Dot Net Perls
Top 34 Go Example Pages

["-e..w.y..y.ib+CCCST~~}T~~YF56497664FF.CECCEP65R9947646F88+BB`XS}T~~}T~~","CSV."," Comma-separated values files are a form of flat databases. They can store small amounts of information in an efficient way. They are not efficient for big data.","With Go"," and the \"encoding/csv\" package, we can read lines from CSV files. We can invoke, from the \"os\" package, a method like os.Open to specify a file.","First example."," Here we open a file on the disk with os.Open. You will need to change the path to a CSV file that exists (the extension is not important). ","Then: ","We create a new reader with bufio and pass it to the csv.NewReader method. We use Read() and test EOF.","Record: ","We display the entire record with Println. Then we use len to determine the number of values in each record.","Range: ","We use range to iterate over the indexes of the record slice. We access individual records from the line.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," Golang 1.5\n\n","Golang program that uses csv, NewReader on file","\n\npackage main\n\nimport (\n \"bufio\"\n ","\"encoding/csv\"","\n \"os\"\n \"fmt\"\n \"io\"\n)\n\nfunc main() {","\n // Load a TXT file.\n ","f, _ := os.Open(","\"C:\\\\programs\\\\file.txt\"",")","\n\n // Create a new reader.\n ","r := ","csv.NewReader","(bufio.NewReader(f))\n for {\n record, err := r.","Read","()","\n // Stop at EOF.\n ","if err == io.EOF {\n break\n }","\n // Display record.\n // ... Display record length.\n // ... Display all individual elements of the slice.\n ","fmt.Println(record)\n fmt.Println(len(record))\n for value := range record {\n fmt.Printf(","\" %v\\n\"",", record[value])\n }\n }\n}\n\n","Contents: file.txt","\n\ncat,dog,bird\n10,20,30,40\nfish,dog,snake\n\n","Output","\n\n[cat dog bird]\n3\n cat\n dog\n bird\n[10 20 30 40]\n4\n 10\n 20\n 30\n 40\n[fish dog snake]\n3\n fish\n dog\n snake","ReadAll, strings."," We can read lines