Dot Net Perlsc# convertTop 37 C# Example Pages

["+sswsyry.dBC[CST~~}T~~YFG7G7G7G76F.B+CEZCES}T~~}T~~","Convert Bool, Int."," A bool can be converted to 0 or 1. In other languages, false is equivalent to 0 and true is equivalent to 1. This is not possible in the C# language. We convert bools to ints, first running through an example. ","Bool ","bool","Note: ","When you try to convert a bool into an int with an implicit cast, you receive an error: \"Cannot convert type bool to int.\"","Example."," First, you cannot implicitly convert from bool to int. The C# compiler uses this rule to enforce program correctness. The same rule mandates you cannot test an integer in an if-statement. Here we correctly convert from bool to int. ","Note: ","I felt there had to be some way to cast the true into a 1, and the false into a 0. But this is not possible.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4.5\n\n","C# program that uses bools","\n\nusing System;\n\nclass Program\n{\n static void Main()\n {","\n // Example bool is true.\n ","bool"," t = true;","\n\n // A.\n // Convert bool to int.\n ","int"," i = t ? 1 : 0;\n Console.WriteLine(i);"," // 1\n\n // Example bool is false.\n ","bool"," f = false;","\n\n // B.\n // Convert bool to int.\n ","int"," y = Convert.ToInt32(f);\n Console.WriteLine(y);"," // 0\n ","}\n}\n\n","Output","\n\n1\n0","You cannot cast"," bool to int, such as in the statement (int)true, without a compiler error. Opening up Convert.ToInt32 up in IL Disassembler, I found it tests the bool parameter against true and returns 1 if it is true, or false otherwise. ","Convert.ToInt32 Method: MSDN ","https://msdn.microsoft.com/en-us/library/2cew9dz7.aspx","Further,"," I benchmarked the two statements (A, B) and found identical performance. The compiler efficiently inlines Convert.ToInt32(bool) to be the same as the ternary expression in A. Therefore, A and B follow the same instructions. ","Note: ","There is more