["","","37 C# ","A/.eyyrwr.syzc*[BCCEECST~~}T~~YF569946F+BC.CCE#BPF/*BS}T~~}T~~","Continue."," This statement alters control flow. It is used in loop bodies. It allows you to skip the execution of the rest of the iteration.","With this statement,"," we jump immediately to the next iteration in the loop. This keyword is often useful in while-loops, but can be used in any loop.","Example."," This program uses the continue statement. In a while-true loop, the loop continues infinitely. We Sleep() to make the program easier to watch as it executes. ","Sleep ","sleep","Random: ","A random number is acquired on each iteration through the loop, using the Next method on the Random type.","Then: ","The modulo division operator is applied to test for divisibility by 2 and 3.","Random ","random","Modulo ","modulo","And: ","If the number is evenly divisible, the rest of the iteration is aborted. The loop restarts.","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto","Based on:"," .NET 4\n\n","C# program that uses continue keyword","\n\nusing System;\nusing System.Threading;\n\nclass Program\n{\n static void Main()\n {\n Random random = new Random();\n ","while"," (true)\n {","\n // Get a random number.\n ","int value = random.Next();","\n // If number is divisible by two, skip the rest of the iteration.\n ","if ((value % 2) == 0)\n {\n ","continue",";\n }","\n // If number is divisible by three, skip the rest of the iteration.\n ","if ((value % 3) == 0)\n {\n ","continue",";\n }\n Console.WriteLine(","\"Not divisible by 2 or 3: {0}\"",", value);","\n // Pause.\n ","Thread.Sleep(100);\n }\n }\n}\n\n","Output","\n\nNot divisible by 2 or 3: 710081881\nNot divisible by 2 or 3: 1155441983\nNot divisible by 2 or 3: 1558706543\nNot divisible by 2 or 3: 1531461115\nNot divisible by 2 or 3: 64503937\nNot divisible by 2 or 3: 498668099\nNot divisible by 2 or 3: 85365569\nNot divisible by 2 or 3: 184007165\nNot divisible by 2 or 3: 1759735855\nNot divisible by 2 or 3: 1927432795\nNot divisible by 2 or 3: 648758581\nNot divisible by 2 or 3: 1131091151\nNot divisible by 2 or 3: 1931772589\nNot divisible by 2 or 3: 283344547\nNot divisible by 2 or 3: 1727688571\nNot