!-counts change

aAaEABDBXB-~| G776669FZBCCZXB~~Z~CWYZ-

Change, coins.` Change is made with a recursive method. This sort of problem, as described in the Structure and Interpretation of Computer Programs, can be solved with recursion.`This implementation` in the C# language is illustrative. For most of these puzzles, implementing the code yourself (with a little help) is a good way to learn. `Recursion `recursion`Example.` This program uses recursion to compute different ways of making change to match a specified amount. Change() will print out all the ways you can make change for a specified amount. `Example: `If you specify 51 cents, it will tell you can make this out of 36 1-cent coins and three 5-cent coins.`Notes, above program.` The 2 List instances declared store the currently recorded values (which starts empty), and the amounts or denominations of coins that are possible to be used. `List `list`Int `int`The program emphasizes the recursive Change method. This implements the logic that actually computes the change.`In many recursive methods, it is clearest to add the exit conditions at the start of the function.`Notes, Change method.` Change() first tests for the ideal amount, and if this is reached, it prints it to the screen. It tests to make sure the change collected has not exceeded the target. `If `if`Notes, size.` This algorithm only adds coins in increasing size. It starts with the 1-cent coin and continues with the 5-cent coin and then larger coins. The output is automatically sorted.`Output.` Display() prints the frequencies of the coins that can be added together to reach the target value. In the example, all of the output will add up to 51 cents. `Console.WriteLine `console`The first output: `It shows 51 cents being composed of 51 1-cent coins. This is obviously a correct answer.`The second output: `It shows 51 cents being made up of 46 1-cent coins and one 5-cent coin.`SICP.