["$ datatable.vb~.C$ ","H(BEeDc+a~~C|F9656H688688888]CC1~P96654}XBbBB[BbBsh","DataTable."," Data is often stored in tables. And these tables often reside in databases. In the .NET Framework, the DataTable type stores data in memory.","Columns, rows."," Used often in VB.NET programs, DataTable has columns and rows properties. DataTable is an in-memory representation of structured data\u2014such as that read from a database.","A program."," We define GetTable\u2014this returns a new DataTable. When the GetTable function is invoked, it creates a new DataTable and adds 4 columns to it. ","Columns: ","These are named with a string argument and a Type argument. They have different types.","GetTable: ","In a DataTable, each column allows a specific type of data. The GetTable method adds 5 rows to the DataTable.","The arguments to the Rows.Add method are of the types specified in the columns.","VB.NET program that creates DataTable","\n\nModule Module1\n\n Sub Main()","\n ' Get a DataTable instance from helper function.\n ","Dim table As ","DataTable"," = GetTable()\n End Sub","\n\n ''' <summary>\n ''' Helper function that creates new DataTable.\n ''' </summary>\n ","Function ","GetTable","() As DataTable","\n ' Create new DataTable instance.\n ","Dim table As New ","DataTable","\n\n ' Create four typed columns in the DataTable.\n ","table.Columns.Add(","\"Dosage\"",", GetType(Integer))\n table.Columns.Add(","\"Drug\"",", GetType(String))\n table.Columns.Add(","\"Patient\"",", GetType(String))\n table.Columns.Add(","\"Date\"",", GetType(DateTime))","\n\n ' Add five rows with those columns filled in the DataTable.\n ","table.Rows.Add(25, ","\"Indocin\"",", ","\"David\"",", DateTime.Now)\n table.Rows.Add(50, ","\"Enebrel\"",", ","\"Sam\"",", DateTime.Now)\n table.Rows.Add(10, ","\"Hydralazine\"",", ","\"Christoff\"",", DateTime.Now)\n table.Rows.Add(21, ","\"Combivent\"",", ","\"Janet\"",", DateTime.Now)\n table.Rows.Add(100, ","\"Dilantin\"",", ","\"Melanie\"",", DateTime.Now)\n Return table\n End Function\n\nEnd Module","Adding columns, rows."," By using the general pattern of adding columns and rows, you can construct usable DataTables in any program context. ","Then: ","You can do more useful tasks such as storing them to SQL Server databases.","You can display them on a DataGridView control in Windows Forms. DataTable is often used together with other System.Data types.","Rows."," Please paste in the GetTable method to run this program. In the For-Each loop, we loop over each Row. With Field(), we print the first Integer cell in each row. ","Generic method: ","Field, part of DataRow, is a generic method. So we must specify the Of Integer part to indicate its parametric type.","VB.NET program that loops over rows","\n\nModule Module1\n\n Sub Main()","\n ' This calls the GetTable method from above.\n ","Dim table As ","DataTable"," = GetTable()","\n\n ' Access Rows property on DataTable.\n ","For Each row As DataRow In table.Rows","\n ' Write value of first Integer.\n ","Console.WriteLine(row.","Field","(Of Integer)(","0","))\n Next\n End Sub\n\nEnd Module\n\n","\n\n25\n50\n10\n21\n100","Select."," One Function we can call is Select. This acts like a database query. We pass it is query string and the DataTable itself returns matching rows. ","DataTable Select ","datatable-select-vbnet","Rows."," This property returns DataRow instances. A DataRow must contain a cell for each DataColumn in the table. We can access fields with the Field extension. ","DataRow ","datarow-vbnet","DataRow Field ","datarow-field-vbnet","Columns."," In a DataTable we must have columns. These are a template for the actual data, for the DataRows. Each field's type is specified with a DataColumn. ","DataColumn ","datacolumn-vbnet","DataSet."," A program can use many DataTables. And with DataSet, we can combine those tables into a single Class\u2014this makes them easier to handle. ","DataSet ","dataset-vbnet","A useful type."," The examples shown here are not useful on their own. But the style of programmatic DataTable mutation is applicable to many programs.","DataTable"," describes the instructions that for man in-memory data representation object. With it, and its friends DataRow and DataColumn (among others), we handle data."]