information about the ternary operator on this site. It is useful for small conditional statements.","Ternary Operator ","ternary","Summary."," Here we saw that you must use a ternary or if-statement to convert from bool to int. I suggest that the ternary statement above is best, as it involves the fewest characters to type and is simple. ","Also: ","Extension methods could solve this problem partly, but they would make most projects more complex.","Extension ","extension","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

%iVBORw0KG;)NSUhEUg?AMg?ACrCAM)U5iNY)YFBMVEX::99u797t/o6Oj86tj+8+fi3tv95Mv:fzy8vH92rjV1dT138hFRUb8/Pz/+fL/+/j5+fmWlpXqxJ3EwL2Uhnjx1brOtZx/f38?ABtZV3+0qeFeG1fWVXqzrL/zJlhja+0?AEqElEQVR4Xu3cCW7cMAwF0GqXd8+WtU3vf8uKsabwDFEziWJUBPhv8KLIIqmBfvBMfM8P7olxnqdpnrlTYlIopRIlcncop7VzAOHtcNr+HIYXkDB3hOT4FZyaZkiMrB0PwWrnnAJN5AhRi+O1DcFanfcKP0mcnL0Mw/CYc05RHPfKPDlw3MQpgci/1vds9gve7IyPkbaKz68ciFliQaLR3uBfNEoZL42VtLoxZanZubeF140BFu7tbYqDwyMy3tyJYUOK1Q4gjB22Py45uznydWj7kB2PWgGEv8PmA527I+gM4e6obUHEoeBo5+5og3ZwtKPEyMARVo4EQeHQ696tR5skFkfr2qsW6GmTI+ftX3l46J2qG5IddKybKof0R5YQPB09fixBy4ow3iPy1ZJzBFcoQWvqZOdfa0n1K/2ISHDPLlMUmWvJpDEHzX5lGi/3I3JjVR6JZEw5bGRMYc?REMEMPVDEsMQSZSRgcMY323GG5MkDCDPZDpvifx/SGP8s4bYlHATm6Ihz93p93aqgHQA+atAlgVyqh1yWCALo29v0i+UBDkzgYAjMzDFWk6QFQNRGEFgQQDwepc2z0nZQPKCvKL@eEEuTqwhBekz471BsiSnhEkLwg41vm7JOwg9xtAIAIRiEAEIhCBCEQgUjQWlPHSWFXX6srwQcZBxC1OYzyPAV2+xjH/TsdiZAoO473vNnLmMMQeYQ905+3Uca1gt9OnLbCdYajjosdur/npRPzBrfHD+VzB1RsJ2dwCEDMkhy+8DN0f8ngmPkpw3nXGENfTVUDoY6IzDfWDgRog9MHdmQOx8DVAyFKKC4QqbtlAiHaDD4RoAPlAyJacHeQeKRCBCEQgAhGIQAQikEqLRinjpbGiW10ZPsg4aL8B3f6Q8T5fgND3ON4cYpyXxBj3YOAB5vi9Q2z9DmkOy4OS+bHVuIODmCfTkI/c4/hGKec0ZJdXNUZgmHWAMhZe9OB0pskvSu7zqCSsx9N9TOPUOuVXbx047Mtwzc/eIkn5gjyp2zz1fVhHlV6Geu9N0yjXE5JCiFkgDrJAPIKUXU8vG29Sei1pNyQFEHcNASF+MLB1k/P+ThAhKYWAQ0NAQkBK3h?CbFPiiF6.Upl/wiJCWQ7MgSAlIm0fYNSfhBsCRk.8ILWEHwZJLljCB0JIav1pxK/M8T04HLClsQJKj8BzBjHmaJrUVqB1P5ZLcgDTXmPKTHT84sx0b2rZckhi3hZEvqrWwA4