from a string. First we must use strings.NewReader and use the string as the argument. We pass that Reader to csv.NewReader. ","ReadAll: ","This consumes the entire CSV Reader's data at once. We then can use a for-loop to iterate over the lines.","For ","for-go","Underscore: ","In this example we ignore the error result from ReadAll. We use an underscore variable name to discard the error.","Raw literal: ","We specify the string as a raw literal with backtick characters. The string has three lines.","Strings ","strings-go","Golang program that uses ReadAll, strings.NewReader","\n\npackage main\n\nimport (\n \"encoding/csv\"\n \"fmt\"\n \"strings\"\n)\n\nfunc main() {","\n // Create a 3-line string.\n ","data := ","`","fish,blue,water\nfox,red,farm\nsheep,white,mountain\nfrog,green,pond","`","\n\n // Use strings.NewReader.\n // ... This creates a new Reader for passing to csv.NewReader.\n ","r := ","csv.NewReader","(strings.NewReader(data))","\n // Read all records.\n ","result, _ := r.","ReadAll","()\n\n fmt.Printf(","\"Lines: %v\"",", len(result))\n fmt.Println()\n\n ","for"," i := range result {","\n // Element count.\n ","fmt.Printf(","\"Elements: %v\"",", len(result[i]))\n fmt.Println()","\n // Elements.\n ","fmt.Println(result[i])\n }\n}\n\n","Output","\n\n","Lines: 4\nElements: 3","\n[fish blue water]\n","Elements: 3","\n[fox red farm]\n","Elements: 3","\n[sheep white mountain]\n","Elements: 3","\n[frog green pond]","2D slice."," With ReadAll we receive a 2D slice of lines and the values within each line. We can use len to count elements in a line. With append() we can add to this 2D slice. ","Len ","len-go","2D Slices ","2d-go","Advantages."," Why not just use a Scanner and Split each line in a file? The csv package can help us avoid some code. We can reuse the code provided in the Go standard library.","A review."," The \"encoding/csv\" package is powerful. We set options on the Reader to handle different formats of files. We read CSV values from a file on the disk. ","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","url()","url()","url()"]