$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAK0A+gMAIgABEQECEQH/xABb?ADAQEBAQE)))?QIDBAUGBx?AgECAwQGBgcF.EB)?ECAxEEEiEFEzFBBiIyUWFxFCNCUoGRBxUzobHB0SQ0YnLhFhclQ1NjgpLwNvH/2gAMAw?AQAC?A/AP38)))AEw?E?AXE2K4DGIQ7oQAO4syEwuBVwuRmDMAWNLhcjMFygLuFyLjuAWKuMi5VwAYybhcQigFcLgAw))))EIABtWvwsZxqurJxjpZX11JrqcodVdX2vgVGOSK0+I9Er82RduVuCX3iddZsklblcu5lVWaL7+KZNKTyeWgna2g4yallbvzRrciVSEeZFWbjHTiRGnG3W1b5C0tqym3e0Vd+J0UpxnfKxN6swSVKWePD2jeymlKLJb0vHUcW72loybmjfUM8nvcDGti43yxWnOwo3a4BKUVxZtmC5lCrGouqx5gUtbMpWautTTMVmOfMXmNUx2NbjuZjKCxpcHJRTlJ2XG74Izc4wi5zayxWt+CSPltqbVqY2bp0244a/Z4OXjI1o0JVZWWiXFnHjMXDDQzS1k+zHv/oerjOkNGk3DCx30vf9j9WeTW21tGq/tcn8iS/qecdWHwGLxX2NKUo+97Pz0R6UcPQpK7S/ml/U+fqYzGYiVoylrwjTuvw1YvrDHX/eav8A3l+p0UdtbRpP7bP/?zSf38TT6g2hbsx/wCyOTEbPxmF+3pSjH3uMfzQ74afVWSXhoS446l13voLv61vie/g+kVGraGKjuZe+tYfHmj2oyUkpRaa46apo/Pj09lbVqYGap1G5Ya/Z4uP8v6HNXwKs5UdH7v6Hdg9qyuoYnVPRT4NfzH2AEQnGcVODTjJX8GmWeae4)AmMlsAEyZCkzOUiWZSmOpKeR5H5+JCrTyrOuACFm0szNyd7pjr5oJR97u8Ah1Y/iPTMs7dvmVGLjJePBMG+4pdrN8DGs9F4FJqS0+Q2oyuYulK/VkS2mrN2sVGTUrpXvxQ6s1GD73pYVCUow42uxLDub43fM3VHTiZSckssNed+BvDWWaWmlkjmnUnUrZJSeX5X0NdLGWIo1ISVWHHwM/SX7vWM5Sm8tuS1XiEXGLlm5u6fehw6mIcY+1+lzdmNGEszq1O0alOpqtb2STfiOnG0XpZNtpeBLKiTYIl70s1RSIRSLVUGeRt3FyyxwcH2utU8u48DKejjb1cTVqfxNfBaINn4RYjFwhJdTtTXguR7NCrGnRXgrny+KjPE4p29qWWPguC/U7tk7HhljicXHxp0nwt3y/Q99WstLLuITKOKpVlVlmk/LuPew+Gp0IKEF5vnJ97LBpWtbTuAZkas8Da2xoZZYnCR4faUlwt3x/Q8HKffHyW0sIsNi6kIrqdqHk+R6ODxDlenN3aVzwtp4KMLVqaspO0kuF+9Hf0exrtLBVH2etS8ucT3z4vA1Hh8ZRq/xJPyfVf3M+zOfGwUamZcJq52bLqudDJLV03b/jyK?OU9ATIkyrmUhMmT0JlIybHIkhs5m7soqyBA5Et2NYQuCWpMr5gVTUu6vmiycyfBmjp2MKkt2oyTV5cEFZVIuORp6a2FKEY1M0n5IMzzIUpKKtbVmOrb5eRtGeWC97u8TGU5ZnqzR2k80fkc2IfVfkc+Kv1VF2va3xOmjLRt62v9xvSxMajdLtaGDqxjVdOWmpeBp9XefeRiss3KX3mU5RcIKSd8zinz8zRZ7OSa4Xty8jy+luKxuB6LbZx+z67w2MweCr4mhWUYTyzo05VezUUovs21R8P0U6WdJae2ui+ztsY+O1sP0n2bLH9ajSo1sLVhS3r/d4047qWV9qN78z63pntHY2zuiO0MZ0ioVsVsnJCljMPhm41Zwq1YUMsXvKPOav11oeb9HuzehuJ2Xh+k/RnZtTCelQnRozxc51cRClSqSo7rNVq18kPVaRjKxpSklCTkuDavbn5ik22rc0fHdKPpF25sbpzX3G03/Z3A4/B4LF4CdCl2atLNiqkcRus8VT04zvmfun0n0q7S6V7A2RX6Q7C2qsFg8JSpQ9HjSo1ZVK9WvGnmlv6NTqqnL3uPI9it9HHQytgsTs+ps+fouMxHpuKpelYr1lf/Ul677uHyR2bQ6LbA21saj0f2nhp4jZmGcHSob+vF+qTjDPUhUjUnZe9J668TeMoO2X8Ba3/?OOri9tdHuhW2No7b2m8XisPRxFfB46FOlGooOn+z+rjShSzqf8LXfc+d+ivpltzbG1Np7B6S49Y/GUaGGxuFrbmGHeSpCO/p5IQp/ZVJqN7cbn220Oi+w9r7Fp9Hto4eVfZdNU1GhKtWu912M1WNTeSt/FJ35kUOhnRyhtun0ip4Wp9a0oKlDE+k4iXq4w3ahu5VXTatyceOvHUu3V/oOzJnDVnbsmCjWn35fzRhWjkrTh/E/kb4GSp1434S6vzOmUnkfieNRSjXi37MrfkeuiyUi0iISuj2GUUIaLJYHh7bgpV6f8n5s908XH+tryt7PV+RthtKl/BnHjknRce9r7jxXB3XefZHzlKhvMRThb2l8uZ9IaYyV8i7r/AHmGzKbiqr5NxXyv+pREpKKcpPRatso8ba+JeZYaL8Z+L5I56dNzkonbXqqlTc3ryS72GK2vK7hhl/z5vyRwSxeJk/tZfB2/A6sBgFXW+q/Z+zH3v6HpbijBdSnH4JHROdKn1YxzNcX/AFPPVLEV1vJzyp8F/Q8SGOxEH2sy/i1PRw2Kp117s/d/QWIwdGqn1VCfvLT5o8m9TD1f44MwahVTyrLJGOath5rO88GfQpibMaNVVacanvK5bZw1Lq57VGSaXc9QbKXZQqcc78DSc6cU9PMzjFvVu19EazkkrHNVhm8GuZnat2b/ABNpU4VVn1M4XzOF721Q2mlbR+aOKSUpX1V+5mlNxoLLdzlfgjSUqMu2teehmqc82eKvpbuIlTnFudRrreytdETN1HC8Y5nxWl/uOikknZ6Lh8PMKuKdNZIweX3v0OdynW6sV1Te6Fc5JTlJ5pR6y+XyOlU3ayl1Xy/qfO9PNq4LYXRHaG0tobNpbXwmH3O82fiMu7q569OnHNnhVj1ZSzdl6oz6A7Ywe2OimA2ngNnUtk4TEb7dbPoZd3SyV6lOWXJClHrSjm7K1Z9Pc+F6TfRx/aTpjsjpb9Y+j/VXo37HuM+89GxE8T9rvYZc2fL2XbiXRUWnCV1d3zav4W/MJwd048uRP0ffSWunn1l/hn1f9X7j/P3+ff73/apZcu68eJ9rSv8AFmqw8Sc1O/UjKduf/kejSpJ9iNviQ1ZpzfDhY3gzWJnRdKfJ5u5nQqce9m7gktUPMmro83aNB5414/yz8+TMaaPWkqc04SalF6HFLDyoyt7PsyFF6ZXxXDyPNr0bVHUjqpcbcmdmGrZ4qE+13951JHnQidVOc++68RKHM2p1Xa0tfE6Rmam+4G5FWNcxNapli4x7X4HnzpnfKJmqLqPw7zWElFHPVi5v8EZYDD9d1rfy+fM9AIxUUoxWnIZnOTlK5tSpqnFR+L8yT5nGScsVW/na+TsfTHz2PoS9OcOG9acW+HW0/E6MJ25HLtGPq4+EvxPaoxUKNOEfdS+4JE4dvdRpVGt5CKUrd3BP7i5HPJcfM642yR8kc00eTtJLewlza1+B7M0eDjaqrV3l7MeqvHxHRg8+nBI4MekqdnxbVjswE3uH4Sa/BnUm7nLhYOnQiucut8zd3slwcuZz1Y5qkvM1oScKUPJHXTfUaIIhHJwv4myySWa5DhdK3I2U3z5mdKMotr2eQ4U+u7839xry6quCa0BrQIw1M6tSV8kFpzZlGpKEnPWSlbxOidKV3KFmjNQ9n5tkShJy5nRBKy1t5kTjpnt2nw8zNJ3NKsVKeTkuFx049Vrir6PwKnh8zzG8JWSR8P0ah9If9sNrf2i/+Ztifqr91/14ej/Yeu+xzdv46h9HX94/+Jf3gf7H1d+6f7u+/cv+Ha/U+7OLbeExuN2LtHBbNrej47EYWvRwmIzShu606coU6mems0cstbx1Rm7J2yxV7cu4XjduxvVvu5BStu4+WvmfDdC/rPofRo9Gumu1pbT21tTFVa2Crb2vio7nd0oRpyq4iEZR68JacNT6Lbu1p7CeD3eFr4v0yvHD+ojm3eb2pfkddKaSyk5tc1r6WPWm/XU/efHyN6s31YJ2zOxjClleeTzSNJRzrufE2lOOgpRbjLS1+R0xhC3AFFawa0M4VKnDLqbU0+PNnLJ68TNpcl9xk6GvU+RSg+41ad7/ADKUjWEnYzdON9NCYoqxSGUUok5BpIYCCw?AMlnNjMOsRReWyq/5c+aad+PI6WTIqLsKUVOOWXCx8zKpiqFbrylGrHTrO7t8eR0x2xWt14Rl4q6PWrUaVdZasFLz4/M4pbKwt+M15Nfmmdaq0pr1kDh9FxNNvc1Lp97POxGPr4hZbqEX7MefmVhMFKq1UqL1XHX2j0qez8LSd8ma3OWv3cDdomdWOXLSj8S6eCnKWfESzNcuJzuGqKlDhbRrgXbUqXKyu3wRxuPcdU6aS14ERjUly+JrunlWhetOK01ZakxWJUF/wDpCaEomzUe0S1qJxNIohNx4GcpSy5Lam1kCS7vIcSzFU1ls9XzY7Cko2bv1i4rRGlikxZSspSKOOrATZzV8NGr2cscRGMtxXyqUqcpLLmjf/zPmI7B6WfVmz8N9f8A7Zh8TvsXiN0vW0b33Xjbx4/A+uPD6RYvbGGpYalsnAyxnpVZUMTOFRU5Uacl9pHxXJ8EZRck/wBQuerYzzSzOMDztjbD+p9kfVPptfE/aftNSXrVvG+x3Zb6eJ52F2fX6N7CWEobSf7PV3lXF4xOfq5S1ilaXwNVJspvgu8+mjKcbZ/mjpieTiNp4aj6JDrT9Na3EoRutbWzdy1PUjfJ8BpNkPRtcbF51fRDjLWz0ZNG2QdTiu+50RXIzvpc0DMiZPQpWsUPmNMCPbsWIE)SyeZTJY0MmXEzZpYVnfgUikZCsWyqa4lXHcndSsTKLhKMraWsXd31KzLI+diSZarVhO04dXUnuiOlJez8jW/gSybc+JMuwSr2Ky+I8qENENE5nH8iyJpu1uKHYZDevBeDKM2pXXK2pSmu80sWjWIzPMUmZygJooiRTZlKUszy207zLc3EtCWc2KjhN2/S3DdytH1jSi2+C62jOhSzRzHLisLhMfCNHF0t5TzKcc10sy4PiilRNNLa8zn2fQ2Z9ZYrE4SrKeIpKOHr0rvJDLwtG1vZPbijgr4BVcPXpYWfolavbNiKUVn49rldnbQpyp0qdOU3UlCKjKb4yaXafmPKRKy0HupJ+rlbwY4wd803qaAVqZZUDSsQt54PxLGFxtX8CYxd80nqyxDAEr?AIBEsoTGMmxLLsFojHczyjisvkNxFYdwuGTnfQmOXNKF7y4suzJdKMn496DzFK+ltbBK2eNuP5GhEacYefeyxMSvqwABiGSzOTXeasyTWaWbR359w0F7Gc7ZdOF9fIicVZOK15WNYq7lbsvgDpxj1rFp2KTurk2MsTiVh4Zva5G1pcWl+Zx1acauKyT7PV+VrlQSb63DiRWqNR6ujbsr+JzZcfjLzjOdP3bSyr5IwhiMdhKqjiM04S+bXhI93Isuq5GGKpKVFuVrcV4eRrGsm8rhHK9LWOeWHcVnjUlnWt76PzQovNCPDJJW08TRU56ZrWXdxdjLAUnumpa5ZvL3Wev5naomU3ldjphPNBSel1wFGJpYEijJsbdxWAYCE?MQg)?ABAM?QrDAYxchJF?E3YwsMAEFgGAhWCw?xMTiuaK?MutJvLolzCz7EvgVaUJPS6eug0nfNayXBFXJv53/ACJyytZoxr0HmVWHH9OZ1gJSaegSipI541o26y1MK7dZbunHT8TtdOHcOMIx7KGpJO9iHGcllctDKhR3VOMPm/E1sUBLbbNFokuS0EMAE))))))AgG?IBgACAY?gGI)?UuRQmgBhYZOpQ.?AM)))))):9k=%iVBORw0KG;)NSUhEUg?AIw?AB4C)?FqEXt)oElEQVR4Ae3ZsQ3DIBBAUfbfwxNcfR0dEpInIiOEI7Li4v0JXv9bnLS+dp3UIke13MFErxZXi7mqzR1MX9U6DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDMyPmLyr5Q4mRrW43vUo14uCgYGBgflDMDBx0mOYvKvlc5i5qk0YGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYmHdiclTL5zAnfQArQiNkrpqF2)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AOQ?ABrCAM?ABQb96y)YFBMVEX::9/f729:6+v/z9P7v8P/o6v7s7v/e4P7+/v7W2f7q7P7g4v7m6P7j5P7O0f7l5v67wf61u/7EyP5vb2+rsf6jqf1PT0/S0tKurq6UlJSRmv0nJyeKkv2aof0CAgIxwEfw?AH5klEQVR4AdzZb4+jKhTH8R8gKLV25w9dxXGm7/9drnDSQ7PmZkGNczvfRw3JJH5yENksMlLKglK6rSv8wGTbtlogJOp2TuLHpdqQvnvnalDC4qdUmVC7+I2qNbXEU2eVRUw+wJQJ6Yd19ezzqxASreHfcbkWCNWG1p83GpNESNUPFiGlxQNS43nTXUiDssCyqgtJPGPZY7L6YbdaHJBNYXuZp4pQAryh5R6P/y/czszKdNnPLcyGjWvXhvUJgeJPPb2d7XrisUxVd51mZhnSHGEEtUnZvcxpFKZeQvqIMWLwc5uU8iVWPsr5j4w9YqvC3+a+BQkl5SHGhFyvFHG71jiihPxPOi9wuCPnVivlrDRi062+1Jix/qhOSKxF0tV0ddLQPigyDmM/P3fvenp8QQGVn5ec8+A1S0SKR3lw4hyqS5DAeEslJOCnG9UPsP8jZHWOlRjpsRdIiyGt9RV2QkpdCWxMr0CGeU2jj/N03oM8QE/rcQ972DuSNrWbW4HUTdNc1Obt2syZAiQNbADt2gk8SF53YZS8iZenawFSNaEOG5OzshP5xvTZI9UdY6PZLdaFTUhbjNRNDJuTCtgD6eIuDdFI7V/INbf0KhovOKIlcgDgeVvyKzkOof2Q9Dbpo5ECJh6ffogfDHe3ADduPyRU11w0DkYGjVtalkhAFCAPSVRSZCItqp4pIyCeBSnnjX9WeUgaZdyq4wBYRjpCcwWn6xHR633JQ9JDD0ny+AmZ7uuG9emkYuU3DTKmspB04/EVr4vlrS4dSIE08BoKjUpht1QZsk8U51@uAWS74FUEZLuKUZgr7qMy5OlwsimW6qvSMkHEiMpvtEzsuwlqrFXwpzPRuQh0zNTY9qw8G6i+Q4GlgMGF8+pMiTdds5Ymb5+fryySZEByELSKzb50TkXJ9enc/Rf/0FAxmOQ6utz7hWxXx+fvy9F/9JKd1SM/EWMscD+3Qoj1KbtevqMifS7K0HyB4G8U0TavFDQmoPHnl7fKxoeIRXmrvHnG7KVoMPVjd6P/f2dtJmhLCEVSiLOh8GcjrDfSMj3EqS/PTYZ7E/Epj165VF+1WmqXw0ga63yX0rODcC3C7nXiPxATJ9OCjHxNq/+AuqmOV2vb6cs5eBdgPbx8opvp6X+dG9vy23CUBSG1z5ICCFAwJgbT/v+j1lJzbTJ+AC2IXb8derr/gWEvKP0H/foicpVKBu7+dfxcOhXVX7yhLyl90a4PEvp8918ODAuO03Yt06YcBsd50N7ZYs+lcjZ4Ipvfe7IOhcYqxhvsaiOzqcFKF1JwjVbFLIKPpj;uAC6zLCCuUCEZZQ1U1zanS47uFEcn3vKxTGXfuy7grFMrf+PQj1XrHk0fu06zNFFlJicAYFKQs+C6sjh3+L6mbuT8z6wv7LCOH/sb+Gvy77SaDVkQfcgpd2xbcnkjF0GmlLJCOrbNNUFd218MQS6XEDf0z/K4IFN11CM01Tr8hin3hGRjFlVB9FTY6UC6evl:Jxx43qH5lAzZEU9bXyEJqNCcrbV0ajeA+ZAiL2Lam/rw1OmJDZpgyRkGMMzg3KnakLrG7Rer/yMvYGEZBrCzYXHAZI+Pj5rdr3U+Jxzq1sqoK1iFrsAq5QlG4tMsdBVviVOkF64gqJ8i4ahjXhN9llVx/JQUfKsYmuAsKFERYS7hAoktTnr+33bj+mWywsWpIIm5FnAmAOiwNvf0tCwg3jWJr0zgkglsJJ0jEFboc+TQ8FNWdJ3gXruTy7bpMfSA8RoZCcT+zeDTF5e0Z3z/2+q14jB+SHo/Qskm5RtoK9zEL09h1yJcXxyswXVfR5ef5LVQhad88MhR8+UdC99BGsCVWwQMkFIqv7JwaCfehfhyHDpuR7uKBJTuMHsu6C0MGFdzLj0Oi2Iq9+LZ0x3XrI4eyp9jSNGQOW3GFwan5mEUsEmN4j+1cwFbCxchj0eMJ3JBMjK2YMu8inJp/HZOAJyCfGitsx4TQyvlNXXLAZSZ2FeECnsZHLoUotlXjvDAeJrnWmNU4S/MTPTNeDjPhBrHLGGdNv7MeL0ZiCB1jNeoKxVljiRzwYtqQdITVbExa2fpK1qZh7IRCobf9ildUnKdzapz5vrHcZPeN5JPTj3J5hHtttqnT2Ctu56eM9/zGFL8eE23meRwMPtPYtq1iN1NhsRPTBSvIxHadJQCHwzgMEz6RNrPYTT9lFXZDKOq2SyzAh2EYxrEBqWEUHGObCPYSpqQn7E1SYoxRIGNqnGffJraqkYgtCHspJwIU3xEZEwH6YZjn0f7FyIxNGNdIP46ecC8SfIeYWQDkx8MQ7F+KrGZjBFdNY9LjxYmNsRFk2rWtTdIHYx0zFoRXJ4IPTW7Mfw1WasdC8HOQaRoVNUpYiYesxw8jwfsGq8XUOCnuQqZiPIXvE4vVOFrBXcR57ys8gfZTn+AbRO/L7PD72akQLKDoHe81O9wbT1mPBeT7hB+dHZbve08Qc6PBgsb7lOkenap1XazxDBpbRmHainBe6zOHh6i1hvBcIWcIviBCYXzW4qdT75IWBbEKINE5S0ioc4ngp2tcFv5P97SOIbHIyDSG8OMZ9y+pDOu6yDHpOsL7qNsuYSTUtjb9MeWzJbwRMk3FyGpbcGUTg+2IEF6G5pPCBlJVlSFspWZVZbwMNkYJqEWwHdGM8Na4ELw14Yzw1kiyGu9fiW38ATmf0klBB/jP)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ANY?ADsCAM)/3KjX)kFBMVEX::1+Pz8/f72+Pzz9vv4+v1QgMXy9vvp7/jn7vfm7fd4ndLA0erw9PqqwePk6/Z7n9N9oNS2yuewxuWtw+TY4/KGp9euxOTL2e6SsNvv8/qowOKrwuPj6/ZslM60yOazyOZdicmeud/+/v/X4vLs8fmxxuV+odTa5PN0mtH7/P7g6fXq8Pjb5fP5+/3h6fUSnjEB?AKSUlEQVR4XuzX.rDMAxE0d5l5CX7/W/XEiCEiNLFtWqL+SfIgyBLNweNMQ3nUhw9sOJwLXpgJcVKHliDjiyyyCKLLLLIIosssjxv8Ly3eB0zxhgnIXRdv1t4UX9bBt6vl8MEH9c+C19mzSILhbXIwk8yYNmZtAxhkb0l4E8sVGiWo9mcpU3rJrKtKC7LUbZn4dokjyYUJ6fMWc8+pz0WWQD8/YRQqZFhzSrf4FEtzbK7t1AvPeDtrmOo1E9o8hyXp001RwZClr0cAJiw7uzd25ajKBQG4AVqTnU+9Lm6e2b0okNn7Pd/u1GIgvxbCnoXmlkz/w1F6upbkA2YaMASLvCSSppxRRWyEIS2SN8aKJyEHQBNdGq5vgxZdMmQKSFd7sHEZGEVRiYnXAmtK1eB55jCCaxbA5WxHDNV0kxCvqxxYll5Nk8RAzWUDAYMWbGuI4aLOpe+RmcCUGponb/mXJJi2SzPkgRLzUfStNVZiLKT0IhAhTTKtiwrrv7ZkqEiEs2ySWfxUfTkS5dhgbdJZPFVdrSU4sJgOV6KhSZb4Pks6R5M1mc1Oio9CSeXVBZfpQhWS4WkMVxcVlilvEnYBhJm2R285LD4Ku2wJQNNmHnYrhmzqyFcFqLCKps2NrRrUuAxeVioIkwsWOOEYPF38FEozbKTsG2rrv1ZtW3xs2uLc1N1L1QVg2XDPm/NqejBMiWjbadtdW6cBGAqgsU9HSe+rxqdtj23lWmHpoqEIQtdvCS8sZBVASsIW58laVb7azr5Km8SQmZgq7PUJKZUFO1YI0TfiqGhQrJUsMDzWSlj1Y6ppik6X6Gj/4qBwXIMyctSqPJEBRUPhq7TuIOXNItVCUlUispET8ISZCHXa9tezrpVk4lUOQRTM;/ka6aDGOXwVPZNDrFm7oYe8KwSqIKUMAKyqzrZA8m4OKy6lQWrRLCTEJxDrpcFlTCgYXJwsItO2nqU+qSoU1o81iwbmVnhetFhSoRSBGCNU5knxVYLb?RWaO1SKLO1qISlcha9tPwi2w0EWzZmEZWAljVZqSUZqgDMdrNdYrb6xRJHpJo1PaIGziyjhaYZWMVOlYlk3YhSyZjyWdkAsWjSrtJHQTcrkFPi+LHqwoVXnTl4ybcs6FrP1kOTZZgKWQhapJtjoAm3PthoPJSVkWJtNotbMsNBnXVDbLauM2vOk7+DQVlguXZCahxTk2WJetK4lFn7fSWGqeNZiEO1CmZGydwHgha0iIlX46TlizkOXNvkYnwBL+NNwNB5NTmJWcGhMzB0EFLIDBcEEl5LDS62CMCiYhuHC4YN2KcPFZimahasznvmR83s65kNU4UQuxZFglrMrm5hyAkcO1CitusJCEMuLdhSwZZIUrIY9FD5ZVmUk4tOdJeXNez7alOY+VRTle004fLXrd4o8WsqzLlAy/HUpJKUxbmAZYKsBK3GVw5iBOwUbHb4fCPxxcCtNQrFlY2p6wZrNcVTrLLfDhfUZ+lgCWQb06CUuYhO5yrOTyrMpnlcCyJQNKx3AOg5JROQeTNVgtzYLaDiGWLnq7uxRL0vWdzxIXzyJVd8PEutOusXvoXYdz7++dhtkd/KWzvjZjvvZI270ry4Pt7dcsGemsd9bxbtr9UZZuRb+?l/FsxonXrcs3R4sx/+zFp6El8+SS7Pkf5hF7+AzL8fI2k5Ygs2iz1uZN09Y4LeTAi8CBT7MCp+O8251cTnebifLsWAvx3TyHUxs7s4D9O5Obwl112yehBD7YSu1L9J28MFkO0bydromDFbOQz+tSmdJhirDJZpIlc9SQxiDleOC2sGeRBAVZjmuS7v8eTc9iXz+cn90c:lxvhvH45uHl4Kjaqevdc/KENRT14hf1JLXqz2TiJfjn6eNesWV1HNeobX/zCsJ/jH9yU/WmicdBPuHlj3mvUArAfNIl43LGKTtNgHQcg6YjTriNGsI8awjphlPra7TBb/Q9Z4lhAzLJWDxf9I/BJZ/C8wXCqL/3WTH06Bn2EJMcdSmVj8LwdNjh4kS6zA4n+V6+Bety3XYOX94l2ZzFK5WfyvSYZZRU5Wxi+1hlkFxVIZWfyvIO9ffW8VBclq1ZqssKs4NGMOdGkoZliKyQqH6XKvinUsYkeuWcTrmvUWO/gcN2M0TjoWnqueNOsZz1ua9SHDeYt96wyyytt77xQsNEu8eKfg50qz2g+zp2PvH9GnY/6NTsgS0Tc6mUgbxlPw3va2NJ9VzKVKYvFN/JsIaRb/JkI+i+NCFl/FZ/Fv0HULPJAYN+h+7/Po5HrR26n3lnWgKt6LiFLVfjZ+3i9787vzKQi9PlkUqvgs/qMKUIYhdg2IQle9NAtpbch1xFStE0AFC8a3zabRgMfN5jqZ5T8zVY7dUw86jT2tGru7qpftxm5Bs2iUQhSyNgOr2Ww+JbO8Z6a63d30cUzTm6D305uw9jTLQXFYm/QS7z2Qw+1K6fa8m6C9W+aCLJWu6lmPZhL+Fst7fIrbldLteTdBdyyvO8cCUxTrfae56tasq6799u9ihR4Od72xebw4FqJQhekBf9n6Lt6UVYdYSkWwjCVdpdN80hPwE5R3JssfO1AmsmSsipG1WTWDxSvw054M1nv6ShLjIZmwg09LYDme9mRodd4FWRLz6lDBnjAttffMVNuVdS3H3knqvdTYVX12Y7dNZNUZWJkeF0zs4BNQfBYfhjT6ul+SiS4Xt91mgwbwXaTKl+F1vzZ5qDC/utH6mIOFMN6D0xNL+5/6YJKLBTDGY+6TWNddhc/5sxiSnToNJZpO1Ij8P/eRD4UqcbsxuRXZXXUuE7KuNkOuVv15FqyECkyRKu+8db2mi1i3flulT8dXfWH/eAXLMYsVdhE2YpfB+Omjcbn6CNcyOLD0UTtiGD9UBVeesrowQVZc/mnvjlUthaEwCv82q4lY7CJoI0Ri7fu/3RQWG+ZOBgJGYXO/6pBUi4NJzkGI3Jhvy7P6PZA15Nlyb2bJNVfCAFnP71vuvSy5YacMp5ey1ORnwmeNz9I3xmapabI5YlaCRVOVpqNQjkkPG5mlphnggN0KAGnS00ZlqU0bfzENMCJL/5Ph3Llly5C+eciarwH2FLlC1g7XdAcl+Gb5aL4G2NPkIAu4P0gZvlnvm68B/mjqyypQVQvl462sTR0S+52VueUQWRscsPspvugFg5rcXbNJWrjpJSOaXAKYJekyWzPoTQ8HuTOz+xa85Nx7B3L/+M8JX/A8aLj23SbWPd6cGMCczV13IHePNycGwJG7rsjsHm9NxMz6zeq3QFK8rAtY42WpwBYwazazUFkuUNaaYbsk6ZriZK0AlEkV5jhZGwCYKixxs;cS+FQDbUd72RpIatCiZOVSZLdWcQ5wRtIK0UGxPm9deGSmv7xL173eHNigAVnCiN71aY4oNjtUiC1n;ivtOczYqi4si/Wb9ZnzKYFU+FLWYWCuc8gJhLRoqZFXQ7PgMenjKY4lkhK54KRfGsQLxn6yhQYq6EW8iscsbL2rNNavoDiFriVCaWdbU)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIALQAuwMAIgABEQECEQH/xABc?EBAQEBAQEBAQ))?AQIDBAUGBwgQ?IBAgMEBgUICAcB)?ABAgMRBBIhBTFBUQYTFCIyYVJxgZGhIzNCU3KxwdEHFTRjc4KishYXJENiktLC/9oADAM?AE?g?PwD+/g)?Hkq9s7ZDq83ZsqzZcnizcc3etl5FjG/FbrmZSypOzd3bRXGNwXbOr7+TJfhvvbz8jeKjOUO5ylwu3oZxnbPk+yeefw:AEeo3maUNU0r2XL1mMsXKolFpu13wfK3qPPhKbpUsuvpaq3DcXEQcsul9+72HcGczzZjeRZcpyoRcYO64nUAjdypWQABCg))))?+FV6bdDKFWdGt0i2ZTq05OFSnPG4eMoyi+9GUesvdH3T/N/QvFdF6W1ukeG290SxXSCvW2zX6rGUMBTxdKjDP4KlSpLuelY1GNyN2P8AR1OpTrU4VqM41KVSKnTqQalGUZLSUXutY0fyLpB0m6XY3pvtDoR0Nx2H2Lh+j+ze3VJzw8K3WuEKUuo+UzZYZa8PCr6M+R0h/Sj0o/ym2L0t2bXhs/a+J2j2LF1KdKnUhKMIYn6GIjUy5uqjLyID+6EPj9GqPSOhsmnDpViaGK2rmnKrUwkXGjlb7kILLB91aXaPoTqznUdGjv8A9yfo3/EqjdkcrI7uUeaOdSfhyy58RGhTjwzS9KWpvq4eivuG4jzNcEKbeU2crun9j4o6kZpfc?Qo))))?PzvRTofgOiP6z7DXrVv1ri546v1zj3alTfGGSMe6fogW7syWV15H4jpX+jDY3Srav667dj9l7QnQeExNbZ1ZUuvofV1c0J6W081vvpbO2f0V9HNrdEtn9DIVK+C2Zs6usTRlQlF1ZVMtWMuslUhK+brpN6bz9yQXYsjnVnkhKfopy9yOOCi+ojOWs6nykvPNqdMRBzo1IelGUfejngaiqYWjL/ik/XHRm182/Yc341fkz1AIXOZ1I0rPkYoS7jjxg3H3G2cMK80JT9OcpezcaS7phvvL2npBEUyb)))))AMzbjCUvJ/A8na6nKPx/M9GInGnQq1JvuxhKUvJWPhrauA+u/pl+R2pU3NNqLlbkrnnr14U2lKpGF1xaX3nWe1sR2+OFywyZ4R3O/et5+Z6ZOWz60p2fZarzS49XJ736mfBVeFba9KpSlmhKrS58MqP1jR3rxjTyd3xR7x5cJUlWdZ575KjyPerfkSFSFSKnCSlHyd0fOxe0q1DETowjFxjbenfVLzO8tnYfM5UnKjL91Jx+G4+DtCmqeMq05TnU8Pjld+FMzQp05zavfS+43i61SnTT8PeSun5M9tTa9erF0oqPKUknovefWwNTrMLTnZbmtN2ja/A/Kqorabj9Nsl/6Cl/N/czeJpxhT7q+l+BzwWIlVqvM72i38Ue4pAeI+mUgB)YnvMrevWblHW9woa7zVzDTubBCmTY)?I?YrUo16NSjNvLUi4S52krOx8j/?xgPrK3/aP/AIPtEOkKtSCahLKcauHo1WutgptaK58mj0fwVCrTrQqVc1OSnHWNrxd9e6fVAE6k5vvychSo0qSfVwUU9XYh8/E7Hw2KrSr1J1M07aRcbaJc4vkfQAjOUH3WKlKnUWWcVJXvZ8z5X+H8H9ZV98f/ACfRw1CGEoQw9NvLC/i1ercuCXM6EciyqVJq0pO28zToUaTzU4KLta65GjOfyM2d7yNmDrdi8+SQvPy+IAKM7+lH3amk