divisible by 2 or 3: 64235879\nNot divisible by 2 or 3: 818135261...","Some notes."," The C# language is a high-level language. When it is compiled, it is flattened into a sequence of instructions. These are intermediate language opcodes. ","IL ","il","And: ","When we specify a continue in a loop, branch statements (which jump to other instructions) are generated.","Some notes, branches."," In branch statements, a condition is tested. And based on whether the condition is true, the runtime jumps to another instruction in the sequence. ","Offset: ","This new location is indicated by an offset in the opcode. So all branches \"jump\" to other parts of an instruction stream.","Note: ","The continue statement could be implemented by branching to the top of the loop construct if the result of the expression is true.","True, False ","true","No enclosing loop."," We must use a continue statement within a loop. We get an error from the compiler if no enclosing loop is found. The same restriction applies to break. ","Break ","break","C# program that causes continue error","\n\nclass Program\n{\n static void Main()\n {\n continue;\n }\n}\n\n","Results","\n\nError CS0139\nNo enclosing loop out of which to break or continue","A summary."," The continue statement exits a single iteration of a loop. It does not terminate the enclosing loop entirely or leave the enclosing function body.","Continue uses."," Continue is often most useful in while or do-while loops. For-loops, with well-defined exit conditions, may not benefit as much. ","Do While ","do","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","3679700504","data-ad-format","link","ins","class","adsbygoogle","data-ad-client","ca-pub-4712093147740724","data-ad-slot","6227126509","data-ad-format","auto"]

%iVBORw0KG;)NSUhEUg?APo?AChCAM?ADZe1I7)MFBMVEX::t9PT/+OH/8cf/3nz/++:/vlSkpMDAwP/wQOArKuox8jJ0sb3+fnY5ubl7u5WDST4?AFP0lEQVR4Xuzay67bMAxFUYEv2U5u+/9/WztOcvyi26FKagMZcbRABQIMlXYTKUmTceS0ctizyWHPJoc9mzypnSHPZuclGUfhpX65panTM9bpGev0jHV6xjo9WZ1uZqF9vV6vR8xMRGqm+W63/llWLBudP/KSLk552js9pd3mFjrLbJdU7DddzORy70YuQG9G2rgbdLE5ubreRFye/wchoabhiNgM9i3eZPToNLp0EtH/Qq6vLu0qo0en0aWTNEwHexfs4Dk+vhnJnLUt14vedshHIUYK+XFkW7mQfiNtV05zO7uafXkIezbxRyznGpXTt6+dzRb7lU/+Rldpnw74CW9L5WOXbVxgP4yobO28rS064LtAv3lRdz8yWdKCGpf7dimu3VknN06HnLlWZtg39MIO/f5BAjdMV9CZeRqGiZkPa38rQD/bubh2bX7pvMpXO1+svTC7APFHTO3SIX8Mrx6wgx6r49Kfw7sn6KrB6ZDDnoFOS6sc9v2Jjyg3LH3YhbXbUmj6cCgPfTiVhM71TK+cgg75pprkwK8915ttjeLSy7/TS0R6p9OZTgno6tMV9Jh2nw557BMPOs57p8e0K+ygQ66Qx6XTlk4Z6LAT6Du5lfhrpw+dgi8ddNhXOuTB6XZHt/h0PdMV9NgnXo90xXkPmsEOOuSdHjKDHXTIk9AVdE1Ch11XukIOeng7zWWR+w/nLD7dsVseul3LrWSwA6+WQO6/jL6n/3o8Y9nRvfz3VGud4tp9+U99FXrvDmCq9bH8Slz7n3LNbcWVHIai2y+zQdf:9uhET2mIERVfTpnqNJ6Cq?C8mSIwevSdIAUu4ubWb6hXxBsu/tSgJGBm6O8kjjXerISvqz3E99IYRMQPM57l0uXQEEvwggyIe49+outJptNCBJOp7jLl3cqnCDVeqf4d5nvQJcWCjGqCOq1OOJ5pS3HQ5SJZ9Cij3FvKlhF+oueQALjzFXfatuJLOCK+ZB5oA2WadgT7YnmXcZjYqCsPL/q6zEaSIuxvbm5W5vI7PUGfhdUs/7BO1qbG8O6KvQJaILVfIOoarh19XPuwepV2N7c+CF1eIXWSUv9pGTnnrePUjq1djeHPjn1U6GpOwhuD6jrnZeh+JXYlvz1zgpUmEuFf8hdTU/rUNZF2L9J+auQa7vFuf6ocGWWvhpHUpeiF3XzSvPe6oXn1PXdVqHjAuxecl8q6+mt1xivSL0mzxYvkK53a/G9uYu3zlOkrQ91f8cbUhs2GA/itXuwh67ZAS/WPLaEed1qD+K1TcVrKV++BykPUQdqu+O+A6Umg5QwyMKvscDxdrF8oA217OUFD+e/DsOt+vmflhWNR3uTleaHjmcj2xOyn0usj2LVK8NJFwBa8xv8/Olx4WOVSVvVDTc5Edr/6TmsuBW7Y26mnN+j1VFj9LqEltI0x1vs6DqWSRTdprXX3tjyY+vJXv1Y1tIUgwjsG1eeGIITpKJgdRiQjCPfYebh1JcSDoAs2HujqySTzIwhYi9ldHgHPWU2mzvE6+jejsdAHyUOYzccy1lTpd3Vwp04FxzEaECNdcGsV8jFkkZeH+VvXqdRFZ3H1nyVhWPNSntoZr7HRVGwwyWVIfb76iBGTgL3VvbKQhJIcnYJT+DJGUh9t/7A1PQko1Ke9AwTR3CmmyYg7ASbbM6nDlg3wNtknq9q+X+X5gNMiejhpsuI+mT5rl5pX3cNkrWcS81KOmJIkblHHlIcwbmEP+pO4YRJMuchmGQ5axkDnxLzmrvPrDiKTLyJV1ZKOYhY80BE5HA/8G:wN70b2bHBk)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AK)AxCAM?ABqK1L5)MFBMVEX:/+zzvd8rvO/1fj1+P4xiu5tpfFbnfDg6/xIk++ZvvWLtvSmxvbV5Pvr8v3K3PnaFXRJ)1ElEQVR4Xu3W7QbEMBBG4Xcm3/3a+7/bVZRlqEI5Vs7vhIcwE+3lQbrP4/kHN2LNfbW06zcAMDTWlFnA2LDMAsbGBwaMJTqwJDqw7HRgpQNLogOdDiwHHZjowEXqflXj7r56H2hmW43AevttMIVeA+qsRyILqE4HKrxyhwG3sO1gQPt34AQ6HJgHfMxsBQ081uBrGKC7txJbAcDbjA7scOAQHGhw4DjgQBMbWMUGtswG1iw0cMsiA5dDwgLbkrJEA/rZYpb2gGMAdRMZOIETOIETOIFfGWpGTAdlDEM)ASUVORK5CYII=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAKoAvwMAIgABEQECEQH/xACH?EBAQEBAQEBAQ))?AQIDBAUHBggQ?EDAgMDBwcICAcB)?ABAgMEEQUSIRMiMQYUMkFRYXEVI0JSU4GhJDM0Q2JykaIHY4KSsbLBwiVEVKPR0uHiEQEB?IBAQYFBQE))?QIRIVESMTJBYaEicYGRsQNCcrLR8P/a?wD?ABAQIBAD8A/fw)A43Oxz2feFix9Zsy1uW+tzQQAIBQQAUEAFBABQQo)))?OO1d3HU8yo7sX8CwdmPV1zVzjHfXQ2rglrQueCfFsNp1yzVcTXermTN+626nHy/hntXeKRSqnwYGphneZjlfo+rcHy2Y7hV/pTGL+svH/OjT3RzRytzxPa9vrNVFQaLjlPFLPnHe4uc0caRTKNi5m5HPa1N5bJ3hW7g47ZXfNsV3jup8RtJvZfmQpp2KcWztvlciscvrafHgdQaUHgxOvloeb7GJJZKiVsLWudlS7vcpxhxuLZz8/ZzaSnkSF7LrJdzk3cuVLrcI+qDjS1UFZC2op3543eKapx0Ow?w9+VeAGyKc0l1RLfE1cpVMK4j3I1FW+nFVXgiHxFfLjblyq6LC2rbiqOqFTjZeKR/wAS6Mcd7tupO+/95u8mKSVEjoMJiSoe1d+ocvmGftcXr3NImErUb2J1ElV+qRdnD+4xdfeqnvhjjiY2KJiMjYm6xqWsdBV7euMJ2fX933/xxgpKWmT5PAyL7jUadjLn5V4ESTVNCbTVvqr2MemV7Uc1e1Lp8TwSYNQ5lkgYtLL7SnVY/g3dX3ofQBNtS5Y+G2PlrLimH/PJz+m9pGiNnb4s6L/dqe+mrKeriSamkSRnDvRexU4op0Pm1dA9sq12HKkVX9Yz6uZPVkTt7HBr4cumN9H03yoxvwRO1SMYrlzy9L4J4Hhoqxlf5zKrHQ7skLukyQ+g1ReEsuN1eK6IUIUztlFajk3kv4nK6wKmvml019H/AMO5lzUcit434mpTbxYnQSVyU+xlSKSnlbM1zm5k3feh5HYFNs1k5yjq3nDara5NzMz0ct+Gp9WBVyq13Fi5b+HD4HYJXjwyiWgpti9+0kc90kj7WRXOXsPY?OMvSTwOxAbeZF3k8UOqmlPNVVDKWnlqZPqmq/4cDUS7tfPr1diNV5KjVdgxEkr39eX0Yb/AG+vuPe1rWNRjERrWomVvBEROCHlwqnfBSpJN9IqFWef77/+qaHuKud57E7sfe9UZ1miEJWYxIu97jCLvJ4nUhmukrRDFwYrUjVyKpCXEpY+VVMfSSuxanRfNuVtXH7SLt+8zih9iKRkrGyRqjmPRHNd1Ki8FPOy2eSPtXMiL1ovE8uFKtNLUYZ7BySU9/YyX0/ZddDdO/H+P9X2Wm0ObTZhhoii5FUsRzj+el/Z/gdjjDvOkk9Z38uh2NUqg?RSmQMuPlYx51lNR/6mdjX/cZ5138p9Rx82rT/ABTD/Cd35Wt/uNww8W/S366b8rYVzbnnPqfmubJzjas2eb1c+bLfuFRiuGUayc7rYINjGs021lYzJF7R+ZdG966H+bcXoarEKjFP0aQZtpTYzi2Lx/Ziio9rSp4Pc63vU+ph2JP5V4Vy55Uy/wCX5P0WGsk16ew2tV/vRkZf6CbWUslI2vjnjfRvjSdlS17dlslbnSTPfLlVut72seRuOYLJzPZ4lSv8o5vJ+WeP5Rk6fN97zmXry3sfj3JrEsewuSj5Pz4pJX4XXcjW4pFTTxxfJ37LIyOPK3o5WelxOeGzPqJ/0PTPy76Yl82xsbejH0WR5Wt9yBX7mgPwvkpyy5eY7jGHYjFJUy00+JOp8ToZEo2UsNK5+zys3uc7SJN5dNT91I3GFM3NqYUzY6QFyAzpazI1dJGdJvxTsPFO9rMToalv1ySU0n4bRnxap9A+bizPokrNH86h8N5cuv4m4zj4vpfePtNU6XPG2WRuj41/Z1OiT/Yf+6SuPL03OUj1cuyZ01/KnaYvM/S2z+K/8HWNjWJu+N14qveDubY1GNRreHUbMoaAFIUqhk0QIw4+dVp8voJO+Vn7zP8A5PpHhxFq7BszU+jvbLbuau9+VVNLh4vnue2nCPAMEjxKXGY8Pp24nO3JNW7Nu2e2yNyufbMqWaiHKl5McnaGhqMMo8LpYKCrvzqljiY2KXTKu0ZaztNNT6zVSydacTVisvlJyewNskczcOp9pDSph8T9m27aREW1M1baR69HgZZyewOLmGyw6nZ5Lz+Tcsbfk+0tn2Om5m67H1iEV8CLkbyVgxLyxDg9IzEc6zc6bCzPtFXWTho5V6z7ZuxLBuMKYsdVMWJpuOdiG7GSaatQ8GJ7zqGP1qqP8iOf