p1Im1bLAEIKPwquPotgExKv3wsAPmcRN3EGfO0yuV4LOlHMMTZ4bMBiVY0RIWb9LdL0DTm6D3qEL+YWekwfCHojU8a0mdI3t8gOSYH6tn3hWCJm+YvQDIjSy4+OdAUhQEEHxymOaC5FoN/LXyUm4ZYhPo2O0BwcUVD9v/8VgMpPxDrgJSXKHVAyovGaiDlZXw9X63yxqr8HBmrd9AnO0CI6qqG4QOG4AYEDva6HXT1Ww7Zf0BH9yM5FKTKkSnuEI2hHFUOsXHPvnQg+zuIa4XiKQpqQHaDEBc9O1ys7wOZFHH1xiRx0kwdeI+g62muEPSDAZ6QOKOfcHCVFP6o5g9Vk3s4mHpeS)ABJRU5Er@ggg==$/9j/2wBD?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJyf/wQALCACiAMgBABEA/8QAUgAB?MBAQEB)))?ECAwQFBgcQ?IBAgIF.cDBAM))BAgMRBBIFEyExQSIyUVJhcYGRoQYUM3KxweEjJNFCU4KyYmOi/9oACAE)/AP38HDiJPXS2vh9DLNLpZ8l7cYiUMRoanrasZ6vFzyRk8jyyoRzT286Oe0e9nysUoRlGKUYz59tia7T6n2Eq4iniNJUs/wC1yYbU0r7IzvX1klHhmWTyPu6c9iNUS))DixFOetlyXZ22pX4GWrqdR+TPlfbXCY2tV0ZUw+EnXp0qeKVWpSg6k4ZnRlGOWF5Wnklw3pHyap4p05VfccZlg0nfCYhS29EHSzPwR73sbRq08TpDGTpVqOuhh6MY16U6N9U60rxVVRk/i9B97h5chHXHcW))AKSOepHYcNamzFQyEndo6/6nh9z0))ck9J6OhJwni6MZRfKjrIJp9quUjpfRc5KEMbQlKT5MY1YNt91zrzElJRMpUkcuIoS5OSL49phqa39uXkztwEJwVTPFx3b9m6523XShddKF10onfu)?PyjEVIe8VeUufLj2nmn67CqbwkaEEZQRPd4lVcBpl6fEu)AD8yxXszpr3irKOGUo55ZZaynZpvftkmc69ntLZlGVBR285zhZeUmfe0pO56FLcbokgqyk93iRCW01TZWTVyafEu)ADmqUe055YPbzvQtTwq6fQ6oU+01QMK2KwtCWWvWp0pWvlnJRduneWUoyipRalGSvs2pp8UUm9hEJK5prI8UxJrYWp8S4)AKsjKEiyJB4WmtDYrSOKhXoTpxjGmoctyTunJ8IvpPUw9N4fC0aU2v0qcIStuvFKOwO01yWRkZbIy6g+wvFZU3cjW0uvHzQ1tLrx80NbS68fNExnGXNkpdzuWu)?Azk0jiaeCwlTE1VLJBx5ls3KkoK2ZxW99JyaK0lQ0i62phUhqsubWKO3Nm3ZJT6p6ViUWMsT8CXh9UeeCGzpwXPl3Ha.)ADzMTTWlKMsDXbhTq2eanbMnBqf9Skt8egto3Q+H0XKtKhOpPX5c2scXZQzWUcsY9ZnoWFibGOK+BLw+qOCLWZFuRtKztZGmDl+pLu+53JliQ)ACqhCL5q70kWABhivgT8PqjziYyInPyNMG/wBV/L90d6Los))GZVoOpTcL7X9jjeDq9MfN/wV9zq9MfX+CHhKvTHzf8ABehRlSk5Sa3cDqiaplg)?c+M+EvmX0ZwgHZg/hP5n9EbsgpIxci0JG8WaI)?HPi09Wvm+zM8LBZamsXR9zbV4eyllW+y3nPioPW8lcEbYSL1b+b7I3IZnNGE95Eb3OiBoi1w)ADLEcxd5lSnGClmVwqiuupdtEVJqcs3A2w/MfeaMrmKNlGiLF4l0y1xcm4J)M60ZTisqu7mGpqdX1Q1NTq+qGpqdX1RvSjKEHmXEmT2HPOqZqsuk0jMuSLlrkpk3LAk)ABmVROxw1oz6Uc6jUvvRtSqbfQu8VLO46vZe17/gl4uX9u66c34IeKlwp3/wAvwW962