1LiS5lxXqfkBr6zoDhKpLNl3O3vLGcrq74jKxmR2ABk0CnLNLmM8uZbGcyOoBCGgACghDNRvJKXFJni7TW9L4L8jUYZjlOpl5nvIeKFernj3tLpPRHrLKLjvJGaluKCH5rau1cfhsfVo0KuWnHLljli/oq+uVvezdGjKrJxi0mlfU44nFQw8FOak05Ze7vu9eNuR+lb0Mxv4uJ+e2XtLG4nESp16ueORy8MVqmvJcz71GcpReZ31LVoypPLJpvyGHxEK8FUgmldrvb9DqW5m5bnI9BoEBCluCAFMVIOZIKV1puZ1I/Epc9C30sZtrc2UiKZNnLJLkXLLkdAW5MqKQAyaBGUyUhir83P7L+4+afUklZ8nozj2ej6PxZ0hJRTOFWDk1u0PHT+ch9pfefQOaoUotd3z3s2WclK1iU4uKd+IPzu0tlYjE46rXhKGWeXxN30ily8j9CznKlGUnK7uao1XTk5R46GMRQhX;VL2TzaPjuPx+EwlTFVHTptZrZu9e1k0uCfM/U7Noyw+Dp0ZtZoZt27WTl+JMPs/B0JSnRp5Jax8Unp/M2emKUUdsRiOt7q3XvqefA4LqO9Kzm002npY8G1cViMP1PUTy5s2bRO9stt6ZnZeLxOIryhWnmjkfBLW65JHrxOEpYvJ1jl3L+G3G3NPkXC4GjhpudNy3Ze9bdv4JcjGen1OXKs2utvM69VWeIzqTyXWmbTdyO9eUoUKs4PvRhLK/NI+L2/H/W/0x/I+7KCqQlTl9JNe88n6rw/OfvRilOnFPOk/Zc6V6dWbTpycUlrZ2PYC2BxPSQS8LKHufqBClJHwopDRQACg?EIVkBlmWQpDRlkIUhTLIyXDMlIVeJ+epTL4GkAim0eDHLWn/N+BrAr5R/Z/FGnDuZr+wiqd/Jb23PoFsZa7svUzzSo5LanNJPjY6ybXC567EsaBk0ZJLcaJxKQq3FIikK?CgAEBGQpCmWcMXU6nDVqtvBTlLleyZ+Ix+M7bWjVyZO6o777m/Jcz9ptH9gxX8Gp/az8EfS2fFWlK2qdj4W2qk06dNPuyV2rcUz0bP/b8L/Fp/3H7pn4bZ/wC3YX+LT/uP3LJj/HD1M1sb5qr9pfcZIaaJY8R9YhUEjSQLYOEJ2zRXlpc3GEI+GK91iJGlYy2zaS32NCy5IoMmgACFIwkWwKQhQ?ACFMVKsKUc03+bfJHLrMVU8FONOP7xu/9Ipx66rKvLdFuNLytvl7T0G9I8PXcxrLW9lwtxPM6mKp/OU4zj+7bv/UdadSFWOeD0+KfJnQ81WPU1Y14+GTUavnfdL2BWlpb1Eacdb3XG/DzO5LGiENWMmbG2SxTNjFhY1YWFxYzYqRqxUhcJBFSCKZNWBQAa?I))UA44VfIRjxu/fdnU5/NTfoT19TOuljUt/wATMdEl7CHHFL5CUeLt77o7Oxzt1s16EXf1sR339olqnH2HQli2FjJoliWNWFi3IZsSxslhcliWLYthYFsSxRYtiFIC2FgCAoAIC2FgCAtg)DHVx84+02ALIx1cfOXtNgAWQ)))))))AB:2Q==%iVBORw0KG;)NSUhEUg?AMg?ABWCAM?AC96imf)MFBMVEWX/5d9vX11qHVicmKCyoKK3oqw/7BohWhaWlpwnX.7ZCT9pNskWyg/6Dc/9z8:xkWclC?ABzklEQVR4Xu3c6WrDMBCF0RmtXtP3f9taScrFVc3g4JRI3POrIMblc7ArFxz52tzSKs1a0600lJAkjUuPkFWat5aQJB1IX3KTLtwkSReSrNKDRjOIiIiIiIiIKIx+eBKbDj8W+SixVLQc;4+QpYSMOqT2KLefVpI3DJ8lPOuDlnMK9S+dIN0EDJivu2QpaEQhuBP5aKzHWLPSHQZt24YdvTykHnB0fNkhtgzirULQ3Ds6fhGANkKsWd0eGNIOJ6cSoDTopQEI8Scme8B+rBb0Y0vCXdRTsJv1unow1LkjkaIORNK49sudnze3kXZcdvCLA9+Wz8KsWewNr0vZM64Dlx96PrnOsSewdrlITAr9r/abgg2tOWT8XPbIbgmQtshuIHpPgROhMD/h+Akf3gIQxTUDqlnPibEqAZj5tUQhow9hGAjXO+b7BB7xt5rXfifuiig2H0ZIfaMvfsdcQpeo09u2Phqh7/oU5Q9PD/oZM7Ua+GvU5Axdd4Ag4+/jw16/CgYjRnrCRGZmDqv7gBXhUCsQuwZV4eAXhTixyCV6PLh4WNGiDFTryEEQsZUW4iIiIiIiIho7SUjSRdSNy8d9/IaeC8v5nf0VQndfHnFNzcZJ+c0Q+++)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?APo?ACFCAM?ABFRhUb)MFBMVEXMzMz/MzP/cHD/sLBsGxuy?D/?CZmZlmZmZENze3t7chISE?ABoTk7::o6OhVwh1I?AIe0lEQVR4XtSWXY/rKgxF/ba3v8j:7dXFm4TTUdz7rQKnLNeqAWKWTU4kTExMG+FOMZ3HOBSYKOZ6lAlbobKV3mhEkthJo6n+kGF3I9R5Ys5nbIcMK3Vj1yVH27jwqE02QEcUz0pq7Br3SvxJixR6khZB/Q0J2Ub5jJkuMlC1EYjarIP5hBTWQl0d9EbP2T1DmI0brITQhKr/+1u7y5bAcW5WL17vOxXV+xRP/RuNeJfUwcA+RxG8NfqbCiFpapSGqpq4k51RERgk3o02k8oZjs2nxFvVGcn2K6OEqXPQGpkRgTuU/fwCJcTg0kDq7AD+3IxALsGb6rzGUxN8xqEESo93KVuEVnZOrvCIyJFRKN+AhFRivQo0nrHj3UF5txn6ujHscYqemcKu0sdEWfBIk4JDY+OUyqc+FTvEL3Zz9WF82mYOWYiqzS4S10jDG0@aBghTXBkoLPowfr03iuO+8oxPI9dVdNWm+knlL0EUAUvEs9Qs9j1RX2iFL3sqKwBBs+1XMOc8/8tM2h1EPgEVrZO3FE3qeOPtyBy82iahmxZvFUN4Cl2c49dPDBe13L3Uq9XCnaVfcIB+5T56Of5ulSvKhDo3hVtwj9n+oJ+Q7zNi7XeebwSMX71CsrmRHxk3p3H1V/Vcen6u1Xe1ATsQgXe/TQvK3NIZ7gR/W+c3xVtw7yQ3VeXm5n9/Ea30V/UmfVUruaP6l3N9BX9d4l4m31fkWU7fWTpnunyj3qGmGd3f+knoDHN+oZ4WS8ow7tNld+vH7IWpwfsreod4vq0v3hrhf5jbr11DvqMaF1tyvUrlOQe9ShihmwfonquYiKOQ9lb8UptWyuOwfoOfXbqmu4Eh2iokdg6aE0uUH919gbcy/qK7mqr2W/uv896lysHseYqMlOiLJfifloErKTNBGXlZCjQcpGTA8ZyaVFP0ZzbC17YsgQtaUZn5jLNpDHkDGgsgrmuIBtnY5+jFIfcCwy12NcgUI2YJnHmOrDcsG9MzrHF0SdJmsBE/+xc0bLjcIwFLUkGwwU6f:dgtcj8jSzrbJ2n4I96HBDUE61rUhMYNpQVcbt1WVqpqmHPSqkBG4kT45R0NohSzMVRX0O9ncUAHcQH8vvTn6jX6j29xrmgt9p7lxWmJlfXtyi231eHKbP2IaqivFbNdLmjQ0VkpTtoI+xkbx46QPGtuDI49woI9Lux5fTF05Dp2UlrChh6Vlf2cnn5ehm9JkGnRtaroYFLIpDf0URw2hretSVmiMQ08tFlpnMCmEovdSnENOjdGtoA9dlXJA5zcf7NYbfe2F/vsTi6j+iIlV+Wfo/57gieih9Z+q/iW6HKIu6KJFUo6kauAl21pcD91j90c3NAhH3WUV0Y1F0L2t0Vl22YHOqkLEuoelPSUyVa6GjqjoXWIWZjqj86fwnhxbviMDnba96NfoXnzeYa208Bf/rIcO358dyI4uJTi7G92O2GaMyyfQgQfzoPhHQhjwVBXde1x4x6CCzqexZyxOq8wsaGzCp55AR4GlRN2oCW5EHaqhExsCwOmOTgDyXJAmEiroAoIn0MkdtzeADtfXRIec5MxHZ4cTXIJRQI6OCj2HLj6+DjcJ0MlUhaqjFw7iY8YFOraOhmw6GdGYvKeeRPeiI5xRcZvtBamKbsSX2Qvom+h6CvYd+WV0HydS4sLwh7G4JrrAsgBiIvnb8GhAsDlSfQndi+4TKpUZXkrcmuggLHF8rOOEf0nBB8Gr6DgGkN1EBmT0TDV0QICP1NEH84TMMTA8Xkd3W+20fERHPMJwqIru8ZRFHR39gMRUWOSwhwkzv254LzqSMHuIV/kaXk6Tje5iR/e60PnLhfiU9xI6Dg6xXidWGaqh4zqc8MoiTAMz+Vv8Kf+ywXTsjm18lvDye8OTk59jlZxoqIDeWkCvrBv9RsfSU3/0HMb0pr/Dj2HutfqSu6++NF76irNCfR2fJg3atOxp7b/GjKJrUJ3asacPU9eaei60atCG7Al2hwyBmyuVh66prbFJ/8claPc7SnA/CdBV5ynGVFlxyXpRyEtMbRUXf8DirlD9sZqz6Zeax7Wh8hjuuyVv9LfRjX6j3+g2/ynvjHZbiUEg6jcGWG7:29vcOPgbjZVpQqI1HmyNQ/oyLtKlOCBUvVdUziV6bIpnA2p+u7GE+pkfG4Kh4xsCfFFUzjTKJbgDj8qL1iC/7Xfbozc7hHk5Tc70ZYfTDwcfXDD9XWXcPdNZlB9Skf:XV4Uzh3pRZgNEr0ozyrgt8nqwI0ShVN4aNVwOC/GsljbehD29FxgU6nOFp5tn5/6vo6MroNXQ+X0tyIxSasLHTBMWVN6HvEoWhsdisFPapxE7rRTRwhyTTPQh6WupWC7nVAREA9ekhWRqVKZDiGlYPOX54nMr7JvL4AYozI4ktG10gk9cPfLU5Dx3O6KM0131bwreSir8hlm4WFveTJykCf2a200NWwXjxybv2Ep0x0Y2fFSvikY+pkZaDL4VJESOKeizuxvXgiOjupmszVPAr4Yrdy0Ac9f3p65RUlqiMbnQCszOiZ0T8Xy7JppaBHFrTMN2uuN3QO9MyARfYifAqkDisFPb7WYOIemej2Aj1er4Mi23azstDj80Q/o2y5Cf06dhu/+aZpP0SX+2gALUQXN9Z56+PZk5OVga4gGYItrlq48oHHefjJoU8DJmykoB9L7nlVB29Ax54gTScrF93kURkoRBe46LGl2ISVgy40S0vsZAiRG3Rf+SIBvUI7eo360fvjsvvR32SKH9D3OzxTK7pR+cROvMvEzjGKo5t5awrvntNa+4cnbU3hhNag8OKZzKQf7zGTmVdTOKrI+dQUbm2TuIvnr9tFUzjq4Qlfm8INlCsYXzeFM6hSYH5uCk/W66ZwVCoa+P4DaL9rUyOameE)ASUVORK5CYII=$/9j/2wBD?