%iVBORw0KGgo)NSUhEUg?AKU)+CAM?AB9VCto)qFBMVEX::vr/Pnp+v8yP:+:+8/+9fcH+9P+HR4v93:+6v/7w:wsPSWVpr5uf3:f/91:dneGwcLT/+P/Sktb+9v/+7:95f+kZKj92v/zs/f/+f+8fMD8zv/80:3t/v;Mz4uPzxsfX92P/8y:lpen+8f/92:+6f/7xP/7u:94P/jo+f80P/7v/+6er78yf/ioub2tvq7e7:/v/94v/93f/81f/LhO3y?ACkklEQVR4Xu3a146jQBAFUHcm5+TsyXlz+P8/2xnWlG0MvcBCyw99n6vRkbC5JcTsf+PgfUiPqZ/zfSzZIbM+NTzc2Af3mPrioL+Zy5Q2+veUVt5erFIrtVIrtVIrtVIrtTIgGOMd/0iIvbybclUpX2NKWTylMnAwL4xaIsykPmbdx6n4XCm/CiFu7KcHOo2ScKMlrtNKtOzrK2IKUVd+cxbmJEpstCdpU85RmxKhtWqlEQ5Qos0ESseQhTQrTZkSWeMriVTJm5WWVGmrVhrBACXKplBGnHP8Ho+U8cLCgOA2Jbl5jCn9XinvaHpQztV0TwJK3r17lqC0FTVkBMweDflSKZEipTNEea9amYOSdFdSUFpqlLMhytmESq3USkII7q30fT+bXsmIU67qLvi6KFe1hpxU6SUFsDor0yXs6iqUGIg9lC9vphDql.0YMPMPl0RlcrANfors8W1UiUrjP5KukVqleGpifNduWfKu2eDzpR3vu9P1j3MBY4bko7dQxcHpZLucUAT5Z27x0SVMl4pUSagCbo35BqUP9Q0JJxPevS4XSmXinoc+tDpoVxUSqpG2YaRK1Gl9JuUWuldstKF85f8u4Tz0ZD/eKxImbTccg+Uoex56Z8oGSg3U3WPWzEZwdw4xGWS7klX0OM0Pto2FnRUZX7kKRKMd/xskSucvKYUoGzbidDWFOMp4QLynF1AooSMqSRDlJZq5SwcoJxtmpRsQiWLmmWuAYnOlPT5Xfmrrgxs76B8Hvd7IrZrIIYBC2VvWunt9umhpswsQX+D0h5RWcaLTojRfmkPElA25PEtyI6Ur9QvBdl6GmUJKh9BLucJJuwgYR7mvABlLalYxqlI43j5IYTQfG7bW1COkD8/upOVozMCaQ)BJRU5ErkJggg==%iVBORw0KGgo)NSUhEUg?AJY?ABoCAM)kR/m5)GFBMVEX:/9fnOnZ5fmFse3q8Pupx/LE2PY6i+Z4iByf?AC+0lEQVR4Xs3azY7DMAgEYP55/zfeY7VK23GGJg73Wp8MNlaK3B1hVZWZVRbyhIhK1/4X6mmbRf0pvHaILF37e2jems+XCEbeJKrUPhNaWwoJh28R4dDYUEhbXIEAvGs/q/WZrPZnsrqeyerYypqnMczM4i5W27m3iHrahKWemenT7bJU0OvXWZ6v7S7lqytST/X6OJOYIl8T5qBFzFhizJ0aKP81YmGXARRw8Sypk1ms9UN8ZKmvssTPnMVwsqVGe1ZIANZiGsFWnT4t6yzx5QaUROuiWQVr9+jHkVOW6NLioX0qxiwHLErVNWUVYFGq9ikrwNqUqnXKEsCiVN1jliIWo+qYshywvJmwKSu/s7KpqGtZ9dGcZWHl97NSJOCHHdvBkoK9pe5m1fvdUFs4ynYt69h4PFYWiOtY8e7152sLyHWsd+3c1xZQuew61Td0XVzAr2P58bhpLHav/FFPREubfirkAhVPshbbWmh3rbZ6leveW4ds5/KJyTGriE828OcyZuXoO6WBqqRZPvlMGQpuFpoFckioumgWLq2iVS40C+cQq0xRc+BZ/D+LBlPCs4ou+MLJ51mKCp5X8Sx+sxLkfsZSsrIcqGasJDfLQQZnLOP6TgDVkBVcvYeC1TkWfv8Fo1KTAQunootShQxYOBWdjMpDRiz8PYRSCQ7MKv2tKmXOslR2BELPFKNlLLIKTLkAla+qrFxfyQEsHM6o7P18z+9YLozqKGJZTOEmULm+PBSLuqULqESHf/ZS92EAFWDBAS6y+esXFWaF0ieQKPeSVRaFMgFRWMWz+AeJgoMLWdxOMSl0GbHmY7mFVTyLH2LWheZp1XNWKzDB690OXXDM8rTpAF0eRCOWegWE4HpXMFIOWNysPu5jDkSI9RKFcAF2hGV5Vggf1T9nKRTh0J+y1Mvum2PFLFDau1igtO9mgdjC8ngCC5y2Xaz5aZuz0LW9n8Vf2zxrvwizcCHtZ6nnBhF+kWwM/CLZz9LtIvAi2RXgRbKdZSHPiz+CLM1kMu7KU)ABJRU5ErkJggg==%iVBORw0KGgo)NSUhEUg?AOM?ABfCAM)tWIBw)YFBMVEX::/9ew4fcL/9u:8+r/+fX/+/f:v7/+vX/+/j/+PP:Pn/9/GR2OdhwuH79O4sXaMoVJb:fzL6OwvZav48+3+9e7n7+07iss0c7nx8e1KrNr18u4ya7Ls8O5cjLnj8Csz?AP70lEQVR4XsTV6W7jOBAE4PxpXjoPO8nc7/+W210oTpNrw3KSBbaGaiojGNCHkuWX/y2xPYsx6nGb/W4G7p6oy/OC8DT+R4BY8wQq4uiJ8GG2N3sHNQzc9QT/einCjVHqV2kf+P+7RN5DV10F3kVC1xN7JQadLPLLvniTCr3F9Wm19NXhQC8QJvicCHSPxBE9XxBiPsgN8xERqT7lcQ3kNYGxS1Vi8MOxzecbjE+E/Tx+2VAIHBaCDT1h3E9olbqBiIO6zyHrR/OHEoIEpNpcxh3ZYfQMJrxluTEACiWMAHZKjPBcekDMy/N59Zg0AyuDJud6r2GwZQQ7yzo0+CMPWQ8E1/xUh6X5ehqS67MPa/TkRbKcJOuqSZiv+SUIlRKy8BZRdC0FvhTQvCgxZGBhwQycqkS8Sduqsi3yE0Qan0rusuRoOiL5dOgAW626DBmSGjEkKzeBSZln8L0SgQQR88M9xi5yYyyPnCmzxyiOBBtGIrJQmOBLSYKIGxERn25FkczOeCFPC6G8byxd7ipRaEKPQmRmpEaNYkJEcUWHQtEkJGJL/arHOUsElLmLfJLowNZYHqTrmF/OJe9BiBSkM9IbxBQ2igjFwU;lBDCzTTEv8wPGKMTW2M5jXRJgh6J1?prRHKAGGBsKRU9CwkVmxHKTqoNaT0SiM2SD0+R4xlKc+l+6ouKQqR5gm9EWr2WGDRCa4NBDBGpQF9S/PVpJJIMs+Jy6RZOuEej6nm+F363FwiIalRYgASFiClNWKqx0qEk7iiNqht3YRGIoMBieTdnrc4bZqpFWrmDVkt83VsM68Irs+su/YoewDSX0U9MVnrwXRSiphKY2BDatitjrproBNXOpFNnvc4b9O0zZ1wGObtKJpxfJu+rT+uvfEYxzKWope2H9fCJBijhOZJzWzUQChQvEScOEUXjB7qlU8ijQHItsjTF2retu/ft02cOGgUogyY3r6t043RUnCpeNJSoteoyGxMJJlJNwlGNLPtZI2AthkLk5AguioRyB1QLeTcqJeP7T3G9+2oxAEBhDnW9fer59+XRr+rpeBZtRgSQD2KepMxRYIAhuLoI6biRkwO/3oKfy4R/5WE8owYp22KGE5sjaZ6X6feqJNIvWQ6Mq9lz8MglpzgY0IWGEHjM1ot9rS0BY6aegX2itTVEVFk1P30R+NiFR7bLxe6karpMrfGy4Edzmmdm3taxn3IeJyApBH92ZFA5Lu0tmZAUrFA5imTUHxL3GuAfFyj6S5R82s7dhDd6Kq3y+XWyEvrakYyryXoR2fJOQNIYgJxntmh+aiikjvDJr3gVJWhV5K4nxAjX6nzNrXE0BmXy+Xn8jc0Muv6U/tkrkVrXNdhyGA6Uo3pzx+F+nsUBML8jzZ0t48siS1Sc0KM/xRzh81pI0sUhi8Q4RgEwcEI4wD5:/y9rzdzRETJAVXqvaAlHV5P+SpMxqNBscx29jM0xMuMcIjv973fSNfhPEXYmPOirE13m73+mrIdb9HI5oxJxpqCdCiHHZSFvbloi8lRqTJBqKQE8aSvGus3t6uIpqRsm6sC6z6i/7INWPXHmY2BnbvBl37/REi94mlGVeaTHnj65woIHA/q01q5FKGGI+UIR0jMlR/+Xz6620j4fLVyxo31iN3Zj3aKHp/tx7ZwWCds1qxaKNHRwJkFBZRvswaX5KUkmzSontkVrkeMaI0GsSfhoWI8PVJYw7cc2swM7JJ02Bc8fxSLkl69Cbz0jNKt5i1MkXaMGLOSYlRcFvYrVNp7/Eaf9giB+P6+rY7ZImV8XD4OB0Pt2xPfeP8crSzC/f7/fFok/CRtEsDL1fNsj2S37/L+XqlGIxF+DCzBXKCkqBkl+Suxynj3lbjkd1u40ZmxFtZsE6nw52xUMN4udwuzv17L5fLke0aG6zH+fx3L1eagdji4aiSbXLE5KqlnSUeQMgIkVtGpjxfIIQYxlDtTx9/Gt25v8x/ZOoe83FZPZYaj13cGYuhAzhbtCj9C4ud+nCQpH8DUZOjxIah6jfG627XRYlhvKk2p+3hcD6f7ZDRs7ls8YWya5rl5cLNglWJ7h9lztFyzftJIsLUIfW32mRyBQmR/JWRJRxEctrts8XVyoyCfJw2Z8WMZ33rsukZPzubaC4XI5IwxjIVY3tLjEZk;ElRcgJp5rEKOWEkaU4RLLZbcwYW1Uq63zenD6uldGCs3yrUNP4wxiXExsURKsAjCDLacErWDOXKX0ogVjdQWJDcuJ6ZJUq4343jxZlLJb9fF5qlHGOkW+dTpvbtXmgx6Y5Xay31K38bMTWjdFlbwIdCnbCDNz2jNq/4klybKvx+PZmQ/W2utm9HyGmEeFxM59vAX2ePy1p5Fsn+5Y1nUx6bE4nf7CIhyh2Um0dwBogmuRyvA3Mb4tvI04N1ra3pAvlkl268UXO9tYi67dNEtvticxLNkezKdu5srkyaDOM1e32OxjOSA1pvM2GCplwIkaAaMbC/MbJXunjVV+QLOgs2m8dEJL95pg1Li3HzT6J7UZxodL/1tmTZX4eckmS48q3vUHGMhVjy90/JN+oU4Gp3N9AqBFkEsd6JD9l1MVYniBylvkczzmD8WpGBqPixqLW41QaadHC2V3eKMVGk5xYDOTGgIwQx3uUsSZ2GCeFKBUz2hKsIKBiZIotRoi6FqNGdJXRXsAJQvXoRt0kQU58uFHVmMTufE3iM8zr2YwzkCwzuRLR5f6N7v8UZAcYL483SaCUrYz2YlmuHoeM9VDNGlsZK8rVM6TEaIJZtwiivXERePC1iqO0FHIEMnutr0dXsucKkQwYp2rEWPPIINSNXdvNum4WC2n6S2SbL8MZMW4bGqBVqum1Gqwgx4wZGSGmsXPjgFB5aDSgHYbwyuwMUk5ujN0MHD4BKVLGwbVOf12+fGycGqoYjzVxmomRR0mUt3G5WqjGXOR0EkomXTYLMXtcgKTI5m7S+UujhqqMtXBaifEHTCsq194aqdUCwJFY0kYgR8OqsUQfAS0bGaenHNWoofoDo4jjkfHTgK5EQI1hxbjAyJQDcYFTCS81yujMtlOPPlgTOT3lyBhEGSE+oTyaMZIECvOVQWe+lfanfBkXRkVl6iHkwfXYwCNPG6PHz2eMIGWUEp8XuioyiqTFQaOkQlJkOzGvTt8eZYT4FeO1GMujpL0JJVJEGrvCvOvxttR5hEzlw3m10acCT1yPq8oI8YlgtKSxAwmEcWZGdi64HtsZvKEegUdk1DpHmx2Tc47tVRF20iz5REU+/szRKMfjEBKjkEw8xVhcpcHOlMyr0WPkzzsjLWq86gFSxjV;KM9/nzeqFwfUDESjJacPA0ZPcYNpbN2VKSAyqMleYvRAtKVz/T4/pyR0CtvN15t7y6QB1dyqfm80SazEMO4yMfiqslcB6SS22wr4t1uxz8eq3/m3qhtAQ1XRxoxhXq2YkSS+xHKmQD@A1lEqnxCeP7PzESIYsiu5iZkok1Hq1CKSO0gGZkzH2AQmya3gbrV41kwqjIKKIrO5ty6IrRmshqG4CovDwxwKseTUiP2nycNoL858Zek1xpMVgxei8IQaK5K1NwiI4kVuKDy1FGpTI+c0EeByOjmgQJw40zE8YmgFcUs;8AVSPtFjvITvyy8bIl4wqEmRcZ9wmu5Ji7FiV97d0FM2mmTYSQjU5tk/+2MhgHS+yOAbixs8/iowaEXGT7H0sl0p9okPCqIRQxJxzIE7sA2B8okgcA0aUSZTxtvhkfYORewdXZ36UilE+iEJmi+RmXMu4HJt03iaKrJHn6e25WukDlaqsD1YBi6jSqb2oUID45WsRVj9t9bxRRT5GGmDKqESRsYLB6Lg8rdqyNqdXcPIR3TXCZ28TglwbkchYISsjkX.CWDYKGmM1HKY0F+LXJgvVij5qsy2KVKZyRSRtXj1STnClyHjyK6VnpMjB4IuM2BMYDKNiBGiJa5HjtWCP1eGtCrNgk0FloPoUgSo1biQGKefkrX9iLFGopxm9oG9mZVgXCDUT4l19mcXqhYZJ2qujFFjY0ReAKnxZaRHImNdZI2cVkJ/PLPypMxgJexC4vXRS3QJysh+nlpkzxFipCAxjiitaxkHkVJWqY0IIQYy9wOYWL+lESHKFT60yaLR4K8wVj8tJ6I3iXFisE4j@4z74hniBhZx/hswp5H3gpQwChckB1WTxboHUL0KVXEyjg561TIerym8iylnGpQSD1fdTNTxhyJByIKvG0dL5euw8gDFcQQiviE@UKSaoqcU4njRB9NVcaAogR2+p7sFOt9K9DmPWP6NrpBeWwcWy0Vk1KqajCxzGfLke/HlVNnHw4wgmVig4hFfpBi0ISR44biYyO/FvlYWSw9p+Suxl3PztBivFHUPTRLpaQLM3oQAnXLgSAcaLIcSTKCWYdbVvRI7twCxMsEma1u.exQv+jt6NhWgdcCBUjUNGptYppJQjZZLal9FnAu3MXmZUPfD46yORT2Y9KzasbgxYesC3vgF/jhiHm6yrlHLYyUQKsCbydOh3BrfkB4gYGagS9rFsFbtxqdUNNZKXRMo4VaSQqlLKyIgSZw3MzXI+l8PQxDTSlDOJykDxTjyL0wxEbeGAjIwYLW932WXePRfPSQE57FTCVw6e/pk96YafL2/AOXAZVHxwFSHXIPV7AiJOlLGOjEJOKOlySgkPosVa9Ns8QCNyF5AEbrOMUmU0HEu3RkhGKYeIU0bzi1crZSQyoqydUMOcPJI/x2IxIEgLrHJynr0VxrGmmuqOAVLEiR5JTZzqkQszocOBx/97d9enRa/m9dUkloLwQ1DaEy2BblTMB3LC+DJkrHuU0dJNOLPCGUCmysaOFeuUYjFiyRIjCSW0pkkdB+eYToXjLORXjPdA9Wil1EyfWJKXwHa2iEsr/93jqwtfE/haCI1jXNIICDGNWoALWQ7libFaVSicjCXBFFRB17azMjb598gMSHe8ZiEIIZYjanoQjMoNyPE1Y/h28O518/yjARlQxWQRs+FjuixKrb8MQh0uii8TAinJvLzIGxCjfu2KvZ417t4cKF7uyc0/yinTlKwG0/qs+cq/HqY4dLdf2sQ7/5O4JY0ggcMTUjcMePiEnDSic590HwPR79/Aihc3Z77LrElHyJQ1MwQ1uNqrzWBcy9hvEJ+M5YCWxFFj8NJ3p/t1H4zM+o/jM0r+deP3atW/MA2lh2a8IQVjJtp/YKREiAjHjejEk20gjJ6H8wO6KA8Kp1j6K2kMqjhxoXIQcJZqoN4LIdqxHjGmruJth7Ieic/p0tS/WY4EPqUi8hb4ERJgLYQ4ahzCbR5nSwUVDJZ07ooXyoroh4xh0NSpq7U3qsH5EZFQPX4tL09EC+EkBlJEnSjGla4KSs848RsCRcT4LzJl0x8kiELKGQnAQ2O67owBFLGc1ON/FKRC1qGWKsNImIqXCPL/zeyD+KqNce0)ASUVORK5CYII=%iVBORw0KGgo)NSUhEUg?ANM)8CAM?ADLy3+8)MFBMVEX:/9/frjX1+inp81WUaW6udfGx97q6fIbDJDr+PfE7Onc9PLN7+zT8e/0+vu56eUR9Hoq?AEp0lEQVR4XryXzQ7DIAyDfc0fe/+3XTeph4YGI5D4jiSo2HMQA+TzRNDhzw7FD30uOjr6JsMf+czj4PATI1GozqsNYDsVpzS1fGQiOuplslOOaUIkN4nmVrhN3XKc04ScraFkq0JrzKx2UpMla0Zma10hXhlOaoIOJipSjZRqq3BWkwy8SSUyL7VTdlgTvHTcipngRUnJXNMkWCU7TmaiqMbAJ1nTZFgnjwabCV5uyaUlTYoNWuG4FmbTmYGNYlnBHiccPhpSu8YadCVCvpU84njwn2ncIao5lBwjydu8z1u/Fnyb48b1B/GbvsJ28V5A8E/AX3uaX6gq8Zv8M9lG+jts5hPy2iRxcYuS1SfaPpEl2FS4463LLv6i5g8n28PE45yyIFPbvqyX65brIAiFQckFCfb93/aUkIacrprRzuwfNWp15RPc0cLWMiGtK2EuO1QdzLzyVFdwx4PP3JkJekEqCpBoPfSw7JOBLCmuzlHjfl6014P+Y6rLiUSWfL2ZV1ybS+GvxN+duySYNmU0minNGbNuW2HoUd0OIlUxVfgzbS0muNWVSSxCFaAyi3YvuOh2EjHzONJ4oLjLhYNpAYMypgpgDQBR+uO04Eq5Qs30LNX4ffC0ZLr0vPCWbAmAE8QUqSLtM+49r4fcMuZBXy0XJtpzz5lUoMWUyep0GAqKqAXp7IgecFkt6jGFVabrsqWGMY9ezPjCNPkrYWIRhQbTKTrKSUy8fuhxBlwJ0erzyUTnjOTtyRrv/Dyk3RuxlE0EVxeK8A0TJdyLeTYu5JOJJmuJHmeYk/1E3bnRa9navciNNBo/S/LJpMIzORQJ3DAtsBypkqw0JuZrS3pf+JSz1YMJz83m7WjTdtmEDDimMQnX2WOV75jeepiFnenzGHMM13VZXE6TwKPVE6guY63XQJmVGxWNMJlqk6k6UTDF08slskV16rPzrf9sE0zgrzfE1IhT7JgELSZzCbL/1M7PLncHyo4CSbjWM8XDYNOvmMjft8mU3QfxLkzjx345woQrTinlsCwMD/vAVJ9yJpEGU7jK3GRa1l3z7W4av3EeTJH4tJy57rplkqeaTL4wuDaZYO+j++PouE3IzvQIpAQu8mr+yPTKODG1PSL5HNRi8hDmlnsNfnVDvp/m7GsaDnQc3KYPTM6yl6rK0GSChGYSYQPvTHVtOIQ+GuKB5FMx9YxgET319aUpcg+H7k+llynuQB1WqbqFylbhay2GRPUng9DhQL3cfFcHk4FcxPC1cpx278Kkb3urh8mhXAo/SQInBgwrrBX/NWsGKRCEMBAElmWJ0fj/3y7McZQapCeQ/KCwCZjqR69r99vYgRcGppzb1+/6si2znvPidJ8fCb4A4Xo+n2886xpfLEN/l6mBj0u6r2zSYQKTrjB0r+EbzCYzcXlGH85CbDinC0ypCoOzwJ2ikJjyk4cGPUjz6kzn2lb3NB19vM50QxoG85amMeoU6UxjJpc+YMFBK0xh8pnCxPk2WLo6U8wUJt6sjYIyZKaWw8RhMBb8KtNMY8J40UP1uky0BhjZKjNBV5eYW1Um7i1xNr0yE3TfUR5GdaatP+OH6rWZ/usREj10r/sZ)AElFTkSuQmCC!