/ae48D/lGMQR+jSROld9+Xcb+W5dMY+LfSW+3+vqm0MHRpmuDSGkMoaIjRSFLGopSFKoQpArKmXNRyK1yaKlrdymyFR5KO7GupnrvQ9HvZ6KnqOU0brtmj+cZ+ZvqnRjke1HNC3nnqosaAGLEsbOEkLnTNma/LojeF7pe5Y1FUwpxr6HnqM38mS/Ve97d6Hcrc8uWFP57lNUVEHNdhK+LNtM2Rytv0LX1P6FTCmseLLrbWOcxyl1vXk+Xhtcr8MSqqrsbE22dzsyuRiav8VVF0O2FRSbJ9XOnn6t21c3ra36tnuacHr5VqUib9Ap3edd1SyN9Dva1eJ9dpm82sfqcSyTVyu7Ok6NHRDNjaGK42KhtDKGkIioUiGgsCkKVo?EIaIBDmrFa5Xx9fSb1KdSFEa5HePYvEpHNR3j1W4mfON7HoBtTzTc42rNn83pn4dv48Dos7W9Nrm+KKqf1Obqym9onxEak9NuFdz2zOZ9+fo93rHPEap9NCuRr8zmuyvY3MjVtorjq6vp/QV0n3GOX+hwllq6hFZFSo1vr1C2Sy/YbqpqXubkvG5Jrrw50Vcyek5xK7Ls7Nle+zUzWTMumlj4mNYpUyMY2lzxUsiO87ayy2tfLpmRO/rPtRYTC1UfUKkzr5tnlRkSL2pG3S/etz1y0tPPbbxMly9HO1HW8NDUs3uzjo1jlhjluTtfifJ8vk5LJPQLtFTzcixs0RqI1GtW26idp9lDENPDA3JBG2Nt75WNRqX7bHdCZWW2yajnnZcrZNbLGkCGrHNzsENENEQQoBVCgBQ)BAUgAhQUZMvVGtVzl0TrNnCRNpOyL0WptHJ266CLI53ml6Fo2faS7l9x56h1RT5csmfj0mpbTwPo2OM1Mye2ZV3b/E1K1jZvnuealq0nVWSN2cvjdHInW1Ty4vizsKdTtbTrUOqFdlbmyrduXRN1175j2T0rYqZ2yVdpEu1jd13ROHvQ51WHU+JupKqRz27BdrFlVNVdldvaL6pqXHe/JvHsdqWz4eePwYXWS18DpZqZ1K9r1bs3qt10Te1a3tPcZih2V9b8Oqx1MW78tMW7u5NeiIVEFioZYq2AKECgBQ))?CFAEPM5clay/1jFb72rm/geo5TwtnjyXVtlzMf1tcnBULFl6tkPMlU+DdrGK39cxFcxe/TVAuI0n1b1kd6sbVd/Qaa7N6fZqsekVLK/ryrl71Xgn4m4I1ihjj9RrW/ghxZFNUytmqG7OONc0UPHX13/0Q9Zb0LdTSWFilIyhQCIF)))))AQoAgKQACg))?AP/Z%iVBORw0KG;)NSUhEUg?AIw?AB4BAM?ADS7QcC)GFBMVEX:/95cvSaspm/zr6ppPiuqvilofiMhfa6xS0c)fUlEQVR42u3XsQmAMBgF4V9x?OCfVxAdAEdQtwg1il0fsHS8IpIsLob4OvPnKy1V7WXWR9ER8oMs8hbZ6ImZUYTTTAwMDAwMDAwMDAwMDAfmX4T7Tl3V+o1iYieKifLYs5NFLOYxUQrDAwMDAwMDAwMDAwMzA/MFUSx0GveDtlxrtujxRk)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AKo?ABdCAM)CPw0R)MFBMVEX::h:Tn:by:vc:Ls:j27vzu3vrcvPT5:3lzPfixvbQnfH59P38+f7m7/cPuDyh?ACwUlEQVR4Xu3ZC7KbMAxAUST5+4Hsf7clbRkRFIfi2I+44S5AORhsmMmQiRCUUqD98.TXUrJBTOcnwe1hBLq0lKcCgHeE+k5mvPb5RiNtSHEGOasGV/+BqlVsJlk07qChSWNsIR/upt/gycbXBK5YMe8lAPwUsqNB52o5h6l+m9kBXNnUfxGCjhwk7jiQ1BQakNlqRW6XSpuqUAMiGKEPbID8tKbS8epQ;oFrVkWbV6IQ0pHaeSkAKIPVXwtAIPlVKXSqhaUnljhSSzjaV5Kkop0gJwpVQpZSq59EFUlDNZGlMxVU71CyCWUemV9JZKqXpLxRXVZmaUbykiV0z1ciwfVibJBGzv6llKczZDc3N7KwJiLDFALkHYpz6T0nKnnjGjHVffLsHlq.XlbMFxyrJ+0RyIBcmYTLWzVQZyk3FxeObCpgqJ7qSZ59DsQLc5I7e/uGVdCqTcpqpy1wuHDxTaSsl8UCJiQfyyIe