@.@.@.@.kLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwv/wQARCAChAMgDACI?RE?hEA/8QAhg?AgMBAQE)))?AIBAwQFBgcQ?EDAgEFCgsHAgYDAQ)E?gMEERIFEyExsSIyQVFSYXFzkdIGFBYjNEJTcoGToSQzYpKywdM1YyVUo8Li8EOCotER?M?QMCBQQD))?ABAhEDITESUTJBUoGSBBMiI1Nxcv/a?wD?ABAQIBAD8A+g5KyTS1tKZpnSh2cezcPAFgG8bDxrp+T1Byqj5jO4jwe9APXybGLuoA4Xk9Qcqo+YzuI8nqDlVHzGdxd1CAOF5PUHKqPmM7iPJ6g5VR8xncXdQgDheT1Byqj5jO4o8nqDlVHzGdxd1CAPH0+SqaXKFZSudLmoQwsIeMWkN1nBzrp+T1By6j5jO4po/6zlP3Y9jF3EEnD8nqDl1HzGdxHk9Qcqo+YzuLuXRdBBw/J6g5dR8xncR5PUPKqPmM7i7iEAcQZAoR61R+dncUjINEPWqPzs7i7SEAeZmybTxVtJTtMmCUPLiSL6A7VuV0hkakGoy/nHcS1X9Uyf7smxy66AOYMlUw1GXtHcRHk+AmQEyaHlo0jVZv4V01VFrl6w7GoAziggHL7R3UGjha1xF7gEjVwf8AqtqR+8f7p2IAzikisDp1c3dTeKRc/wBO6tA1DoClAGCeBkbLtGkm2m3E5Ctq/uh737OQgDmeD3oB6+TYxd1cLwe9APXybGLuoAEriQLhMkfqUrklciYzzIxnmSIT4XYfC7DGQgcCXOu5kjtSW6lJdhlK7HKpHkZWyidFy2O/YxdWWd7ACALk20hcelP+K1/ux7GroTnct6UQk3uvMaITayvMnxuXiZ2f8keNy8TOxZUwV3RHpku+3HpkufWzNAIDNJ4v+STx+fij7D3lTILhvSqwE8xp48MjrT08eGTWK+fij7D3lpp6mSXHiDNFrWHGuYAttILGT4JdSNNQ2plCakQobUymUVcoblGie9wa0NkuXGw1O1kroirhP/ng+YzvLnVP9SoeiTY5dRZsLcyYW4CpgOuaL5jO8liniBk87HpeSN2OJv4lc3hSRa5esOxqVoVrcfPxe1j/ADjvKHyxFjwJIycJtuxxKxK/eSe6diAIEsVh5yPUPXCnOx+0Z+cJm71vQEyggxVb2GIBr2OOLUCDwOQprTaEe9+z0IA53g96A7r5NjF3VwvB70B3XybGLuoAEj96nVb96pXKJXKKlCLqCU5aK46EhKiV5a2413WUyu5kyltFkw2jFTH/ABOvP4Y9jV0JjuR0rkwPIyhWHRchl+xqMp1k0EMb48GIyYTiF9FrptKKq1K6ct0ty3R0qu1K6ct0tzcCmC8y3KlWdea/ItTMoVJ15v8AItNfT6q56PkbK+k1Vz0fI7jxcDpQGrmvrxBB4zW1VJR04eIxJMRGDIQ52bbffOwjFhUUmWcm10o;sqUVTOb2iacMj7C5zYdv9zyVQ66X0upyZqXS+l1OUdUNWmnFi/4Lz9Tl/I1FPJS1eV6SCpiOGSN0cl2G17b3klb8mZVyfXmQUGUqOscG4jHE8CUDjMR3eFLVpprqkpuk011SXVP9Sofdk2OXVXDq5HCvo3Bpe4NfYNtc6Hcpwat3jMv+Xk/0f5lWpe5Spe50m8KSLXN1h2MWWOplIN6eQ9Bh/mRFPIDLa.3@OmHRob/dUNPIlS8m9K/7uT3TsVGfk9hJ2w/yodK8xSXglG5Om8OjR1qVoVo1N3regJlQ2V+FvmJdQ4Yf5U2df7CXth/lUEGbKBtA33x+h6FTlB7jA28b4xjGlxZbeP5L3oQBm8HvQHdfJsYu6uF4PegO6+TYxd1?q371OkfvVK5RK5RQUpUlQU5cjPOdx8QshK1TncfFYyU8v8TTpr8Tnwn7dVnmZsaqcr6YI+t/ZWRem1XQzY1VZU0wR9Z+yf6d41Z/3Rp+lX7dP/dHHYFsiGpZGLWwrdqWdLUNFVkyiyxRsoq7PtgiqBV3ikZGLtjfH517mnDHhkdvV8sFFTS+E9NB4PGeSBlVTmOQnERmiwyzA4R5ptnOxOX0TLdLlGvySKXJjS+SSoHjDGyRxF8GB2hxkezc48O5xLzOS8i+F+S5QaSmFPHI+MzuEmTnOMYLbgyOe+XDh9VrlyNV51K2xucXXX7K2wcbLdLFW+HMlLNfNVOU6KGTCbHNymnY+x9V2Epco0LfBjwvposnSSlkVRSSxYyDIGzYM5CXhu6a5pkj3u8eu7lvwa8IqjL9VlPJ1Hib4xFPTTtqKNpxRMiLJAySYO3L2es1X5I8Dss1WWI8r+EMjGGOWOeRrpWTVE0@bmm+ac+JkW4b62883m/ZojLUn0WssMpUg5pNjluK59Ub5RozzSbHLeStOn5lkLkvh1O+CmLXN1h2MSw6nfBTDrm607GKL8RXfiL1LvuZfdfsSqXfcTe4/8AQ5LXAlcFzN4zoGxMlZvGe6NiZVlZzMqm1MzrB+h6FGWDalZ1o/RKhAHFyS3KppSaJ9O2LOPuJd9is2/qldLBl/2lF2HuI8HvQHdfJsYu6gDhYMv+0ouw9xK5mXraZKO3Qe4u8kfqQuSVycAsy37Sj+vcSlmWuGSk+vcXcKQpvctX9nCkZle27kpiL8F+4s5ZlHhfT/Xuruzb34rIVKW3NGjTW3NHBYKrxiYNdHnQBjJ1erq3KmohqZGNEpjc0OuLXGmy1Rem1XQzY1Wz71vSojPUsOlvXFGjSTysOlvXFHHFK4agztKcU8g1YO0rWmBVjd/yX8jU+r+S/kZxDONRj7SrRHVcDovr3VcCrAVGK9V/IqqX6r+RQIqzlRfXuq2JlewuLHwC9r3uf9quDlbGb3T9LxvV/IouHh/lfyOfL454zAXuiMtjmyNXPfcrVfKPLg7P+KiX0umPM/Y5blESs1vXPqM6jet62fqKYhlNwdgfT8F737qeNmUyZML6e+M4r331m6tyt1Lqf0hXQjTN1p2MSXtTWaKdRYprNGAMyr7Sm+vdQ5mVRFJd9NhwnFa97W023K6qH/cTe4/9Dkr45K3wc9rcr4W2kpsNhbXq/Imw5X9pTfXuLpM3jPdGxOlFPNZRFeIGmpdA6POCwj14sD/wj1cSFuyz6LH1o/RKhAFXg/6A7r5NjF3FxMg6KF3Wv2MXaugCUjtSm6rlJDCRruFKW6GS3Qp.hVmR/H9Ehkfx/RP0MuUMiYbn4rIQtJJcLHUqy0KcYWC6HhYOPEPttV0M2NVlQNy3pRE37bV9DNjVomYC0XHCljn3ou063X90c2yYBaM03iRmm8SsbRp60UJwrs03iTiJvEpVIV2ioFXxcKkRN4loiiZutH1Uu1gqu1hmKUXqac8z/8ActoCSWIGppwCWgg6Ra/1utYpx7ST/T/iVU6iTrxbsy/cSdeLdllMLB/SFZENMvWHYxRFAQHWmlHwj/eJTHEbyeelG7PBHxN/tJKvNNlF1mmy9Q/7mX3H7FGad7eXsh/iSvicI5PPyncnRaHi6pRkRsvZvGe6NidUNjfhb5+XUOCH+JNmn/5iXsh/iUCnPyuL0zB/dH6HoRlGNwgbeSSQYxocI7bx+ncsYhSBXkMWonD+6/YxddcvIwtSEf3H7GLqoJIVcu8+IVqrl3h6QmnlEzyjHZKQrLIIVxoyVAaVBCtAQQkZPUcmFv22r6GbGrTK3QOlVwt+21R5mbGrVK3QOlLPPuNp1v70YcKA1aMKAxWMu6ynCnDVbgTBiViuysNWiIa0BqujbrVdPYrutmZ3t+0wHiBWwBUvb56M8QK0gKtPkz55GYLXUsGmT3zsaho1qWjS73v2ajzEfIyh4ux4/CdiZQ7eu6CpIAam9ATKBqHQpUkGKuF4QPxfs9CtqReMDn/ZyFIGPJoLaQ214zsYt2J3Gs1ELUxH4jsatNk04wNPAYncaqlc7BoPCFbZVyDcnpCecZWw84yjJjfxoxv4/onwowq3btJdldpIYXE6TosrNKhg0/BWWSVjIrayc+IEVdQeMD/atgaHaDpCqjb9omPMFrA0pPL3FVbfIqzTeJTmm8SuspslbfcjrfcpzTeJSI28SuspslbZHW+5UGDiThoGpNZTZI8kOmUOaC9lxcaVaGM5I7FJG6aU1lGBcihjeSOxSGN07ka+JMEDh6VOCCMLeSOxBY2x