` The Structure and Interpretation of Computer Programs book uses this example in its first chapter. It counts ways to compute change for 100 cents. See section 1.2.2 Tree Recursion. `SICP text: mit.edu `https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2`Answer: `The answer of 292 is computed from interpreting the Lisp program. On the C# program shown here, you will also get 292 answers.`If you modify the program to include a counter, it is clearer that the result is 292.`Performance.` This program is far from ideal for performance. A variety of approaches could be used to transform the process into a faster one. `You could use arrays instead of List types, and could use a Stack structure instead of a recursive method.`Arrays `array`Stack `stack`Performance, continued.` You could improve the loop with a faster algorithm that jumps to the correct starting index based on the current top value. This could be done with a lookup table. `Foreach `foreach`A summary.` We wrote an example program that makes change to match a specified amount. It uses a recursive method invocation and the List type to solve a puzzle.

ETIRNIITDTQ;IT TDTQ.LinqTbTJTAI{IET%E{IEETo<Tz> coinsTyTqTo<Tz>();IEETo<Tz> amountsTyTqTo<Tz>() { 1, 5, 10, 25, 50 };NIEE//IEET{Compute change Tw51 cents.IEE//IEENChangeN(coins, amounts, 0, 0, 51);IE}IIET?TcNChangeN(To<Tz> coins, To<Tz> amounts, Tihighest, Tisum, Tigoal)IE{NIEE//IEET{See if we are done.IEE//IEENTmsumTxgoal)IEE{IEEET=(coins, amounts);IEEETK;IEE}NIEE//IEET{See if we have too much.IEE//IEENTmsum > goal)IEE{IEEETK;IEE}NIEE//IEET{TWthrough amounts.IEE//IEENT@ (TiThTpamounts)IEE{NIEEE//IEEET{Only add higher or equal amounts.IEEE//IEEENTmTh >= highest)IEEE{IEEEETo<Tz> copyTyTqTo<Tz>(coins);IEEEEcopy.TvTh);IEEEENChangeN(copy, amounts, Th, sumT}Th, goal);IEEE}IEE}IE}IIET?TcT=(To<Tz> coins, To<Tz> amounts)IE{IEET@ (TiamountTpamounts)IEE{IEEETicountTycoins.T](Th => ThTxamount);IEEET'R{0}: {1}R,IEEEEamount,IEEEEcount);IEE}IEET');IE}I}IINOutput: partialNII1: 51I5: 0I10: 0I25: 0I50: 0II1: 46I5: 1I10: 0I25: 0I50: 0II1: 41I5: 2I10: 0I25: 0I50: 0II1: 41I5: 0I10: 1I25: 0I50: 0II1: 36I5: 3I10: 0I25: 0I50: 0N