/yMRlSceCzxTU8ro5NxTkichnAJOx1v7rnQJ5+zknFvXMNlJ8AIhD+tTkk5rfVfFUqZcvac581P0nSc0fAOZsKkv7og6vqOP5VJbqd6ioRDzaHfuO5C6qCOpS19Ja1IvK43QfVKxJvag8TfdBxU+j6jl8jKlOtqG6XKb+KwDu5a47lWd/kIo1qF6ETL3dM+vciVSZVpA/X+KHUdV3Uy/q2vpfU+HnqNgXVVWmQksqWw9QtQh5UowxPOY2ohgymSLqiV9W+1T/4VRVjcrWjqjYkgqNqBcV36SytScq1qZeVOiBKl99F1X3QcUq1LX1u6nQJXV4k8rWFtSLCg2oa2kVqmpD1d9MZWt9KnREZWldKvRAVW2o0BsV+6LqelTVg;Nqf4bqP5JuEhvt/3/razZNjaiKhnv/1SUy1FVF9SLChd17supF1W1OAEuqmpDhS+nqmLqLwrW+B/boDYK)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AIw?ACKCAM?ABPR1IR)MFBMVEXg4OD:/+qufHN0+y8xu729/mMoeyWqO3c3+/x8fGfsO/r6+vl5eXn6vqEmurt8PsdAqXn?AEVUlEQVR4Xr2cC27jMAxESX38TdL733bThUs4xEIL8aniAYTX4XhcKpakZlfbf2p3pbfa2FKi6+unlmVZ10M6q6pV/VzpSNJVp2h2MKUT5lSr/MnSu1QVrQ4mSWep1Wowa0QYFdXkxM3RPm2uSb3CqKg+HUy0T/ZXXU1KuYvloSqmrsFE+/RFhfkLk9Eq1qey3IVJ/cKo2BN5WybWp3W5WEKr7BeMlo+nIKUc6dP2prgvUnrXuGCeI/qU3jBAGIPRg/fpua7LVRHjqcE4C5vEPUsVg4nY97zB6PIi5pOq9VgvmtAK9Q5TXuSxlFO3400DhVEZElii6bikWcPCGIweTJrtG+aqo9t0D73B8JdcTkYTCTwHQy38DXNcLEdIGIPhFi4/0hz9Td49jH7xPl2VemVVD6OamDTJaKLCGAy3cLlogDAGgy2c07v+oqQSCDwPk9k/EskqBwLPw9QXkqZ8cyBhDIZbOGNhDIb/j2V9igWeh9GV9SnSpd3BjLJwBsJ4GG5hIIyH4S+o0m9fbcAwC2cgjIfhYwIQxsPwMaF00p8NGGzh3AlfGzDcwkAYD8PHhAyEcTB8TACB52H4m?Cz8GAMQELYzDcwlwYgwEWJqUtGD4mgMBzMLMtrA2Y2RY+GzDTLVzbMGhM4IFnMPMtXBsw0MJcGA8DxgQeeB4GjAk88AxmvoX3Bsx0C2sHTGBMoIFnMNMtXDtgwJgAhDGYuRauHTBgTACBZzBzLVw7YMCkC4QxmLkW3gMwvzYmaBtmqoX3DhgwJkBhPMyESfcMw2wOpkyAmWrhOExxMHmqgb2FJ/eprVv6gBkiTRxmczBlZgL7eo6HecxtE39rN4cEgxk78vNHm1cMpv7Oe3sPweRAz?LG8zUcaUGYDY8rfAhzurA9uXjLR8P+ODPZ39uYVEwUhIL84ly/s4VH1T4nl57I61M2+2cv8V4NmDmb762YXjgcQsLCLzhFhYQeMMtLCDwhltYQOCxasHwwOMWFhB4wy0sIPBgVfCD6cxf/HngcQsLCDxadcbnB/z7GR54vE8yVJjCLCxDAy+xqJGRgZdTRhaWkYFn7EELy8DAy/07OE2YRAKv2N4W/tCUHz5I7yrEwkIDz38PTFJYaOD5L6UzsLBQYfw35AVYWHDg+a/rwcwiJPB8l2ifhAeedQn3SXjgWZdwn4QHnnUp1qeHh+GBJ8mqhKNGeOBZl67TTSk8W8q4Mzx2CC0LPYZWxp1CK1ELy6BzX8ZiogYsLCDw8MlFb2EBgYfPdHoLy9zTrm0Ly5CtqmwsscFvNxgeePJ0J6SDfZIxZ8eTnR0nfZIRI23V/MOykD7JP65qCbzqngYT6/PDYHThNzE4mBTaHpGbMC9wR0W5WKJfEJ+q+JYVk3j7hiFbTBfMRu6fMfO9YYIRbquMu5mnLEv0ITB9Rb/QnUU2oW63Ocf07b4Mp3zCrMEo1yXsPLOw1NcdZonfc5VuMJFui+of0SaCRwqX7V8)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?ALw?AByC)ADMwOSz?ACe0lEQVR4Xu3csY7kMAgG4Lz/86Wkp6ZAokDy6RTfodVsTDSaxPy7/uux9a0LZpkEb20YNzNVEWYmItr/hYiYWcS8Tcw2cKv8DTPtoxCzqFfC+wGXgCchYlGvgDfp9MBd/xNsIj7otL8XHwC8x14Sq04/Yine4tRvwEvP6ypqPXp+dgneY+nbaZPwHscOh7eww+HDjoL/uJ1m4D3scPjYFw8fawDxUWjw8LErFP7TB7/z0/jYFA8fB4+Il1iQh47UwF:fvrfLPV/t0WEj+52Ev5yjWc96y/MNNrdR/EX6yRZuxb3Z/Ge10lu1/MsPm9auZXFS09iL4n3DE+tLD5vQrQsPi+U1ArjJcELAv7Og/eeAT4+cor3r2lbVPk7Sk30ODeEt3R/QcZ7YXxWbKgB47kyPis2;y3ynhP8K00frw9lcbbD8bz3fiFJ0S8jvEyCb/wioy30nhZ+Kz/Mz3CPa8S0h7hI9+AtMeOeIb3cBRswGO7UviFfwO48Au/8Au/8OhfUgu/8EkzUhqvNfELr8h4+cV477EuGvSw0sPnPaz06BHbDOJHp/UrMf6TkYVfD9RagndkvCI/vpfSeAN+9yDbn0rjPdnfEPCC+JpWS/BUGJ8PGWldfH46XBifzy1oXXw+qkOF8dE1wr2Cful4uC7epQdu7OLimBRpRfzlmkDiw1kjNRFmmjehto9DLJZNeT2P1zfG66jKbKAjDzbGCkS8Iw/zxhJAfGyLiI9aj4iPRYg3ToQeEB87EyLepQcLnyzEwIceER8VEwT/6fu0JuKDzwSA/yifWGbhIxb+y2wWm9DDJnc+UtE7HwOfXOTB/KX1o37bppq3efkDT4lpi2pYKzI)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AJg?ABZCAM?AD1qB0C)GFBMVEX:/+vr6/Nzc1kZGSNjY3k5OQxMTE?ABgpITo?ADeUlEQVR4Xu1Z23YcIQxbX/n/P273lMYJRSilM4d5qB5DwAIJe7y8NqEi+noeIttPpD6S1xvyMGLZOvKGACqyu19pHTccmfwyyR41L2JGJuwunbEz224jVlv2bWJ4/j4USHGlx454JO66la3g/3Ytr82w0ZAU0hGUWc2+x2ItpolTuZpu5pT/vndzfpSvM3BkMakbcQSGlPTDpTmBksRi9wMoedxiAZQ8bjFFSnqd4xFIKTm3mBwnFnPvxek0ZnOJ83U6jcmOxRTUUj5JKbFBMu34Tdi18JVBSJ8LG7cQz7cW8ir0SfVnhEFJbQv4JABMwlEUmkU1Fx20Ex2UlIZR4SsAcqJWCa5th8Gt4jQWpSxEjLNg42azcUEiYGJ1J62jdaQV/EuOMTMcoI2wfp1cVFWMtwkyH4/1PJEYhLdBBxsJhH2OolkDa2KAL0uvNicWU0ktZh2MLVd21AKzukG8IlDtsqmuiAk4Cf8uMVlZGIfAMfogTCKXERM8tCDmaBIpHNSLupB6qaXOhwRuBnqR98K4SkNiiebYdxsGZ8TIdw2Y6JsW4140EhsO+lTJwALggsZPFLsf6JxcAKJUsk5Htog5UB9YjKY7fqKcWAlGBCAWo5d2h1hyAbjF+IlyYuOY86zJLcZPFBNLsLL+lQC8YeEFhKcLGcNzAXhPzG83/zLxCr+RXoNITgqIL+LYoOReBc+9gmWLOLUqEGDfYryAkGzhWIB7LRYL74eZ6WUW4+mVe5/Hu99izvZ1v8UE0y4lOfwKi/GCpZA2FeAmi/FRLsC+xfjt5mF4+8AtRkLvbAtflssspmA2HlQNLEBuZxV+u2vQkRSmSADjku9X8E;Z?llBLjkvM8ZVjIJA81VEojJxYV?opQIiZZgLX47888BcXbjBrBbIeI2b0fVYJL/QbqaKjlLcIoeK+INYvUKgL8ErLoO+znJi2AezMCzJYrJA1pInfLLCUtVMcsgQZEYsNprxHVSZXFS7rLGA63lvBZGox08lOU8ltLwNAZulokcjP3AO3gFLUypMYVrwGhH8cuC/X6BHNg1Rw+Vgxnb/ViZUrR0R/a2OI+i/2kahvvI6j+oHD4N/n53H+pX+/BTxvsfbfYhst4KPQznufpddnwU97n/bgT81i9lQl83nZ9XnpItSH78x4ACnLNoPJcQ0B9HiWALhAzR98s0wlubKPew)BJRU5Er@ggg==!