cz1/Aq4xUqjp5M3jbf4FVpD/r/9fg3jiti5Hr+C3vX/?9fwdI)ADKTWw5asTmcHcrTi8772RCLzT+eVvMzrYpU5OEVmfF8ClPFKclGccrfRuOmUlZ7DPFyXvM/D6I1jg6mSE4WkpJdlrnTDDTy8rZsMsyPS)?IaM5QM9UikaXKfecyTzz+eX1OOM40K1TWQzbdnYRVnGvKEacLSv4nbNLK77uJjjV+6qeH+qO5e8Sw1H3aS5qUt22y7TWnro05Srv8Ap7N5xnq)?AixBGU4Xz534Sl9Ss6VOpz4rvIhRp0+ZFX9SZpZXwXSY41fup+H+qIo4irQ5j/x3o6ZV6lWKzPt2FD1))DzcbsqfwZJvUt34ik3lnt4EUviwT2ptbGaaQS1ydt8dpyHVDmx7kSt6P/9k=%iVBORw0KG;)NSUhEUg?AL4?ABBCAM?ABYbu5j)MFBMVEX:/+1wv+jqv9siv/p6:W3f8zZv9gb:19v9NK/8zAP999:S:8z:8zzP+z6P/0gInF?ABg0lEQVR4XtXXy1ICURAD0H7c96D+/9/KQqkhlEKD0iTrWZzKYtJXbou2s+jvn1Q55f2mfAMOb6Ec5D6+c/ObcvOdm98qN9+5+a1w842b3wo33/6Dv2H22g3zCL+PKF/uSKDsGL8pN9+5+U25+c7Nb5Wb74R8h+ki41eYLja+Qf1k/AL1k/HF4XIg4ytMFxl/X7/z8aF+Ov6A6bqR:FTnswXa2B96LmyPZtfoH4yvsDlwMaHy4GLj/Xz8RXqJ+PD5UDGh+ni448O08XEh+lSrtUVnC6qm+ey/krGx+li4+N0sfHh7Cfj43Sx8bF+Mj5OFxkf67c8frF+jJUovzRIBr/4+kovMb5YPr/OdcrUGL9k8FG/Tw3xxbP55/o1R4hfk/m6IBbii+fyJ/JnjK+5/HWRGuJLfzG+xvh6lX89f8m3GH90ar7Ya/FrkF8y+XNhRpAvlsi3+H8fUxP5A+svYb54Hl8Uy4/zNZEvCvo4XzyRLzrhXg7zNZMvw/o6ptsQpvDnE+wJyVGQ5SG7)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AIw?AB4BAM?ADS7QcC)GFBMVEX::0qHKhmbLDvs74yKT4xaH4yqr2tYUVUWgb)fUlEQVR42u3XsQmAMBgF4V9x?OCfVxAdAEdQtwg1il0fsHS8IpIsLob4OvPnKy1V7WXWb+J9pQZZpG3zkRNyowmmmBgYGBgYGBgYGBgYGA+Mn0QHTl3V+o1iYieKifLYq4gilnMYqIVBgYGBgYGBgYGBgYG5gfm3ESx0GvePshxrr29cII)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAJYAzQMAIgABEQECEQH/xACV?ACAgMBAQ)))?BAMFAQIGBwgQ?ECBAMFBAYHBAgHAQ)IBAwAEERIFEyEiMTJBUQYjYXEHFEJSgaEVJDNikbHBQ3KC0SU0Y3OSovDxCBZTk6Oys+ER?ICAQMBBwIEBQQDAQ)ECABEDEiExBBMiQVFhcYEykUKhsdEUcpLB8AVSwvEjYoLS/9oADAM?AEBAgEAPwD3+CCCCEIIIIIQjEZXdEec37yfBYLhJIxGLx6pGhPB118NVjFwmxqtIjdMqcK8tOtYgexBhs8u7vPc840ScW/iW371N8ZGPId9JrnfxmDlQbXvIp3OuFtpUtu2y12UpxLFbi8+RvNyUlVvLRe81QPJFi5dnGmxTNMBAve3UjBJKTCHsCWid7TRapyWJsThNLPiJCg1+nzI3ZmBCOoPr4Tg5jFH2HSA0LevslaqJzRaboy1jQmvFF5iWAEEv9ScUdFuCinWq+fKOSd7M4+YK40yBDX3uXhpFni6foeoTV2ox713iB+36yL+Kzo2nQD7frU6JjG/7X5w832jP2iEo8