3I7E6g6kxAoY229HYpwN5I7AmQpAqkYMOhoHQOZCd4uEIAwwSCOLAWPOm9wNGpqszw5D+xWwi0dv+6mqyylEozZ8ch/YFDpQRbA/sWgjV0hS4aFKe5KbyYsY5L0YxyXrVZRbT8E2X3Gy+5QHgG+F/Ymzo5D+xXgWKmyht9wbfcxNcBI9+E6eDhVwkHIf2JmCz3nj/wD1XAaVHkLnYqEg5L+xMHg+qVbZc7Kc74IGZuTNvkkYwO0aBrJ09CUjJuDhxFTfmK846vqDSxkTkSCpfE+RrASW2uHAfFKa+rNPA4zlgdPJHnRGwkxjBpwfhu5AZPS35ipvzLzvj9SaOAumEcklQWCUhg8y0NBcRvdy4pDXVgpoKhshdfOwyCw+93Rjdvd9hP8A8KMBk9IdYPEpvzKuBsjYoxK8vlwjGTyjpOrkq5RgCL8yAUyFJBF0XUoUgRdF1KEAQdIQg6kIASMWYB/3UnStBAHQNibSgCCNXSgjQpN0G6kkSyi2lPYqLIyGSLIsmsUIyGRANLk4UAaSmCABUzU0FQYzNGJM2cTQSbX5wHYXavWVyFBBjGT6MG4hDTjEoAe8ASDUQA7C33VIoKRojAisI351gxvsJDh07/8?3crYhAGIZOowIxmQ5sZJaHPe5oLtehzi12pHiFJgzYiszOZ3CHvAzgFrjd8lbUIAjhUqOFSoAEIQpAEIQgAQhCABCEIAgah0KUIQAIQh?hCEACEIQAIQh?hCEACEIQAIQh?hCEACEIQAIQh?hCEACEIQB:2Q==$/9j/2wBD?cHBwcHBwcJ.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.n/wQARCACaAQQDACI?RE?hEA/8QAXw?AwEBAQEBAQ)))ECAwQFBgcIE?CAQMBBAQKBQgLAQ)?AQIDBBESBRMhIjEyUWEGFCMzQUJSYnKSQ1NxkaIkY3OB;Oz0hU0dKGjssLD0+Hw8:a?wD?AB?I?D8A/pE))AFkQDAQ?wEJtLGWlkAKFJqK4kS1t4WIrtLisLGW+9gBMXNvONMe/rCdNZbTlFvvNAGBMnJYwtX6wjLOeDTXaU?Ca7QM3TjnKzF9zKUsuSxhxACg)))))))))yDEI?BEtiGLIshkWQHklQSbb4tvh3CnnCXtMpcFwDIFAJDKTGMBIYw?DIwAhx5lJPHDD7yskyWYtdoAWBnBtxWelcGXkAGAZ)?ADyr3bFnYXNtbVnU3ty8U1CEpxfNCHNo6nWPT1RyllJvoWekAK))))ABNpel?ALMe1feS5w7US8kuS9oolsTqQ7SXUj2kPJOuHtFgZ7yPeS6kcekjiLXD2jSLbcu54RSZippL.953f3jWRb2C9Y2Q0Ybx9wt7I0SYt/TR0jOXez7vuKpzk5NN8MGml4yONeEnhG4sgyWwRqPIZFkWR4AHLEoprg10+8Xkybi2lnjHiWmGAKyMlMaFgCgEMQz8/8KqdaptfZUaVzXs5To1aar0I1JSUp1IQhGW5nT0QqG1j4O7WtNr7NurjaE7+lQ8Z1b6dTVS3tCdKG6jWnU85OUd75vqHt7Q2rcWm0rG1p0I1YVqdSvXqatMqVKlKG9lGPr8n0Zzw27VqbU2XQp0I+JbRp1Z0LrVz+SoTqzjuuvD1fOe2AH04)))?AceOHSJsQ0k3xeDc8np4CAYiJDQ?GEi0AmuK+0xubmjaUnVrS0wTx0apOXsnPa3VzczlLxeVG308kqr01Zy+H1IGTNEjvA8h7QvLfKuLKpKP1ls97+HrnpTr0aejeVIU3U6uuUYSfuxGmJo1?N4mbEa0us/sMmXSfM/sNX0DpecgdDZORZIbIR6JTFklszk3mKXS3+EvAjSGUm30t5ZeTNMrIYA1TGmZotMljLGTkZIz5jbvg/U2xdW1WN1K2jSo1KcnTUpTnrl8dPkPP2Z4Ky2dtKxuI38riFpvfI1I9Te0J0obrnqaOt+A4vC6va0drbMqXEamKFvVuKcofSV4S/J6fuQ1xjvfjPI8HKVaG3Nl1/GtVxeUbm4u6c/q5xnOl8c6nn939FShvRAfroCG)))AHCNJN8XgfoJN2eQuA8CDL9IiGivSKU4U4uU5RjFdMpPTFHlXUtrVq8qNtGlb0Eo/lk3vZT1x+ipf8hybdjVu57P2fCE93dV9VzUWrRuLfys4yl7dT6L4D6FJJJJJJcEkYyRquBhQoujRp0pzlXcOLqVeablq16joEBGkMg2s97Oe6s7W8io3FKFVc3WXN+zLrwN2uA0+8aQZPDjSsNhShidzGnd1qdvCEpyq0KVSevR1+pvPrPcPcPO2tYraVhc22UpzjmnJ+pVhz0pfOdVqrhW1urhxddU6arOD1QdTTzyiaRQpcVk2Kh1n9hLHB836jR9SYUvOQNWyWwbM5Tiul8ewiLPRaKbJTi3ldPQS8temI0klhGqZJWSskZHkGwNUy8mSZSZDKSNkx5M8lZJHg5rqxsr5Qjc0KVdQeYqrCM8S90lbNsPGoXfi9LxiC0xq6eaEd3utMf2PJm0nxYJtekekxdXDw4nQM59cu0rePuDSx76BtkZlvO4anHvFhjVSD9Y0ASlHtGIpNPo?ABnCJjEbnk?HHtGpQpWN3OvOpSo7mpGpUpRlKrTjOOjVHRCpz831ZLKjxOLY206u1I3tbRCNtC6qULScdWqrTpck6kv0kz2Di2ba21lYWlC3eqhTox0T+s18+8/eec/bO0jBTfEC4rhkWlgmTga4dI5JYM3FN54p9qKbFkeAb7AerCxx+0+bp1rm08I6lCpOpOhtC33lCMpSnGhVt488Y+xCpDVU/S6D6Q8fZO1HtVXtSNJRoUbqpb29VS1b+NLr1NOjkgMafA9fKbwmsjTw2+4mVPPFrj3CilHPf2hN4hMuivLUiszbzjSu/rA0s5xxG2SYRmek4gAi0k45zxNVIloNOI5yCJzwwMNQYNcYWcjRmaRWVli1DwNMeQwjKU4xfFpMMlJFt8WLJm5ZTaXH0ZFGUs4aw+1dU1XQcM1zzNcjyRkeQIwWgJTKQCwNY4hliGAjeHVAUOqBm+k7I9SByCNt1LtQbl9prqR56oVn6piOrShWpVKU1yVIyhJe7OOiZruu/+4ejHpJc4GsKFReqeLsmjdWtoqFwuNGdSnTnmMt5QhLyUvc/RnprpR89tu6udl7R2Rdb2X9H1KkrO7p8uin4x/V7nV+bn534Pzh9NoiQ6kEU7eo3kRk+lmziu8nh2EOtBFu1qP1qZkMvC7CJzp09GucYa5RhHVKMddSfUjH25i369kPEn6ZHNdqM6E6W+VCdeNShTqZjGaqTjPzWvrz+k3fuEbJ2fS2ZY21pTeqNCGnVjTrl151NP5yeqoePeWd1tDwisHUpSjYbOoyuo1JadFe8q8lKMf7Pp3n/ANKZ9OhOv7ppG094sxqOEHmTjFP0t6TVyXYzmq9ej8cv4dUmVbUtPtmkbdRerV1A3lN9E4/NENUH0Sj95bjF9KX3EunB+rH7iVE0dT3Qyn0NDwQ6VN9MI/LENzT9iP3FpE60aDS4dBluYehYNXGLjjDX2SkPDDWgNYvhg5t3Htn88v5w3fvT+aQ0mVqTOmcsYWeLMnhvLSz2mKinxUp8OGcxG4y9uX4f5CsMuLRrkMk0lKUct5w5LL9yUymmi1JHLOlNzm1EhxabcW036PVZaafDKyukEThqaaXBrDHlGThNdMTQpEopDM2UuILp4ggGhG8eqgCHVQGb6Tsh1IFk4KARRAsFiE0M5bq0tr2hOhcUo1qU3HVTmtUeSUJw/HGJ4V9T8J6F1Uq2NSxubZ6dNlcQlRnTjCMITjSrw6+8nqqeU9s+mFgnAHiracrXZXju06LsXDz9LV4zu/KbqEtVGHPvOWp5P6KYUdu7FuKM61O/tZU4LVNutGEoR96M+eB7TWV3HiXHg5sO6rQq1bC2lUjLVq3ejXL87GHJW/ebwnSPJFhta22zSvHYuqlT5KdzUoSjQqVJxnolS1+ehTn53zf+IefZ+DMPGKd5tO5q7TvYOMoSq8lvb+v5ChDkh/7yVM+qhThTjGEFGMIrEYxWmKj7MYlEtFZMxGgEuI8mZlUXNR+OX8OqdBlVXNR+P/bqiUeISfAQGgYNsHPkzGk36C8Dw0UkLJnjuKSWMY4jaYYHgMkYZLWU+81fHpEx4KTMYxxFLsBoGsT7pL8RWCkjRMuCSjhdsv8AMU0sMypN6XnjzVP80zR5JZokZg09Lx0l4BtJpNZ1cCWimwg8xT7S0k/QCWEki8CM5JPpFoXePd95SKRabMXTg/VFFYSQFABSWFgY?xAG?QCF;AGTgChCwBIsFiwGB5JwBWAwLSGSTGquaj8f+3VOjBnNLNN9kv9MwUQb4EjwWLHEvBg+BOAwVgYYBcSMBgt9Ah4ERgTRbEPA0zOSeHjGe8zTy8NNM3FgZaZlSXI/iqfxJmmDOlCai3F556vB/pJm0VNvLUUuxEG6lwFhLpeEJRzLVlNY4FbuLbbWX3s0SS4IWBNiwNIeB4DAshgYIYE5?AB?AM)))?AFgAwG?ADBnU4aOEuEuPCUvVma?GLqR7JfJL+Qjew9Lf64yOkB5J0o5t7T9M4/rHvqXtw+aJ0APItBhvKftx+aI1KD6HH7zVxj2L7iXTh7EfliGQ0EcO3IxujR+rh8sTCVOms4hFfZGIZDQbCwjhksf8ARzynNZxKS+xjyGg9WiuR/HV/iTNcHPaN+Lwb9LlxfxTOkRoIYAIMgN.wE))f/2Q==%iVBORw0KG;)NSUhEUg?AMg