIQcUIjFBUTJhFSNxgQgkM0JSkaEWNERGYrHBFyU1N0NTcnN1;SztNHhJidjg5KUorLC0tPU8PERAQACAQMBBwMF))?ABAhEDEiFRBCIxMkFhcRNSkRSBsdHw/9oADAM?AEBAgEAPwD1TBBBAFZNZ02lpgKuBzGr4S?iOle8RtZ8g5BOxBct/0wD7dY1bFbhy3n7rdWgqnsL6w9AIShaiPnD0Wqy5b/AEg5UcHAp07CBlF/hf8A7GJbVvuS1rWYbRMJwDVmuvkGVyiCe24OnnE6UwzEyKZXiKBvF3jn0+l09dTZq13lEiaqRynMTw2DQDcI9desbg4X3OXhm04CgW6o?6Up5DDfrX5NxGZhnITLNSA+WHMevQB5xRTvFh5c6Ilkp8Qj1HkH+MSCuLJqQ6ol/7q9R98cxmc8YPpir8bJYmYU7uo0HUfrhltXUtMVrJ9axjLoK2NR1OTKyyJic9xDc+xdYrGGPJg/mgtd0M2TtA5lFERtLUNArWgm8g5Rojo7RRIT7yVwl84hh8XkIBFlKXiy7fKZM1Sopj6spPBEepfVxuzx8wfWNPO31X77Fz+Wvll5jiFsm2IJsppugXrdqGEeX90ULfaPO/nuSr/AM0gUD3FjOmLN7MUyN36jFpp41T3mNXkHSMJpgeXJq52/PVTiX9xbiBOdO3eHafaq+szPxybfTn4Xss2hoLZKbt+qmqoP73wl9o05ecZ2JZ4PoB64aTNbNM@UchX53QQp56VjS@LIZnm5HpZbKOKR8tI3CYBoPSMlTDUuQQ9UvN7SlHhM2E3WnOneEt2qvv+C107ey7TlW81QTxLOt+XSA6Zd/McpaBrpWOavJhNUXyrZeZPTGvEnrHBu/XWNuPIVclP0fN25LA4E1PVHLXQa/mjVZ1hmetVzqOGhltflUjX3e7nDtPWp93P8AupLVnPg77gAT/chLc1TMPab593zzdesbBGt7OCGTwVKyHKYprDVuKJR8ZugxskWHRDIggghSCCCCACCCCACCCCACCCCACCCCANYnyqCUyEyxTG0DoAhyiGRJLJMD5QZSd45ZTF1sHXlEU+dt1MTpsTmC/S4taD4d?YkfrKIpbqgkpvBqWcYUL5jSMG3mlNBs1VUScsyNCmWcHEU7vDb1NUe3s6w1I5nrx02etEkGyZwUuN+EH?191OfWIinUSNmuVzOFylAt1ocNOwRSYnxMfLKk0H4z+SXhJ/eMQ2vz3eZLFeqi2s4xLKWp2TUwekViiUn+iIPM4+faOa4Rw9OMQ8bNLLZ/OdLDaTzEB6+6OgyzArPfyP8SEVfTBybMTZXXGPr4j+QfUEdAbyU9hTvRT6fFEh9SmNKU/K9+nlBGrtidnM+s/0JrnzNIkmHpIzcINc80xfnOJM9bgblOAeH39OcXhSPmv7My1VVAhxt3I/qiEAeEbQ4hHvFhMMNIu3JlVVDEb1A50Ex8RgpQQHmHLpF6dwikgCqipE0fpnMH5xiOa7sbuTs/bOFOE7laSH61NU3Cv72gl3Gupx0AOusWTWeMHRbd6RzaBcQh7vqHr7YRQWj1ksnegsiqQxDWHDiqFBDSKlnhZo4y3E3BRy6tT4TqcCVmoW009/WJYtJsR1bI3KTiyyCTX6NusSGKJh5j3GKJ/i5qiW9o2cPkCqZRlkg4bq0G36QB1ENNItAUWWMX9y1DwhcA+0YkzBcTHiy126DgnxlBJXX55AinVkzNM4qtDLNsv6JuGvkA6axaPTHImplGLaUg9NQEAiik7JeYsG68werukVyEUyilBPXqIiGtIZesW4mMkiZht8qBQsvRzRC+g9KdRjLjGYIkbtE0kgGwodxHr3GMiM+nlhD6lghIWsOIIIIIUCCCCACCCCACCCCACCCCANAxrRebii4RMsiS20peG3TmA8418ZgZm8SbIMXKy7swEJmqCbr35iAfmi2x1P3kunDlNoiRewE/V20HUNdesc3nU1fzRXPbmcHcJqG9UQDFyzAFA9gfbFVrV70+OMrDs2j+oxWtoiYWzmazNTFCrHiO0buASVT8KZ6gNajz05h7I2pnK8l56hL4+oFySdQ+LkEaZpgHnr05xruAWTpGWtplMURVeulPizdQ/jPTiV16AGvs9sdBRURlSB8w2c4N61wpTxGoACIBXQNOUQ/wAG6vodcjKEFll8057BUXdW9g193W0I1CeYimTwjdCWLKI7woUyaxgAqmVzvtEK?6jr0CLxxNWkxRcrNVSPECJifKzALdpXr741JkMwdsN+TQv3pMSpcvVpdQKPTtTtEkGV0163mUx9GrPZg6QVIoAbsnlCnZU1AOagjdXnTlDXEjTcH3rEswJMMgw5LZROxLlS+0PEIh1HlFfiwZw4kOS0YooNKAZWxS45il5BSmnfTtGKq9mM1VS0Kc6A@Y1MBk0y0ARzTDy7aQJV25w7KUkUH8jbt2jhUQUIWwfXaeGnYQ/NCzqfJvsMuWaR1UZiugZP1SZj29DBUOVentiwI2eYjYJ+k24sbRExDpm9wGAP74zZTJWzGuUY2ZQeIg6+YjDsfg28xjveMK1CYTX0e1RlEmLL+EEk99AOgaAUhR7ecZqLSdMctTfTP7qZqK1NR6iUQ8A+XLT3xYu2gZRD5gnNcBi3iNR7h5DGWgGUoBiU569a+8Yfs90U4YATpooQupjqa/Fil47uVpu0ZEplJmrBBPNUvIcylt/AUw10AOwV0CLAwJmuMUgVpUdIlIXlEkV6mTLLbAYqBbx4uoxJWGJhwBDqxl54RHQQ2sKEKChCwkKEKQQQQQoEEEEAEEEEAEEEEAcc2hD/lo6TTTcueBPMyk65IWhQ0UTCTemZz8ZUdoJJiB1DXCTNIXoIV59Is9s6DlrOTP2ZStlak9emsNyxQ?Ehi9A84VtK5h9z7ZpwHfui7y5UpaVNMOVBDkPb3xWa85mY90tKYtuXYPJkm6I4bS8qubaVMpxtyEemg/OHmIeyIcVvHXxVos5Bs0ciYjhcpPm08BRHUBNy9lYpXmIXclO1YPt4evLRyUG3rDPKh88eZBAdfZGc1wYd5JUfSqz0szUKNxs0xyp18IAUdAEIirTok+p3upZo3w+sk39IIoZZEwRRPqUfYAhqOkZDGfIJS3KlzNVBsgUxUlMv1Z7e3s6xUKyVaXOcieSLfGmnx9A9piflCUB9w0jMeKMncsby6SuE8m8M1udTLUy+tOuo/WAjCn/W+f3W7Gbov3JW6wp8ZQttP8pUBGoD101pFmQjZq3cntSboWXKWlDjpyrHPEjF+PKJtV0pe0EjjKOUSgQQEdAHpTWodAjZHz9SYqNzMyoJtEly2Fu+WMHIRDsHYYN/5SbGzFfNslNbe0cjQpLRG4dOVP0RlsVfiIHuKXT6Ophrpr1ikSk7khzKpqk3o45t1vAQ9dQAO3lFg4TU3