/SRxOUNzPlzBGl2y3py/HfF3JYecyIlMvkLZIuw0iKf5Rpn/0nHjXWuVWX0sn4C3Jh1ZYgaL+23z4TsGu0cqX2lQ/zQ6ziks/9k6JeS6/zjlncPwFgG2nidYNzZu2iJNOKlFSFZjBsPcllfw3EyOxdojpYpe7sppFc2JQfxgeqNGE7/FfBuj5TvRmhiYXg6x5Wsx2pw1SykN1kKbYqLoU8E3/gkPSXbSZrZNy217VlRJPMS/nAMDFdSEP7QfGVNEVPSUVIzHNyHaOSmKbatl7riW/Pd84vmnxcFCFUXxTVI0ZGX6hI5NBAkEawhBBBBCEEEEEIQQQQQmjq90evsr+UUjTwZ4ttvA4ZV2a/LnFvOEoycwVK92enkKxxzeKd4n1dGjqlxBzpDfS4S6vt6eEXzsAVske0uHWgzTbKjRAnslVUXfoqwqnrrNDJxfgVYVcFybmDeemVyq7LfNE5J4xZSOSCqxdyTiRNeqQwRoTem2Fij87mKk212duN4s486T4PAredRPtEVR+Oqaxq7UhtefHMrxiipp0okMvySAt2m+CcCWGx1wgbzEptKmqp4QK6d3T7Ch5eE1N0dRPnz5ysKXamCUHX1sBNkqKtfCkbyT8xItk024uXX8PFIkpLG8TLLgmYohEIqiqicljf1ZgnSYJ1MwRuJtOJPCJmYFdL2Vq+JhSdQZOeLuTSs1MuqptPIf8AZHs/GsW4OmScSEmmwNNPjHDvYpLypFlS0w+AfaOUQRH+fwi1YxSTbbE2ryF1Btu9kl95PCIs/REgd3b+UfnN8ecgXzfO86JWQdHvgH8+ekedYn2Dx9nEnp/B8XK14jMGqFeFy3ZYqK8PSH+0Pap7CW1eaO8zNAbCq7WnFs8ok7PdqpzFcKmXb2/W2albVbt+zXwVNIkw9N1mDGcq6GRyAVYd3/BN+3xkBrqjzsdxvuvl7zlsTe7c4FRiZB2YbtvzREXB2fe0uSKge1+MVMMwBvr3du7X9F6x6thWPyGMS4ScwyYOPIoGye3y97pFO7JIzNnZKpLDXgEeVdIyuJWyOudMmJxuQr9x/IqDdfEnH+ouqhkTFk8NWkK4P9P7Ti5KcxCaMe+Izrs0Wmqc6abo6BiSmpp1XZlCNwqbR1VdPGOrw3CRNCcYlwG5e8K0UqS9Vi6awgRRLiT8KxAP4PpmbskAY2Cdr39ptm6nqOqIZhQHG5P57TlpHB1uQrNPOkdHJyZtINlRKm1rvWLJqWl2ulfnEyqAc0Hz0hbL1Bc8febKprciatoVE1qsSRhVTqkCEnVPhC585JMwQQRiEwRCAqZqgiKbRbkRE5rFTLdquzE5N+oSmNyExOVt9VammTdu/uxO75R8/enH0iz2IYzM9kcKfNjDJHucQyy/rD3tgVvsBw+aLDfZn/h7m8QwFnFcSxYsPxSYbF+Ulm2/sa7becd113W3hghPf3caweXnBw9/EJZqdNREJU3mxduPgHLuu2uXWHo+OcPlsck/SzhMn2kfdmcWl8ZkGpl99wnTOx9qzb2vYtt+EfY0EJFMCpy7oDS4gJPCqou+OSLDX7ScIRHLuzPC3p1SGO0PbjDcB7Q4N2YmJd5+bxwrGibtsbG5G7nLi3aruTlCuI9vsKw3tPhfZI5VxyexMFcAhILGxqf2utdctbab4nw53xA6Re4kGfEMhG9EAwCWmDRCBsrbUPdyVKpDQMk4QCDZ3D7S6IsW4T4/9CN/WQr9mm+sTv1OXe8VVFxixUB2l/ET9WfJpWjOwPFU+McB2ldbmpOSmDQ3AZvABopClFt/xR6abu7aCnlWqfpCjqMGhXquWf7NsRTXqq0jboutOJ+0bGWo33fYwzdOp?yquxsN8Ubnl/ZzF5eQmjmbCG0VHhVUVF36USOgmzxOZxFualpZn1N8RPPvIXN3uU/WL9MMkdu8lPVMvTh8+SxIptSqoUu4pn5IiIlIey9djyZe0x4W1FdJ1fT/aQjFoQ2+NtjwdR9623nL40uLlhrjsu6jTgAq2iO0tE4QtTfFBgOMPui2w8y464C2nsFfbX2udfGPQlxBJZhG77iJS9mlvTnvhL1hmXdIyVNqlxim2i/vxnD1XcZTgv/AG76Zh8eJBWTKi3bAVq+nbSGTzhMYUE1NszX0WJZYqjbtqVTdy8YCw8mjFqWwrJmde80ENfZOyukRrijBulnzcyA14gVeH3RGsOtdo0ootCeWPtmtVL71PGF3ydSpVAhYAeJZf7zIHTdmXbKLPgNy1+g4qW2HyZsGn1NpkbE2wXW/wBod26Hil0PZMEIKdOcUEt2lfJL32kt04F684shxKYyzcOXO0V6jVfLWK/MmYNqfSpO31fuY5jbDpOgMwQ7kKaHzVRuTRloyabWlyXWa8odiulZs3iEsghGvGZJ8k5xYxE5tud/cSdBSjyPHtKSZyPWZzTboOVRNb6JWlPGByovB6+i25NB3rtU/OLNZ2XzDZuXMBF2aL/pY1WflqBxbdbNlVr8onDvsNDcV68eH2ipxJZPaL9V1W3PDC9+YmDP9GZkzXuxPKr95Nn57oZw1prIF5viMUv6ViRZ6XsFyq2kqpwrXZ8I3YmmZiuUq6InJU0XzjR2cq1qQC1+nt95vjTGHWnUkLXqfX7SaCCCIYzPiHGFH/nmf+lOD6We9duru9ZLN/WPt1FSiax83+mv0X4mxi0z2wwNgpuRnSzJ9hoVJxh72nLR1ID4lXkta6Qj2S9P2M9ncIbwjFMNHF/VhRuWmCfVhwQHhF3u3r/PSCE+milZbMzslvNqneWpd4LdSu@49hsxjGDzuFys4eHvTbStDONIt7d3tBtBr8Y8Z7A9svSn227XN4w1Lg12ctJt+XdQmpPLr+zctIje6EiL46R6v2x7KMdssH+h5mbfkms0Hs6VUUc2ELZqSbtqCE+c3PR5MYl6UXeyD3aNybOVZz/AKVc7yY7trNybc37QSL390Yw/wBH8/jnpKxPs452gfecwhr1j6Wobkxs5NrY3OcYE+gltaUWH+xvobdx/H8fan5ydkpHC3iakZ7KynJu43RF4M32bW7v4kjXsJ6JfpecxWYxx+dkm5GYRmTIAVk5jU7ne99hUFN2+u/SMqLIAF7zVjQJJoV5T3bDJT6Lw6Uw0nnJkpRkGTmX65jpCKXunqWpFVd8M3lrGxjeanTiWv4xkx7rLom/i5w8KA49JWkEsWPjZuLlMKNYjz743eBNbqVWIKrVSrVeqxKoBHEw4FNubvbbmbG8rduypXLr0TziF15KKsZJdU69ISedWpV1VenTfEyJcgbYX94pMzhCWxXn8YSJ560neSr13qnhG024IbPPrzirdfUhtVdPl1hsoukbVf6RMuGYmrqMg7eBuXjsLwV2lr7qfCNmp1dd2m+m/wAoqG5i09yEn+uUWExj42H9UYuoljghRR/OIsmFrskkGTX+FVs+fFSwZxNBXZTUarvosWTc6RAhVWyvWiL4xy0pOvNzDc40oidfaG5KF4LFszjieskbLAN307qlwJTnbXnCvUdPiagQTtfEmxM1DS6g3TKSQa9+J1ciTxNi7eBB7ICVSSsdO0eY0DngkcVJzjlUcqLdxX2N0RE0pomtI6zDppZllbuKsV2XCqfQKEtcOTVsTZry/aLTEnMOzD7wAolUSZO5NbUtpv5xgpSZy5QMpe5Qr7SFF1XrXwhp3EQaccAmj7ql5aURF3c4CxAcw2xaMrKV3bl1RU1jcNlod3/P8MjKYLbvmyd/6tXl6QUHjkzvZTOtIAGqc0t4q9N8SSTZNsALgWOUtLdrTxjR2fynMvKOtmZy4efPlGXJ0G2mnrCIXVRB3Vqu5F1jQhyPp+reSA4w2rUSUWjf68RqCIJqaCVASJFK5bRpBLzKPkewQK3TipGmhtOqpLrXVoveTwm5hOFPOE87Iy7jpLtOG0BEq9eGsOQRrNphEQUQRRLactEREjMEEEJguEvJYoZ1SF/foSJ/JYvj4S8liongQhA/H8/9on6c03vtIc4tfbeLCa0SNjdW3lXxjQUjBtrDNRU8SB8703rotdNK+CxAKXRuaWr4wDSJxsNpGdpCdBhGYcG1enWLB6kV04I2LpE2KiZG24qUGIvZYrrr+vhFA7PJU;m/wD/AGLmcFKLql6rzWKdyTb+1sUyovDpuiyYY+zAJFjfcgfrFF09pwea2HjIEm0u3Iib/P4xo48prsry5axKZsEzZXapurCoiAL41RdUrGCUIA8j7yYIQxbTpPrHmH7Gud36pDMs/wB6mmtU8dEiGXdlK98S2f2dFKv8XKGvWMKqJhKvnZ7zlgr52ItYT6jSSdOo14BbP22mceMk0V2J3a6HzOmw8W3kbO8yKqfYjciJzrzjrsEcFqaOXuUrx503x5q3MYZntuOPepNWrsNOd4uuzs7/AJRf4Vj0u1PtBnoTNw2G6KiX37nPHyirykMGQKRQ+k/UD6x7HS5ECvYq+DRHkp8/Sd8kkpTjr7wgbZ0t31SlKaUpEbknM+suTAI1tUy7lWo20ovDFiipRF5dYIVGVvyqMnAhFb/UW9bP/crpqRemXr9i3Ls3rXz3dY2clZtyXZauC9skLetNlPKH4IO1b07sOwTvc97neIOy868CC6TZbalbSuzRLR4a9Y3kZV6WE8w02l2QGuz/AIocgjByNpK7UfIQGFQweySPEmEEEEaSWEEEEEJguEvJYr320cZIa05/hrFgXCXksKUiTGa+80cXKkefT8ICUablou9UWM5dhEHRVSMGiUh3a4kR5xcgZFdy16qtVjVUGnWI3V2oB3RNW13IjdzVy2K2dPYXSLFxpa7t8ITDK2qJRNiq5G047FEO5bV16RU3vEig0pdLU1VV6JHTT0sNy/nFajWQ4jzCqDre025zFVh7Nkx0utdQA8AOf.48h3ApTfJ4qUzbL1220Tf7yKNVjQwIVXVa67+UWsxM4hMEJTcwT5Ci23U0RfhFbNJaQ67W/l4xnYpaij95IXZslOVO34SSPzqatsOmW9E68ty1i0bxJcPbG+SB/M1A3KomnhuWKbOe1K/+GlImlZgGnBfftMdeMhHl9+kQZlZgNIo+J/7qTAIQe0rIo4QWCT5WtS+ke0ptC4Hq5MtHwHKsg64JVXZ7zl8I6GXxxJlo2QR9pwQS3ZG41p1olq+UcyOOh6sfqoEw+I924y83xL7aiCbvNYQGZdxBhyansWdCbYTYE3RASHl94l3xVZ3XGSDkCaGrIR3+0v45m4wdtj1HEFojSrgMV9tBthtuWIM9y7PzhT2Dyr5iQHZlnfxXNrZ898WccF6NMZl5xmcw5t914mVB76wSEW2lhW/dqKfjHexXm7PnLL4hBBBBCEEEEEIQQQQQhBBBBCYXcvlEFsMLuiO2MgzBErZlrvVLrCjgLFtMN6IsIuNlDWN9hFsq7mVriCK7vjEInrDUyy54D5wkoEHOHEojmLEEczZ013itITfJYldPZitmZlvLXvRu80VdPCJ8acfaRMu0rMVNWiS9PFPLzjnXphw12UQfzp5xZTBKZleWhb4XBmQsXR05mqWACbNOdUpWHyqqq9otna9ILRYC2IXcji9h+cSFnEHrslknR+6i/pELuGYga5hskAU9pFTnFwjUxw/RM2SfcMxRem4ITNzDAMxCRmM+tpfWNpNddDS2N8eahShQDspK3/VZFTYowoaSzEWdD42UfZ9pTuSx2FrrThrupErKYe42gkDgu0T7QhUbudEpFoY4LkmHqUwL13G+8ir59zpGsrIdnchTm2HCOi/tnAp/wBts/nEGXOz60U6dPOkBtX8u8Zx4KUM+LIxO6laavXusdveVE13SrpYNOlEjWbZBm3OknWyNOJwlRFT3h2N2sW6SWFX9+2r0vbwhMOl/