?ADHCAM?ABr0Ox5)wFBMVEX::2/f/u/P/i+f9OTk7h+f/j+v/x/P/5/v/8/v/z/f/m+v/p+:s+/9laGnk8/fT9:a6e5wdHVaXFzc+f+rt7vW9/96fn+Ij5Ggqq7D0daUnqG2xMrM3ePL7ve/4+7M5u622OOjv8mas7uX7P+J6P+U6/+H6P9o3/+c7f+j7v9t4P+Q6v904v+M6f9l3v995f9g3f+B5v+r8P+E5:D9P965P9q4P934/+68/9b3P9T2v9N2f+z8f/+:9x4f8/FNg+?AI/ElEQVR4XuzYWW7.BQFURbj2Ribmcz731V6si7Nayl/ERWldnB0ny3w5jl7/6kNICbkHwLpLcWHPESG2MAQGx+i+BDFgby+/RAGsoaH5IEhNiZkv9+LoI.lOUgIWUOCjK7DEahIKmyBQPpum5WBQoFcr12MYthQcarS5rc8syQ6eu+MXav2UCaUhlHGg7kFprWLIYCubgiRp4MQ4EsyyUkTo7hQELiGAwFcvAtawbDgZxOh5TBRAsG4jMaWT.unXlmtxCgexqnzTG;H46lAJw4FsXbtQtowoFEjTbGOrpb63gCBVE0oWDbNSOBCfLFtZEoUC6fu+YBGFA4nJolkihQIZhqFsSRQOJCRK9UhhQWRJFEkokOPxaCmVKILQ8+cVXsThB8vtFv5vjf6zRPxM9EqB7KLkkEnGEQiRJJ/EQWYSZOslrZPYSW.TEKGBEl+XLotEKSRxEzCgjRmkvy2QBBJzG2BIFWQCLLothxkRkF0XOa2SBBNottiQqo0SdsKMukFTIH0CaJJsJAksQ8JDNKXbosNqQ2kI0HsbUEhmsQ87XjIRa8tKKQFQwZJ6hoEeXF9+I6uwfUI2UB6ySQWcvoLkB0QwoecVwkfokn0tBMh5/JtPR3kH9JQIXzI+bcgn3zINzv30twmEsQB3NMeMQ/JgACBJKQkzj5y2FfV5rInff+PtfQ0qI1J0UaRiFW7fYg4GMyPnkH4z1ScMtCU6gOcB6MkPO1p1Pk43hLAWQ/eulkhDkIl4HoQT7jRUtCW4uMYx9vg5oCwo451nu+guZjWm7YPJ0h0DMaOQgzEuqkYTHBssrzag6ftSlcblDDkxrdfD7XWudYIMRDKhIudaA0AoxIAfYYo2ITjrMGGbawNqPkgAPgLIUnAOdhXsc72oLqLvR0ZXNS1Lcpph0wfYIu7hO1Ng8nAjEGmP6IIJ5O3J2Nhk2cxXWAPldZZ/TaIJ5QG2OPJ0za2K4ETQwbPWj9fF7LGX/pwOnVTNA+/3rYn4wRIHOfVGlR7HPoHtwmyHkC4IbeBdPN+v6s1QugKjzoQfuzmyHuA0JUH72je6x5EumtBAkk435GhJUF+ueZkx3I4rPaAENfOnXHJyTQOWJPcQMyTPWwfQqsYMvY3+99Xvf3izSar0GXptpWP37UsHDRWhbNdwS4c59i:c4UB/EXYrUHp+BY5VWdBYi.5zXoMbnyDZrtAnCHcAu3LtNtx3vANzYEjtyCJApEiqDXWjLhXFDWyNl+AlFeESZIzKlh0Z62rMevDLKdU+E3o3vamlXPo5RL7fdfynEvv/XCuT4/d296Pn/1dv4y1D1st4jhEfWYK7fI4S/Re4W;5fhSUcdwORF9XIEDDGeO+D07blsGZe5vSnsMxJhJh3ABEWnk2AsGN+yLkhX0aXAsoQdvwoiLA4UyAMID3GnJCR5bKTIH2HO9f86355qnNDJkNYMTuk35CLIeRgxuyQoYNH1mSItatosVisgDWnqQDrwXh7EtL4YQlr/CdAsCGrYoH1GKlTWxMhrkuLT1P/1GVHryEXQax9LDDgzXYRSaxZLY1y3ZUGI74hMbCv8rg6gBXSeIyAaK0ZL8F+ObD+GUgnQYoiJDi6jlaNQy2bai+jh7ZGJRb24QA1KCGNZwcyzg5uCAGmc/wZ8mnxWesoCo461tkGx4mF9TbPKc8eKUy6a0ryhTQeIdyOoeMqkEWuP0X29BRtdZ5pfQAbzjDLNJ6VlFIm1DchMv2KDeFhhXlDz3EdiA6QKNL6uNxgbhjyUkqirRSAV3lcA1ghxP6KDeF29B040y+FmFeQR2ujo9bL5boRAEHCppTkY2HjBAiOLG4HDqu+YwqkmckrrKcnAPMKUj66AIkI;Mch9YWvATJEwqrhaGFjkE72HEdyIbmN?m0GFoUQodbxOQX4buCSKk8QGCjN6wYsdvF0GeCMK33x3OaQ882bEj.XCI0Ve2l9I48nRY5DjD3J8BwQlC/pCpNTcAnS3X3qDGCJ6JeTfm4z2H0njCUJBAzK4HeyY8t9ULYdja1Vgdam55QgdIVUmfo9w6i6l8dgQbsfAgRCpFwwZtkStFg3EKPc6QgfIddZAqtHZzruIaTw6vslAB0ZZl0JaicV6GJbHZyhhtk8qdPCo6rcDHVMhLOnCh29DTvwK5zoVHAMGO/66GNJKWMvFT78KkVcpdAxHFQ0rdEyFkOSJJX6mIPJLn9FrBzomQ7glncTPAiHHkEGOCyHcEqLMAUHHCAPzuMshJJkH;4+g0cVOvqQcVUxhFDNAWkcPMWZ0bbjEsjyx0D4sYoHFTMwa/iOjpgZIejoM1DBjssg7KA58n5Lnvl8z+qXujtIx1D9ujsIv7C6ewgpLBdD7qnaMH5Yd9IKhpgiTctysXJN2WVRPirHEHlxPJdTmBYLafztIKpxoKRcWOeWJW64UBMWx3Mc74SFZzeEmPRZN1U9l0vnijLWH0obOuPbON56WhwvrvI/1jWmX0IafzOITz9iTKLjsnCuLDV.mfa66gAKGWTHLWmnxLS+NtC0g9aP5eq60j43IWlmRaSbZ6JEIy/WoiQxt8Ykub6Y6rOHSlLStsojY9juSNQb/cEESLT20IwuEpTZVOG6Gq3BhfOZC0PLQcAa4IIIfZtIVg/pZFNU4YkAL49KwmCEiVDblg8tD7rOC0IknYQ9/B2CJKFoTUP5PASgiD61TS0JkGENP5mZbqhtU2jAYRuQXk+BSKk8desqCkMHzBm9EBfiHGdpmCLNEZI+CSIgnWlqzdcUQdH+ikhjb8+ZBkgxhdpW+ECAk7x7hPLvzUyNcLa+BtCSAJBUkYGs19aBc+fFJmKD438aCmk8VeG9CX8HP9vO3aQAiAMxFBUCOn9jywGJKi4loz5UGbbRynQbmEZIolfiJEQS/T1q0Ihp0QUlQbBTXJYVBzkKpFFRUIkEcXlQbBMOcqFYJniEiFYLhtiiQuEqBEQlw9xhgxpvVXIRwEYAlHCIB/ixkBcIYUUUkghhRRSyHebD4D0XuTEORDyXFAazIZQEWAghE+IZh7EQRGxJ/JsEIT/hhRSSCGFFLIDbc3i4WV/d0o)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AQI)yCAM?ACAnCV7)GFBMVEX:/++vr7q6uqMjIxnZ2fY2NioqKhQUFAPXtNU?ADzUlEQVR4XsXa23KEMAwDUN8S/v+P++QJaKBCu7T4MYU2cxxUL7M2Nyw3qIALwszMt9NK9zBSh5uHnVcef23fx8phy7zy.KscoFgOxeDfdVdgiETTDM/IJQPwzpcU93l4bQZ1zW8mqCumJZT+rqPELQgLNOtjoKWXB7MebggsiF717WOF6tIemnUyZmKvLit9p7tgQfP8Y4+hVHQkYuzO7GZe4LWvG2wjuJVzbOfjguC7MX2SEaQeyenBIlCSIA55pygazxC4O3VBM4I/OBUZDPW7aIEVs3JCdjz5wpBNGY3whjBOBBMcia9d8oJHHvLCeoXAucEyz52BE@7LAwSOuywTiBFaxygi2fIJhb7VvqnCBXo+iTEOtnn?imxK0l06ANrnHM04wDyfb0RavbWJOMAWC2Qb+PYHtIL05kADQ6qQnhoUBywlcIFiDcHxJgHjOCcyOUEm6UfYnBFEdifEkQbjdIfDBN754pkowbxGsSEiVgBUnwKrLAxmwzrJA+KfYYm32DgEfDSagE4IURqMm6/29Q8BHg9r1lBMELFICiMQXCMhoAGHICSZIcgLDSNQJEqgkAh5judPjBNGQAgFGok5QzxDE+ZMQuzVOEIUCn?jUScYYC4R8NFgrp1xAu8DrRBgJOoE8xsCPhpU5xQlcKAWCCASRYIojYAHIrgAChBgpZupBBiJnADrMYLZVBiGh?RQiLASHyHAJMGw5ARYGUIBOiZ7xDgkIy7oFmAr5BdIcBIfC8LcDRoFOMEaym7lwIBRuIQCSwVAnE0GA0iTYdowAkwEkUClwj4aIBvYodEsAxcJog2SJEgBALxSYjFzQmwmaUQYCT++4CM2y/II43AO9YUAozE:mYxEeDag2JoI9BSgQYiS98WAbjBneBABKlNAKMxLcIegvRLQmB?NRI8BIfIEAuTAMOQGGQWgEGIlvEcRCdpg7ZQItCxBw85cIOpCChuHzDwJGYsoEPgiB4jUxDPU4TJUAI3FTCXxzTiCMBgmZLhPMTwmiPiQoiYCPBt1fmSDg045MYEMm6FYPjYD:fiIwPUBGcs/IiiFgD8JLa0TRKG4TmApEjROPEPg5E2M/hWLmEBCCSx1guQEU3ixCSeZEDCBwiVOECURtI1JBLQDrhOYVwuQNwiMwIZKkE8SOIkz/CKowxd1UTvPVpMpOx.b5/GL3sOr+7CEAKRiLlvl5VhvxMML/LKHZH4H+220Z1Ovz0aBInMq/K4GpjH+c3XBkDgG6u8tdO8ORqk6QTTQRjiUCSIeo/Ahj1R+E9RrrC/rx+b5Vw/IzNKKQ)BJRU5Er@ggg==!