tDeRU3cgDmJk5XDyGnbnD9yLFVqiQDF9cIZnMO0ZBEhuLr/jGAmQlpSMgPl14i8iD3561i1IUSlDgG3prWJqopk202WGWUumgdgCJgC4A0+uFKHEOmnMYdQIkiDUhPCELCF8IQsSwaUIUISFCHQQ6AIIIcQsERKOUEvlFkyfwjBCoLpOE8xBUipK+IhgN9oQoSQRrbzHuEGS50XmKpA3WIYSnTVmKJTFpoNQE1QEIy5DimQYhVWTkM6lszOiAGVKzckVsAeQjaI0gC5gjUsVbSMI4TmG44hnrZi8sBTJPddaNaDQAGNZU+EBsyT/ABn/ANli5N9oJwB1OCCCAOWbQ5Ad9i5k4yhMic4Z3H0KWoBSvlSEm009HSB7NdzFRyscCpXBaVItbSXGDmADr/Oi0xhMF05o+QoXwplb2F4rjBTWunsiqxuqdZKTydBofKUXTtUuAqZgJzJQNa01DSmgRUebVt7Snt3aZWeFJQvJ2mbmb69WPnKq2B1AK06gHSNhUeL2mMmQhdOO8KwxB2GmS2UtSACXeIaefnD1jJrlsTWs4gLxgIAcOwd4ngkMUqYLGUtVIpqHCUaB7u8UeKMIpTFn4E0l80qudbxcPIlQ5APeLlYiTkpEiFRyzgJyW1uqA6iAhyhxklCCW8DcqiN1QD3wF8Wsldt8p1LvRimeuP3teNqunEa4f/qxCylrVgrm7muQxjXFH594BQB7VAI20HBbiZhy/k6dIR8dRdEckiqvF4cu36hGGbB3uqCWmWzzHuXyrfCtTn3CnKLdIyeZdUOItNYwWYCRS0xPtpQYsQSOb5pC9u8PpkZiUGIlZg1w9MVpC2SdTVNuczVBQeBRUA4SiNQ0EadQ9scaTn+39b8T8NoV5XrF/wDYGNn+EU5dS7YziJwycrN3BN3tVRUEhi1cpANBDUNBpG17MVFnGzXCa7hU6qykpaHOc4iJjVRIIiIjzEe8ZBh+z1TFK2HSnxy2ZNpxmm9WzH1eXpb1HXn1jnc7k+3NxNnvonEWG2kvMufdr0wvKldwXVRNrTnzjtJRN5QUGFI5/ssk+0iXPnim0PEUsmzU6Qbum0TAuWeutaJE0p7Yj2i4OxviCfEcYZxweQy3IKQzYje/jARqatQ5h5x0lPwBD4fBHHcKbMMbSzEsvmc32nzOZtWyoHVYmROVNbQeH5WlPcMbntKwc6xnKmrJniGZSHJXzTLMDiU6nCIWDQQ01r7o3CFhxHDB+D0iv9/48xc4/pYfpAY61OsOtZzhF1h16q43Ny0FmoqUwZtoltuqICF3WtIuYWFI4c2+DDgBH5QZyv8AxjsP+koR1PBOE5VguQJSaQpKJMUzmOUqign8Q1HUfOL6CFDmT3YTs5fTFy+d4dzXThUyyp99cBccwiIjQFKBr0pGzYOwDhjBijhTDEoRl53BQKqYhzmvpyAbhGNnggDX53gvDE+f79O8PyqYO7ATznTUiprQrQKmAdI0F852Hy584ZPWuB0HTZQyKySjJC4hy1uL4ekdej5rbWP208Zfy09/rzwB9KYIIIA1PFkv3mcSlW4flTfYW4NOupfdFHi2XneStfdSqb82MC6PCN42jUQL7Q0jb5u8aouk84/Gmbw8x1KIcvfDTOyuEhy1E0dOE5vF7gjB1KRumU0c1xKjw4+SmLDPauATUuuPcFtpqUEBDqMZhHZsyxMRc2j7C6+2MdfD8vcuN6OYTOa3ZhC2jXzpDfQrfMD1jq2vK43FDOQkLmIXI1bJpeHKTNxe7sEZRpakqBM5FVQaeBRWpQDppyjCcS5mlaoggZJYg3EMQBr9vSLCVGUOyDeLlTXD06Q4HMWaDBU2SmJbx7iIewOwRlHKY4j4rg5w4t2aBrBtAtKRIUR04Q+uHhjHQE5imLS4oUEKQ9MqlSl/TWJFBOdQCl7V9gQ9MMv/AO1gI1XaxhNfGuzya4eZOEmqzzKtVVraWxUhxrTXkQQi7wdKVJDhCRyhZQiqsvYoNTqErxGTTKURDyGkUG2TFL/BuzOcT6UFbnes8nLzyiYnGsQg1ABAeRu8XmBpm5neCcPzV5l70/l7d0rlgIFvOmUw0DoFYlNWh1SJJ3qnITpqNAhiz9m3blWcO26SJhtKodQClr2ARHyjmXwjJK1nODpUxeJ3EXnTJEp6akzFQIYQ7cJh+uPNjH0jNcPv9n8xyt2waScTBf8ALsTtTt6iILHPzpoaFD3MxeNXTMHDVwishr6xI4GLUBoOodhCKmR40wzP3u5yOfyuYO7BUyWroihrQpUaAPLWOe7P5+wwb8GmWTn4oTdZWZYid5UyrL0MIEr9Ix9OoiI9Y8+Yacp4AxJswxGqnK0MwpiPV0Zqm5O4SVUUKZZQhCgJRLeoWtTapWjS2JDXsPG2M5HgiWJzDEjpRq0UUyswjdRXi7cBRp76RBhXH+HcUTd7KpS8V9KM0yqrs3TVVssQg0oaxQpRENS6hyuL3CvOfhUzJo+2PoN2Cu9qzdy33DdyirvGoH4bQEKW6h36Ru+BcGsGk3Uxh6Smc3m8zZJJb3MCESMRChTAQqRCEAleERAS1qGutYUN6ggghSCCCCACCCCACOTzrYBgKczl/NH7B5vb1wo5WMV2coXnMJjCAV01EY6xHzz2oYwxM12l4tQbYinKKCU3dkTTTfKlKQucfpdSgB0gD6GD.DBCBXO0i74U9hOLTlryhwJFp4Q+qHuSgZcmnXWHZYdox9vikieEYkDLMWvcBpAmQCEKTXlSHkIBa28q198OoHeEwMoDolMbz6RFZkqBlBaU/PsEZlIiVDUPo1gkZNG6lSd4kEupBrQwawo0qHaGqm4RpoIwBFUSrmiVKlxtA5w2wCgFoD5w9MB0gDn3whJTMJ5shxBLpOzWePV93y0ES3HPRwmYaB5AFfdGy7N2jiX7O8LM3qR0HTeVNUVkjhxEOVEoGKIdwEKQY9xU0wThJ/iGZouFmjPLvTb25nGoUgUqIBzMHXlFjh2apT3D8sm7UihG8wapOkyqUuKVQgGADUEQrTnQYeRg4uwfIMYIs0sSS5N+k0VzkSKHNbdSmoFEANp0GoRGvgXCzh1MXDiQS1ZaY03syiBT54AYDABq89SlH2gHaNjghSKtHC8hTkicn9Cy30Sma8jLdiZJTXXeAQpWutac4z05axTsy2TYthbS2pF4QqI0DTQKiI++MksOiSCSQADS0A00?h0JCwpBBBBCgQQQQAQQQQAR5Wxl8GSdT/ABfPJwjiCXJJTB8u7ImdI4mICihj?