wDVOmkQzk/gxNjKELgNiQ7bzquOBaiXCF2lFSKTMRjIGPU6k97u9+iORRsVH8J7RgGNMo8Ca29K8fKP+jibPCe1cuy+ih64JSx3ffS9v8TEY93jwLC5nAWJwZiVaenn2jBxnONvuibW68cpB3W11j3iWmG5uWZmmdpp8BdbL7ppcnyhTIVLnS2rYHhv+SyRMmu7BBFc1e:AK2SPmSwQQRpN4QQQQQhBBBBCEEEEEIRikZgghI3B2VhF8Nlaoqovu1r8osVSE30KlBVdOaRJjMjcShfZbFdkVrrqSqq6+cR1t5V8F1h58f94RIvCLFDYiTjcyB211VvH8NIqZqSlRVSbBd9d9dfjFu6RU3RWTSHauyRlvtRURFSGcRI9vKL5LNjf4nOzokw4jja2/ovKKedmpx53ON5Scom1VBWiJu2acou3ZScmXUlwTvDXZHfqvJd0VEz9TcdlZkUz2y29PDdviw7TBYVz39N8b6feR4ceX8AD6DxzzFQmJu77d0Oehlv/GGJdmXuQZuuQSqTm1Yv710KG8wS7Cpdp/qsXEvg0/MNBMgy0+xVFLvmlRf3kuRY2HZBT3x/9ef3E2ytkFdohW9j+H85ltnsy0HdTD2/2VE/mIxrNrLsqcrIzKuSzibWipVei1SGDaZkyDMwiU/g26U/cc03xO08TQXNYfJ5Z0ItEM9375WxWZ2RiSzg3yTQvf0bwqTI/ZkMA7i7F5FKEj4ux4SsYlZaz6yBXVThLl4J+sX+GPYSLA+rMJ3dQ74pci/8q1iHD8Xw+YIsxpBbt+xydpOpc9IYmx7KOpbOlLcPBauYl3JEtuSEAyo94sxCvwCoon08aEcfpurc6c3TZGKksURTl249o48fZ8zDupApyuWPetNubfd29zcXtU0jv8LZZlpFmUl20aZlhRlpsV2RAES23wpHA4BhuEOTbJYU463LtCq2Wrlrr99u6ty+9HeyCCFwipfxeEQ5jkIp8vaUb5P95LjOMDQmNseklSG5+RQAjsEEELySEEEEEIQQQQQhBBBBCEEEEEIRA8GsTxghSMg0ZgixKh9tNU5xXG2lV1pTd4xfuy9yQqsklV2fKGUzhRIWw3KlJcnk2eKE3WxqN9aLoWnLnHRDKqCKNqefOMepp0ReVFSqRt/GUTv+81HTCuCb5nKTGFNTqn6mSAYftD0r4UiqnMKwdiXD6sExOVXPOpKq0X3a/lHbzWHZ;LbY/BERfjFeODzeZmZyS5N8OwhV8oF6w2G7Tj4Ztq7zSTsPAWoO96mWv6ZzE6vZhuVG7DmQmrUEe4dbKvvIpJSqQlZgj492089p/VrRIf3qhtR2swxjHD6268P92Kf+qJFa7KYuwYpnGyRp7NNfOJcGYqneY0WLaS4f/jM5U6dyCveZRs9tjr+Xu3qnPrJ4SLYibT8uplwXPtCPiqW2fOMJhOGCp5JDy43XdydVEIuzw2emmUannHpps14TNAD/ItafCITwpgDFoZdsD3.uqVPAuSRMz42VgG0lv9qs3/AOItbhe5k6kEli:AJwoavGqsiJSUq5Ktr/RUvMarY+0rxKo9CKyqxcS8vLSxdzIMgbqJmWk6zS3ddcNVRNYmlMDxLKXKr9wQcMRX/.D+MWDHZR1wfrjq/xlmEnhuHT4rCuTJiBHZ9w3uRbzZcYyBu3xLlBq/q1MeQW1NvRhhsizLm/N5DbjzlBzm3SO5OnhTSLSWPLdAiAQ1pbepKldN0MSWFScgyjLIbOv4w4IAHsp+ELvku7Zn8LO23tGloClXSNqFsdvLkzaCCCIpmEEEEEIQQQQQhBBBBCEEEEEIQQQQQhGKJGYIITW1ILUjaCMTNyOwekaq2MTQRoRM3FchpvvQFLuu+IllAmCS4B3eKaeUPwQAd7kza+6fH3iaYdL+2nwHZiZqUlWdW2hEvepr/OJoIkkcIIIIIQgggghCCCCCEIIIIIT:Z!