+YVj1THkHHPwkcZyLGuIJQzZyMzVhMHDVLMbqXCRNQxQEw;ACNACugQB6+GEhYSEDHWLxGgA2kKt4oQgBWIpjk4BzgGkLbpC0DtCYKZr2hDFCH++FppCYDHKNoj9kIULjAanKJRIFYdbCFIUPbDoSFhSOWfCf/aMxL/Rv7UlG1bKf2rsHfyMz/qCRa4lPJk5I5+6b0f6I4c/0hZkeILbr+HxW0r1pGTKxZejWnord/R+STdt2plZVoWWW6W05U0pC54DLhesJCawgTF6Q6GJ1tCHxN6GlCCCCHEEEEEAEEEEAEEEEAEeBdpWzPGz/AGjYqeMsLTddq4mrtVJVNsa05DLGEpq9hAax76jhuIvhLYSkOIJnKHcrnx3EvdKtFTpJI2GMmcSiJaqANKhpUAgDuUFIIIAgVIpUbCk8qmEP0Q1JNbhvKnXrQ4jp9QRkwQ3bBcmWecFgQ+CF2jKPKC4NR06Q6wPOHQQbRk2wsFhe0OggwQlhYLfKFggwHKvhRgH6hWJtA/Bf7UlGz7LVUUNlODTrqJp/rMy8YhT5AneNd+E2X/MhiP2tf7UlFFi6Qy2dbB8EMZm2z2qaDHgvMWnxbyEBhQ6u4xJImv3zOZYj/GOky/nGM08wZejPSW9t/R+TvG9ZgZWVbdffytprXlTWPPuHdjGAXhC7xIb+X4Y4/QpHdW8ilv3KJ4f3b9aNyBhu95vkLLLLq3eHSta+cAUau1LAaX44SL/fUzfpi8wziST4oYqPcPTFvMGiaoomVQNcW8?RLXvQwD741NtsX2dt/xTl/8AxH/5hjbsO4flGG2R2cglrWXNTqCqZJsmBCmOI?mEA60LSvkEAaRONuezuTzR5LZhiDLes1jt10tycGsUIa0wVBOmg6aDFlgbarhHHM3WlmGZkd27RQFwcpm6ifABilEamKHUxfri4WwPhNZ6s8WwxIlHaxxUVXPL0hOocRqJjGEtaiOtRiyl0mlcs/Y2Wsmnzfi6BU/doAaaQBou0vbLhnZ1OUZXPk5io7WbldF3VEp+C4xepg1qQY13DXwjsKYjn8ulMulOIc565TbEUUbpZZTHMBQEw;IgHujtI@ddaUTcqiGsOgDVNpGLz4LkiEwTkkynWc4K33eXp3qFqUxrqduGntEI5krt1xJ+BbJMVrf6tT/xR3iCAKI04fmwP6aQlC3pP0dvhJWcRKpm5d4ICIhUDXcPLn06Ryr9Uba04+9NlWX/HPi/ptjuUEAats4meJ5tIFHGNZKjJpnnmIVukqCnqqFoaoGNqI3Bzjyhj3YLtBnOOsSTNlKEN0ezNy4RNviJRMQ6pjFGgmqFQENB1j2xBAH:2Q==$/9j/4?QSkZJRgABAQ?AQAB?D/2wCE?YEBAQFBAYFBQYJBgUG.sIBgYICwwKCgsKCgwQDAwMDAwMEAwODxAPDgwTExQUExMcGxsbHB8fHx8fHx8fHx8BBwcHDQwNGBAQGBoVERUaHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fH:BABEIAJEBBAMAEQABEQECEQH/xAB1?EBAQEBAQEBAQ))?AQIDBAUGBwgQ?EDAwEEBgYJAgcB)?ABAgMEERIFBhMhMSIyQVFhgQcUM3KRoRUjQlJicbHB0VPwFyQ0Q2SCkuERAQACAgIDAQE)))BAhESITEDE0Eicf/a?wD?ABAQIBAD8A/wBUE?B?F?ABQuAIAEAXAlwB?FC4Fu)?ABQBRQ)AyQ)))AgAglwFyCZAMgq5IVFAFC4FuAC?KAUAUU)ZI?I)?ABQCEEVQMqpFeetrPVYUkwWTpY4t8UVRA+fp1dU1GpSb1Va3FfquNuy3AqPqucYaRHjKtI4qOVdPUQ0rnQMWSW6Nbiiut42Q0j5czNVpadlY+pdldMonX7ey3IqPtU8u+p45bddqO+RB0AXAoQK?KoFK?ABki?gAQABQ?ABAqKpBzVxFYV5lppjyo+TSuT6fqfdX9jbL6T+ZydIYS5FdWP4GmXVr0Nsvla5SVLolmzzhYuSx3XgnI0j30NQyejika3Dh1exMeF@I7XINXAqKVF?CgFVAKU?GSIEE?S4C4FuAuAuAuBm5FZUg5OcZacXvMNo2UivDBDOzVZqhzfqnouLrp4dlzpvwxry9c8r90/d+0xXDl1reJjhtzoH1W5X1v2mX4erZPul4TlEdqH0j/w/wDr93/11jXxOcvbNCk8Ktv0r3b+ZqrMvnTJrk8a0u7a2JeCyXS6tTldbr+hpnD6VLAymp2QtW+CfFV4qplcOtwNIoRblRpFKKAKAVUApQ?ZMogACAC)AIoEVSK5uUiuL3GGnnkccnRwdIYbZWdSLqzv17yK22c0mrqyVboa2Zl61k6Fjs54GyhMNtcpUbTmaZbQqKVGkAqKpRSgBQqoU?GTKI?h?g)gEcRXF5hYcHqYbeaRTk6PO85y6Q5LzMNAVtqKaZeiFcXJwOlWZd1er1RbWROw6dsOjSsu0anRiW+00y6NKihFRSjVygBSgFVCigAMkRiVrnMXHmQcNxN3/MDDke1+N/;HqTkQ?AIjnI1q/FQrwpval68ej8kNKirLTyc+ivwVCdju9bpdORyaeaRTk288inN0cHHNtttK93Pka0k2VaR/Z0i+s2GsIZd441VeCHSIYmXobAvedNGNm90ppMtIhWXRpqGW0QqKVADSAUopQCqgFKAGSIEGXKjWq4DzU6K+VXr/AGoHpII?KBiVqujd4othA8lJKxiua5e6yr4GpVKySN6tRq3VL3Ug0i/VN/I5XacJFOLq87zm3BC1HSJ3cxXtZdZnubZG8FXtN2lMLDIv2uPcK2SYaxRXdyKXA7RJj2cTdWZdsXm+WG2otjUIiERtvI0i8SooAI0hVW6hFKoBQCFFAyQAjzVknRRifa4+QG6ZmMSfi4kHSwE4d5?l0Ajl4L8QPNjT1Dlxu13MquFTGyNyMb+d1LA6O6MbfyOF3SrzSKcHRwcYbhqncm88i07LRw6zNW6O7ORuyQ1FGrvIVrlJl1RvGxvDLvEiWOlWZaVy3KjbeRqEQgqXLCNZDKKvIqJcg3fgUTIo0?pRQBRCAB5paaSSbK6Y+dwPSREA8rKWRs+8umN1Xtvx8gr0qEeVlLI2feXTmq9t+Iyr0KQeN9LI1+US/sqFyDKR91fIvjbndSLEMSqed1eZ5ybcHGG0RVuhIV9GNOimapkvYen+uKukRi424/Ip2yjiZV1ZJY0zMOm9aaRUlaVEyIYba80mGs0KiZEyYTIC5jJhpHoXKLkUaRSooFKKAs?g?ECCBUUgyqAZIqXXFSK8j0OLo80iHN0cXGGkRFuhFeiJFlcjnu8jrViXSd31nkaslUILmUVJE7wjSPKjeRpG8iouad5UMkAmRDCZgVJE7yjo15UdGmkbappFKigaKAEsQLAQABCABmxFZUis24KB53tOTblJCuKGdWsuSU7n35eZjRrbDg9WRpk9bNTi5eV@qr8fqu3sMVQ6PT4d8xv+89eivuonGx6PS5exKL0irJKxldToxn9WNV4eKtX+S28aVu/aQTMljbIxyOY5Exdzv2oqHB1ePWNYptMpVqKhejfot5uc5exC1rKPx03pErM13NKzD8bld+mJ29Tn7H0dF29jqaplPVxbjeKjWSNd0cuxF4cCW8a7v2kbzm2+druv0mkUu/nVekuMcbes51rm6sPx0npKr950KSNsf3XOdf+/I66MbPvbObaU+qy+rSRrBVWXFt8mu78V7/?MWq1l+lz4HLLb4uvbS0ekxI6W75X+zhb1l8fBDVayy/Kr6SK/edGkj3f3cnX/vyOvrY2fp9mtsKTVlWLFYKpqexct7p3tXtJqr9Qx3ADqhplsqHYUbK)sQSwEAgEsRUsQYW5Fc3MMtMOatjKw54r3/Ay1l+V29qX02iPaxcd+9sXkt3KnmjTXjryzfp8LYHR6ap31ZMxJHRuSOPJOrwuq27zp5Ms0ff1zYuk1KSORr/AFaRt0e5jUXJF5X5cjFby1q+no2lu07T46TerNur4vcllsq3tzXkYt21Xh8zavTNMqoWTajUvghgv1XNsuVuaK1114cC0S2H5ul2g2c02H1elppJ23XKZ7WZO/f5G9LM7Q+Bq1XS1Ve+opYlgjfZcOCWdbiqW7zpXph/YKJV3DPdRfked2fi/STS1GVJUYruGZsd3Nc6y/M7eNzu+Zo21Wn0lE2jqdPa9lunIxGrn7zXJx+JdUh9bZ6h2UqK9lTQTSNqo3ZtgcuNu9MVTin5KZstX7N/UODq/k201W6q16pdI5cIn7r8msWy2v43U9NOnG3b7EO0+zkVKlK3T37m3VxYt/FVvxUzpK7Q+BSVkdJrEdXSZMhjmR0efYy/Fq8/s8Dp8Zf2ymVcUOTT0oaZbQ0ilGyg)BBFQohFAIqEGbBWcSYGcDOFyzgRcvynpB059RoUj2NydTvbN+uS+TXKpqvaS/O+j/WaSm39HUSNidI5JInOXnwsqXXt5FslX3NoNt6TTJI4oI21kjkXeYyI3BOy6ojuKmdMtbPsaFqEup6ZFWvg9X311bHll0b2Rb2bzM2qsPxHpImn+kaaDjuWxq9vdk5y/ojUN+Nm71aBpWzP0XDUTLDLK5qOmfK5Oi7tbZVsliWOH5jaKXTZNTf8ARzWtpmtRvQTFqu7VQ3Xpl/XdPb/lo/dT9Di6vibUbR0ulSRwVNK6eOdq/dx52VqovkbrVl8ePStkNXpEqo0bSucnTayRGOYvcrV6KfA0y/K00bafaGGOhlWZrKhrYZW/a6SGvifX9dwXdnldn8n2mpHUW0FRvGdCSTfN/E165L87oeinTlbt+opqDY2elSpayFsdulk9ej4OTLgY/TXD51HVbKVWox0cGlOkdLJu2PyVL8etzva3E2zw/p0DeiYV3NsuiFQKNl)?BBFQol;QAJYgmIEJhXKaBsjFa5ExtbjxSwwPwurejKCWZ0tBP6u1y+xe3Jqe6t7oaRy030YMZOj66p3sbV9lG1W/F17/Ag/dQ0zIo2xsajWNRGtb2InJEQw1l8jaLZik1mnRk12Sx33Uzfs/wAovcMj8h/hhWZ/61mF/wCmv8/ub2TV6ZPRe1zk3Ve5jbJ1okdfvXrNJsav3lNT7uJrPuonyMtZeDXtnqPV6TcVCLzyjkb1mu70Kj8XL6L6vNd3Wsw/Exb/ACU1szh9vZ7YWk0uZKmWRamqb1HWxa33W9/iqmWn6fdcDm1l8bXtmaLV4UZOitkZ7OZvWb/88C1R+Td6M6vNcKxmHixb/qdN2dX6XZrYyj0h+/yWeqt7ZycE70a3jYnY/UMaB0aVGiovYUaK))ACWAWCpYBYg?JiBMEIJiRUVoEwQgYIXAqNAoEVidwEVgGcCLlMCAkadwMtYlRvEqNFRUKAGig)))ABYC?qEACWAWIFiig?EsBLIQMQGIFsAKigUABSg)))?QABRAqE)FFAihAigAIgACoBQBRQP/9k=!AU%iVBORw0KG;)NSUhEUg?ANM)8CAM?ADLy3+8)GFBMVEX::++Of/8crj4t+/vr2SkZFWVFT/67CB/ywx?AEFklEQVR4XtWbYZOzIBCDN9nF/v9:I6FzBVKGaXyOs0XW5H1ntsYRr2zWiAfWSRgJ4W/6TOzK9k1Ah+NiPWzpWbyJVB49EQsni2xZVpBJHHxbCFdzsTHQPhmNifPj0VNkrBwtpBaYVWTJEwhSafSRcIyJOmr2ZxxCZY5T+IUkoQJlyz0noQpJGnYpG+YVvjncUw4bxHYeqgp30ocEK1isqolYIcRc1DMwtyieE1OEB8awEP2IQCwJSJxQ58Mbx7hMSZDhxsiIjwivM9kXMtkfKtzNLvQsQsKUmxZ3p+5mMnYlsG5PGbbAtLTtiUH0rbBelrNZBif0cZQbDlJPDsEANsWY/OBa5hsikkE73vwNJ6NmEy5ZLcw8XiPxbTtMgPiIxMz0e1MY7VMYfCPIWFQInLX6wKwhgnfeIFi2mBIuU0jgaJiFm68nAaeykGe9B;7V/MLDKpwd0dZu47E9yZ5buQd9tzWIpIKTaV2WUe4eZaLlT62I0aTreYalQqTNmJmW0Tmz9JYc9tgGVWRPFt5OFdvklblHKZ0ENMKt0RICKJEzcvhAtqR8LriVPeSql8DuA5SYoyLKTklikqQheKSg/89h3Sg0QIyuzPINUv2i0VGLW0dCijNQwo3VW5lPNHKFDpShcgQZNICCqs+WG82UYZB+o2yrL5a1RXpYZDh6hko++R+IdEQBbx94iIik3MsGI2seGlbRBibbN+RIyZMJH/JOEOWKhR3YjQFi2DjhdyFARvhu0VRZzz3hsjlesClkOgExFdj/UtKeu9O9deKqjFl2YEH5KQQo3qR4S26d2CUVu2spe2YhpGhF300Jz0nGJUNn+MCFT9EAP0XeiVvZqVaBwRNn07IyQx7QgOECV027xqGMUiBmQ2DeeNHYmIMzdpB3zXMhkAZXUbEW+M6TUSgCoikDejiLCKsxKLTrpPSG2fTBCK6BKDUPea/ijhgTrhq6trS1qQxaRDxfRB4DfvAUikUl9nfLLsO/WhjgrkHXkUQLWKJS3d6TkuWVaookqe+DmPI+lZxBaRCpLO7FqEm8hG/LEmALIoCk0ZhqDUkr9DdKqheObBUSvC8m81JVkklXTam4U2k4HneE5BENlHOrw4K+RZf2HSISVfx8JR813x2IckpPE9obv39hZPX/QmnN0unRQbnayQtshmv4bpbEYOqmSaiUaHluVrmDDwHSstfO+u1aGJCGKOaYDUjC1lcmihq2piJiPYQfr/TEp4f7fzuAM45DzYDUzeRcrC2bN0kO5gMo+UAh8K4vOlf84x65nO1CN59BZqcMy9TJx/d/44o7kX9yuRaL/DhMdkm36fCXYX0zIo2m1Mq6Bo9zEtgqLdx7QozmG/yGTgqEk/xzSmotm9TCv+ZP5nmSSg+teGH9U/EvuFGjU3drs)ASUVORK5CYII=!