$/9j/2wBD?@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.v/wQARCACuANYDACI?RE?hEA/8QAagAB?MBAQEBAQ)))ECAwQHBQYIE?CAgECAgQFDQsJ.E)?QIDBAUREhMGFCExIjNBUVIHFSMkM@hcXKCkqKyFhc0U1Vig5S0wtMlQ2NzdZGj0uJEZXSBhKGksbPD/9oADAM?AE?g?PwD3E)AEAFWwSiQV3CYJ2LEldxuCNiwKKSIb3YJ2NAY8XwllJPsA4WXBk3s9twtvOCeE13G5TZeccK87BGyLkmbSS33ZddyAaJJIJBU)))AEAEFWyzKMFkVbITDKNkmiRpuUc9ijZlKQ2LRgaOZWN6c+Dfwtuz84wbZxcT6ztv7z90nY2Va2Prye67O8yVjT7fJ3orCe/Y/dfaE4brddkkCqil4Mjd2J7bPdkxkcKbN4yGwlWkuw7UyyZzxkapkGEol33MldyKSfYWT7EQVa7C4IRIKkgAE))?gkgAhlGyzMpMF4oq3sYuRWczlnYWSOmFZ0OZRs5uYWUiTVRSNji29u7fmfuxO1dpxJe3/0f7sQPOduxM5tpL+8kxkwF29/kIOpJSguHs83xnE5mlNuz4fJLu+MCS3XZ5DdTN1M5bE0+LyP/ANiMyCjgmt0dc5pQb+SbRe6XxHzrp7VS+b9o6q5+DH4o/ZGxnKHg/OOpMsmYqRdMqYOJoSVTLAo))ACGSVYCKSZzzbb2RrNnFZNrtT2ZKOiuO5lbx+Z/8AI4Zze50SyZrv2kYzvhOMk4eFt2eXt+UWOpb+UyUjqqTZwx7z61FLW3agG0luzSKh5ZwXzomXBDrPM4obcG2/FH0TmjU7buDfh+H5ppLGUZ8DsW/f7n/UCuy3a37XE6nwenD6UTms2Xc0/ikFipvZWL6P+o59uGUl38PEt/iBMfNvuYSs7Ss8vFocVkZeNjykuKEb8iqlyXnUbJROK23azbfynk/qn/h+kv8A3fP9psDInLhi5bb7HuC1TSpw8LVNO/Xsb+MZrUdM/Kmnfr2N/GPHKPUsybaKL/XvGir6qrlHqlr4eZXGe3jvzjb71GT+XMb9Ut/jEGalZ+L+setX6jprqklqen7+D2dcxvS/rD6lU0662pKUZQg4yUt1JOPgtSP5h6T9HLei+Xi4tmZXmPJx+sqddUq1Bc2yvgcZyn6B/RenTXrZpm35Pw/2asF4vi3T717o+3GZtGR8+EzojIbGc6zsTNEznjI1TKnPKOxoC.U?APn4uraVnXWY+Fqen5mRUpStoxczGvuq4JRrlzKqrJ2RjGyXB4Yjq2lTzPW6Gp6fPUN5x6jHMxuuccK5WTXVuZzuKNfHOfgeLPCuh/DpesY2t+4ozOkHSHQc6zj951PEz8H/yOaadGsaX3Y9FNXurnXldIPui1a7w+PwL6tV6t/g:AEAPYZ9K+jMJShPXtKhKDlGcJZ2MnFqW0k48wW9KejlT4Ldc0uuXLqs8LOo8XdVG2mfjPc2UzhbD+jsPIeiVdtkNTj9w2B0kq+6DMjZqmVdpsJ4y9rceNyszEvu4afwjwJ8v2wfpPVO0jSsXo3LJxtM0/GyeuafR1jHw8am/kwr5UKebXXGzl8uHKhDxfLrrrAR+2n0i0J4tmbHVsCeHXbHHsyYZFc6YXTjxwrnOEpRjKUSuo5+JgQrszcirGrtthj1zulwKd04ycK4elKUYTPxfqkadgad0TtrwMLDwa7NTw52V4eNVjQnP2Tw5wor4eI/O9MdT1zNxtLq1Po3PR6I65gzhky1PGzeO7l5MORyqqYSj4M5z4/6MlM6a58KfyT0TP1PT8Bx69m4mG7PFrIyKqXPb3XBGcoykUlm4ixnmvKx+pqHH1rnVujgfZx85S5fD88/G6Zg4mr9Kullmp4tWZLCswcbFry6o311UzryOLl1Wx4fC5EJ+4/nP6Q/PqHVtK6f6ZT+B4WXDqvoVc+2zm0/o+QTua8z5PvvqHpeJrOk5tqpxNSwsi1rdVU5NU7JJeaClxSP0uNOS2XE9jxPWMHCwuinR7VcPDx6NSr9ZboX49NdN+RdPG5k+ZOv2S7mWeH+M5h7TjPtRJKbkmpKPuYy/vJoftlfO+yZ5184zTrrcpLvfD5OEvS0shNtJeF2vsXuTa+EJ904P50R5Sezj+afNxr7rLFFx4dzZp8ViXbLwzaqiG+/HD6UTFtxnNxe7XHs+8Ftz87kKauSaa3fljseZeqb+G6R/Z8/2mR61PNSm1bXv27br/Kzyb1T5Qnn6VwLweoT97t/PyIfcZ3eLl837R61TfbDCweGH+x43pfiKyetXbr2P7Rw06jpfU8L+VdM4o4eNxR69jJxaor4lw8wnr+mbr+VtM/XsT+MSanmPqoTc9T0ptbP1sl2f9Xcev4U9tP03+z8P9mrPGfVJyMbI1HTHi5WPlRhp/DOeNdXeuPrN3fy5eDI9exH7Q03/AIDD/ZqyF3syh4y39H9k+zXPuO2DPnVeQ7oPsJNGt0dcWdEWccWbQZDOacTrTLGSZoVOdok?g89q9T/ABvWTO0XK1C22OXrk9cqy6MevGuxLp1018FfHdkfip+zex+M8WfUXROqGs9HNUoy+VT0d0+3TqsPq/H1iueJdiQn1jnex8PN/FWH64AHmeF0I1/SutV6V0zng4+XmXZs6I6DjXezX8Pv782f83CqH6M+/wBIOjV3SDo/j6Nk6pwZFfU536j1OM+s3Y1fBbd1SGRRy+sWey8ELfYz9aAD8t0r6PfdLpUtM631L2xTkc7q/WfE+85XOo918s5+k/R77oMbDxut9T6nqePqPM6vz+byK8ivk+Oo4fH+7/wz9ezKUSTSEv8Auee6j0Utt1LI1XStWydHzMyuqvM5NNWTRkKvsjN028PDZy48HHx:pzOVdEKKdE1HSasu3napOd2XqGRCN11t87OPmOr2KPzOM9EnWc06vgJOqPAeaY3Q29+t9Wq65kanh6XOmWHhRxKsOiLxq+XTzOCy2VnLj4H4w/f1PhaNeV8BKrfmJLqKXcV5Dm2+NLf5RPVX+Mh9Y2UWX2YDfwnI8f89fWMpwaTSafYdrg2ZyraXwsEp/Cfmr6Xx93lPyPSfork9Ir8O2nMx8aOLjyolG+Njcm7ZWbrlxl6R6NOj4DknQ/IBKKktn2pnj33s838rYH0L/8AKPvZ5v5WwPoZP8M9ZlU9yqqfwkbIz5Nfo/WkeU/eyzu/11wPoX/wz1zGqdWPi0Skpyox6aJSXdJ01Rr3EK2dkIbE7FowjHfhW25vUttjric8EbIFzdG0GYpGqaRBlM6omqZyxkbxZDOacTUEIEGRI)ABVosADJx3MnA6diGgXU2jjdYVZ18KI4Sdy/MZzqteYngOjYbDcjmM5nBGcoo62jGQLxmzjlBeY5p1LzHezJosdEZHznUvMZupI+g0jJpAucqgjRLY0USzS2AKGkXszIlMA6VMumcyZdMEbHZFnRBnFE6YMhmFkTrBVdwKnMzQ?q)))CCSACjRlI3aM2gaRZzNGTRvJGTRY6Isya3PlKiFt9/E34M+zaXn4j60mkj5dU278peROP7xJrEl41a99P6Rm8SD752fFxHVs2WUGwWOLqVfp2fS/0jqVfp2fSO9RLxSXegD56wIP31n0jVafD07PpHeviLpMFWz5k8aNLrcZTblPZ7yPuQR8/Ijvyv6w+pEhmVj8FfONF3AkFTlLgAFQ)))?CCjRcMEpmDRzzTR1tGE02iUbQkcMz;UVfk+feO/1j6k4HzKIe2cr44/akWOvfdHUn5kWSbLqBrGAIckjNQL7GvCOEjco5mSRokWSLJAo5GF0fF/LO9I57I78HxnUkQzOyW8Y/OJBIIMSQAC))))QSACrRm1ubFWgWT2OVwPnY0PbOZ8E4/akfZ2PnYsfbWZ8uP2pEpm8Jvhl8EToUDRQNUidhuZuxsy4Srib7ENAjiMUi6RbYskA5FJL3PxmpVruLkFW+x?Aq))))))Dgxl7ZzPhnH947zgTlVba4pPjfbvxeQlGlabViXe4x+0dwOTn2ejD6xPPs/MGw5c/zfpHWRsYK2fow+sXU2+9IjYq4SRoSVTbJ3BAZIAI?AP/9k=%iVBORw0KG;)NSUhEUg?ALQ?ABYC)AB5IIIX?ACNUlEQVR4Xu3Ysc0jIRCG4a+iKYYyppNpY4qgACcbOCXZiJgCiDlZaO5fY8vnlX3Hrm7eyDLJMwjLCLTvhz/VPszQjsbyKkc72tGOdrSjHe1oRzva0Y52tKMd7WhHO9rRjvan3i+jQRSYReOy1naScBdRCCwaL2s5OFpFOAQijANQYBE9Jnr93TWqCnOg7QRHRo+lS1RhPhXa+hvoBGizFEgnQVM9IRryBjoBeig0yhnRcj40AeV0aAXkGbqk+gqdpqITA3lEZwYAMigHgJg5d0BVAkBS56ETwAM6E3qyvRbZcg3oUZ6GbgykO3QhgFSFTK0CsKr2wx8AElUCaB46A3yHFkAMvzyc6QUItW844jT0DZm26ADUdisC+oAWm60APA9dAN6i7ZC3CvADmkGtRzPRTYA4oHsDelhlYCK6EGgHOqRe2IFermldcyml1i+hb974PtrCHvS2a0przsMAu9GVQP8O/XSAnWjb6j3Hw/ocbe1E21bLjh+iNRXdIkDvoQnhAGizwNAEqvbnJ4YWc7LdZassdTI6/qAFULsZLbajZOgIsOllMroRDJ0J4CXFAISfxRD7Dbv2z5EBpNnoBY9X01BbT4G7mXrSZqPtirpxcW2W0mYmxi2KbQL6VTmlVMZv6nY197MOFtF4SdPQ+xvfedkGODRahfn5Oy+zqB4TbfpaUlSRcYADo8dKf+gNgegc6LH/E+1oRzva0Y52tKMd7WhHO7qUnNeUridBj9VqA8xC/wJPfq4zFvjmoQ)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ARg?ACCCAM?ACq2icv)SFBMVEX:/+94rqd1Ji13rHm9OXu+O6X0ZI?ADR0dFra2v09PTd3d0mJiZ.kKqqqqNjY24uLjp6el9fX1YWFicnJzFxcXe8N18xXaMs9I3?ACBklEQVR4XuzWy2rDQAyFYe2O5upr2/d/055B2A2ldOFVGM5PiKWg1bcwsXfo62E2QYIRjGAEIxjBCEYwUyWYz/8TzGuCEYxgBCMYwQhGMILxkVl2Vmy0rd1tlOOnl4O42ZxZ4TwzDEZuHSwZO8HaMHIANRtYLHETt5Y4zwxzgHXbwc5wqQ1o2azwiWVcJC58tNTGuFaOtvB+ZhgHS1bBuG4ASua2culg7kAc0q8jxdg4LjY5TAUKkICwOMwWYI+F6w/M4h4AiXC15tlh9vE5bph0fXNpINENw27Nhm6zw3Sw80+YxIldGClZt?1Tw9TwD4CZgWa2Q4sAZPbC0y3zcvFedr0MFYB5HS/fNdyv3zTIPj18r2WyWEApB04+hiuvzHcg4IOe8A4ooAB8/lhOnAGDOt1TPmG2erbwjzLHuee7UETwTxPMIIRjGDmTTCCEYxSSimllPpu795tAIRhMAzyHgH235SWAsUKiogi3zfCNe5+zzW1Blg+lgMGDBgwYMC?bOXW5+1hdnCjrcSwIABAwYMGDBgwIABAwYMGDBgwIAJipDTw4ABAwbMVVM/mPp+GNUC03CBAgwYMGDAnIUSzP+?QMGDBgwYIYJDBgwYMC?QMGDBgwcaP/lOk?wYMGDBgst1NMGDAgAEDBkyPwIABAwYMGDBgwIABM/5YPxgwYMDc6HOBb9jWJWo)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AIw?AB4BAM?ADS7QcC)GFBMVEX::0qHKhmbLDvs74yKT4xaH4yqr2tYUVUWgb)fUlEQVR42u3XsQmAMBgF4V9x?OCfVxAdAEdQtwg1il0fsHS8IpIsLob4OvPnKy1V7WXWb+J9pQZZpG3zkRNyowmmmBgYGBgYGBgYGBgYGA+Mn0QHTl3V+o1iYieKifLYq4gilnMYqIVBgYGBgYGBgYGBgYG5gfm3ESx0GvePshxrr29cII)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AL8?ABaCAM?ADevXcF)MFBMVEX::H5s6438CHy5dmwHyl17B0xIfb7t/l8+iX0aSMzZru9/D3+/hGtmP4/Pnx+PMHek6e?AC1ElEQVR4Xu3aC27bMBBFUc6XXyf7323jItGoCup4LLLuAL4rOIAFPpBw+irXyy5MsQI2ezh/R9PH82cxdkA/GXqtf2QAEdKPmiCUSf7Lv/Fj00MNRiC/6Pdaiem3cnA/ldh+rRP9/AS/wix/hfQMv0zxM/aUnuLXcd5f4QpY7a8IuVwBBWjiEcTYU1rvL3tAIfNDmtPRvzQwv0T09+D+1DZ/C+kX3Xr5X353deNTSH/w8yebHyP6Jfb+glo9nL+jWpLC+EF+13RfDuTX72EK7ccU2U/gwFX6rP03fnH43+grOe8vGaQ2/qhVgeL1W7Xc68+bH076c+VDit3p9z9gweYvJ/1gcAt8fv8Dlmz+txV+bsPld9/fd5:Ej+3dG8dmvsH6JsfF/nZcZgMVKv7Pn9Y5TfIz43m/IBw8/dVfobHtgBd60VpmZ8c/mJ+8a3XFH8TgJwzoPKucvoC6V8vvz9DNsYQtmDZA4StV559f6nmxxX+43rN9mfz12X+jV/n319O+13rNd/fbAEe8pNrveb7K285/LT5xbNeZbnff/471+u9fPZMP5offetlP8YT/Z3MD871koOfti4W21zP8ec9aFS1unO96sF/uRX97Ke7zh/VipDzldOB1Gqe9Xq3LXD4Z5z/+rfAuV5vk/35pL8716tM9qP58QE/utZrgZ/MD35/G971grl+YKu7/VR8d6/5frrz/nWD77t74VQ/sAVev/QHXg5lpn+o8XXcPsP1UL1y/HevZv7zVbbgrv+v1iudBMFm17VeiSb6gS0daU30x8P/+0R/4V05LffLNfPLR/kEfxBbklZFt4ITfmFLRzg/HL6eYP6ibGEK529stRHOj2xpSdH8mXdBiuYfypakcP7qGN65FbNPOzqj+QvvwhTNP4itlsL5hS3t4fxwODqD+fvh6Izmb2zRiOfnXZD/bITxWyum4OV/+dcX3P/yv/wv/y/+1mUuPXlKKg)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ANM?ABMCAM?ADA6XJ9?ABIFBMVEX::/9Pjcx+np3/L/+PrCotv/8vb/8/f/5u77+Pz/6PD/6/H/7vTfz+z/4+3/6vDQteOsec/17/n/5O3Ijtb/7PL11/CyhNL/5+:6vH/7/XJrN:+/3:f3/+vzv6PXek9/m1/D/+fu4j9W/mNn/4uz/8fXrl9z/6fHWkdvVv+X1nNj/8PX/6/Lzm9nnl93/9/n/5e6zftL/7fP/5e3lld3/8PS0hNL:Pzry+394vT/5OzvmdjDidXtmdzXs+O7hNLTrN:9fjEmNnhk9zQj9n02fH/9fnKotvv3/L11e:9/r:P3/9vj:v743fHx6PX/6O:7/T/7vP34PP67fj12PC6j9X/9vnr3/L/+PvGotv66/neveXmxOrx3vP;2So?AEY0lEQVR4Xu3Z5XLrOBiAYYGRIcgMZeYepmVmvv+7WPtLvHVVNXLH6TRnR++/YvKM6k+2igSFOUMfR9K01knT+3ezZ9txvn+mKW3ENklSMoDBljoK41R1i9CI/3L0SU39xANNIF9gIuC5SV0/0ylwMiZnuSkImYK1M73bZk3aUtNWyEbWzfQq9czifLEpSiVq0jqZ2GV6UU7nXkdRFNb@w2zyzSmKcCklLIm4PaezgTz4dlR7lkO82FkrvUsh2Xqh7lN6RW0xqbnYCrnNvXARNfaVM5j0pLaAKALU+fgE6ynaXE4AyBJEfoS29fxcLF3fkcRYXI5gIiotWT4BINVmDYZE3fuZUwuunAalnFY8jxvMs+/M/cOGkZpElcyGmefhUwqysZuErVB8evpRW4TAtMYXWjNSsOqJ6x7TB+mdn1h2t2pCk3mOMzmFpt7gHqV1zSao37CeNo8tjdgsbimqlZJTY0cphaDjgqY+tvz9jfzmUg47/Ulxvo0WSyj5Hl8k2VpioJtY8P5XGQaAGREKHVVMAUFTEd7QJqzOmKTWQvTWi5sU0r9MEYpHNMUQY5lN/WD2++e8ra9ILNk4wKm8Dmg5k0cRWRCPUAtCijqfN+IURq6a2ouFF8Y1u5x+kEEP054W8TolrqAKUY9y97D+kOBCfVGYSb1R73ZqDcQx5QujVI6qVvpd4y5i7CVhdLipvCov5eakrDAhExSy6oudcfu8kzpJ7FXKp18l7kcaz3WpGZ3che+p4gJ2tyfm6DhUhPkZsfUN9OvEM/0NYLa8cbreXZm.hig4vUzP51qgVN0PvTvYXJEpmgQZCu1lvgctZpOFQUzYlJcTqsMIyC1j1vkCaRxa8lxU3QppEulNAEuaMQ+pZvqlilSVq9899Eq5mIjYZsI3Nl50YVMGk5Taj9GkxEaDqByeOmY1xggituZaY2mJycpos3V2AKBCZD69zsAltIaBoRc5Xne1Zi8nOaNIzfwjznm6Y/VHzf0fDw1hg37zWpSQFxeys+s/QfYNKPNfzpEhP3vpt5w9wd6elMw41jPa+JHeNsj2q6zj0jOnZlB+PzJTOimyWZS3cd+CJ9HJOSf+7pzhTjn5fNPXznWaIWIX4qjJpHMbUNMLVzmLo6xvjqFzBFfFPl1xs?eeAoTBfdldkKs9m+/1+vxy3eXotPi+nqtoihPxWrVYvX54D6Y+u8gZjjslqJiOvM+wqfwKpdu95RBR.W9+YkhICxV9JkybQIrgmZCtOq1Yh/b9z7l1eyp8zg1CptWaztDDTH/pzoZR8u+Ypg8xmePHNGnoYaa/cXO3XvLumD7s7BY4YylkKu/PMqZrp42Wm2hLzYDOX17pTds68XhnYRXDS0yesaH/IzAx/9ZSSeH7vaN4PvTjykOUK5NSl8RRwSu3leQwU+minEU0mR50xfdG/4dkMplMJpPJBHc5he+GpEmapEmapEmapEmapEmapEmapOmjSppWnzRJkzRJkzRJ07+QCGjGRJDjq)ABJRU5Er@ggg==$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAHcA4AMAIgABEQECEQH/xA.?ABBQEB))))AQIDBAUGBx?AQQ?wQD.wEDAc)?gABAwQFERIGExQhIjFRMkFCUmFxgZGhFSMkM2Jyc4KisbLhNFSSlBYlJjU2Q0RjZGWz03SDhKPC0dQR?IC?QG?YDAQ))ABAhEDEiExIkFRYXGRBBNCUoGh0eHw8f/a?wD?ABAQIBAD8A9pxjE7FeSvhmGCEmKXdW53meiKIMt5Zl+SGrk3hE7N5ow2aqd3iNizfseHNLPKA/UihIIw9AqDZ74ffxbHT/AK2wVGp/w9P3v7U28L1LoU5vLsMis3E9U9lyrqYU8eH7KU570XEy7zRHDUOzNY3kpPpjjhGxJJpIy/PqTK+A2b48VtHalmsH0uCrzSQ1YfkDuXApH7SN3zfqZk2w3ultfWqk/wAHwatxhhl/abLlBD6QjCR/rerokrbVdXq3zEjFNvThTpLl3Zy+KVS2Zg92cLnm4W.OPpTTHNEUBEwSGG/I92UbdPo5Ny6l0xmMYFIb9EGciWFtr/Rm7X/AFvd1PrWJQg/81JtdKcez9yGI9E13TRh+fbMaw+reIrMo3u3V+gvK51sop17MTZorUF3C708sxhtBVsWZd9KZ6Jd4NqEQAi0h7zIQ9FvBXbLntoYQo1MKuxD0MLuVvqxS/Aj+xMru0lySjgOIWYW9/3BhB9LI27i+2SJcTXcI8Ckn9Kv9fzZl4bi0lTZi3tDPqscRLYt14s36QHKQVYg+cOj1q3X2fO1GM+P2prdsukcUU0kFaPPwI4oTDkPjHqdOvYDvtmRwKqQxnBDANUyz0byq4SRavk64+ahHajg+htDRsYZJ/WWNDz1PncRDq0j9JpS72472/NchNFSxNlFb7ZudluDZ3DqtkLVYrURg/ccXZ3RfPiKUo3/AGVBil+9avjgODG0VjQ01+9kxcNCT9DQJdEpZOeln5MzZutgLNeWvxcUoyV9O8GYOkGjxtXYsTY6MpcKfGJ/0nGZCvycvAk+IDzBCIMkTesnrW3kVpWox0zW3WmiJW2VwzT7/JbsTfrMluxvPsSAw+YWZlDh09vD8YsYFasFag3DXMPnmy32jXupYZC8PQWnIuvIua6FctYkE9sn0/2XDHEv+pnb/wCdEblaeugmJUEmtHfsTaW7Y/i6jWlOKS5cjHXETiW6hYrMjebTFpfzqGd31uqlmXitqY/Fw6mZ+aS0bAPqCEvWrZ90rOHHKkZPxeI5t63roZmOTSx4TNHCZBNZKOrEQPkWqcxh1C/a2rNS+4GFdtr99t/76pY3aggxHB4J3Pd7yS3IMUUkxe8g8YdGETLLXKz9XeVv+EOF59Vr9yt/7KeyGLdcixVwnD6c4WYHn3gZ6d5asyj1OPcSykL9ffZawzv2qnG4yAMgZ6TZiHk4vk7csxLJ29KnjFs1HJLmTYc530L0Uz9qtibZLNyTwkcX61FKFl3Dx3DhkrL5OoDdAzIfJMSonc1JaMY3Wp26kxo3UgxkhsSMew6PumVwepVRF82VkEjZJBMxNi3ctl8N@tJyxlLKP8AeSGRyenUTreXPxUMbwU5o8HGvdw+WU5o6lmU4JISlLWYxyhHPqDXmTNpbLPrVypLtDLOPHVqdav4e6nlsSfahgFvaiStuVoWDpKLTtJLbT2VMHf+UW0fjDLUAPo+GA/xma31iXsKxCLEyxrBZYhsTRDBcqWdW5mGPVui1x6ijMdWWekuXeTXk2us5xcNQw:ABO/lt/sQ7iv7TQ1dNNbIRPLaae7apXu7IsVL3Vx/DsHi+KoGOJ4hy6PQ/RYvnFJ0/qqTG34nGMCw3+/kvzfMqx9H/uzRur+E4TXwmA44iOaec3ltW5nbezSeOfLLq5MzcmbkyjDDp/4QS4tLo3I1Aq1R5ueZSFLPq5ZMz+95ZP3ktq+yTryGV1rvKSb7JciTG6T4lg9+gLvrsQSRx6etj0vofzsWSw7d33dobM/5pPXtzfMrx8b/qRgPpXVrmMF2fxGjigz3ThKlSG3Hhu7M9ei3Y3/AL4BAIi4ALA2ROiLQTTtaaS/n/p06Hbksm3LtLHOXBVaNitn0N7Ylhk+zBKKgNtqsQjKAxq4SBtpOeGY7czN393rhgAS7HfVl2JuXuvY5z5U2/H+Rk1nKvsztZwPxEc2I8BGDdH4rp6f+fvF0+EjGGFUQi+L4eLR2adApamG06WHhhkEfwUAePQTuWrVnq1F15k7u7v33WPTp7SYFXDD6I1sUowNoq8TMdacIvAjMhinE9HjdHzJzal/YxJwrTSqdcvwdBKYRxlJITCAM5ETvkzLkcF13ePx82cfdSVnqiTZO1WEd3By+X0pPrLQsYXjGNjusdOGth3Le4dTM5N9z7iewYxPo7REGz7cuSt2OgGmJh6LdAeoWybk3kZLF5e9jMVOfZLa+Zy2EM9m1i+I56hmtvBF9HVFoP8AU1rTGPmsjC6u02GUIaPDUJd2xa5eJmHWZk8hnlwvLURO60qb41v24+vUigyfpQTySH+ycEbe1TuXj2Z7wr6+mU6bPY2hxGfPoU4YaYeQzzsy+w41qOxZ9SyaVXaOgdzdV6E3FWZbO8OxMBOxu2jUPDF3ICI9atbzab9Tw/8Aeps8v3VF+PYfLVVqvwy3pdTRg+al5JrPzTXJsdHBSat2TtGOSXdimanTxJ1HqWqw3pSX4FaN08etDI0uku9x2RR1iicXZPbrZVc3FPGYs26k1xJFir6tC0z81KKriXNTg@LTJEIQkHAhCEACEIQAIQh?hCEACEIQAyX4sli2ZHzWvbLTXP0fey52WXpKTDV6lX4mdUuwu8JKxuo2ThdSUU1J9SVndSaXUQkpmE/Ff1JrJY0+4ulkrMKY+rsdN1Oihc8VyLGQJXcVAxJ7Miu45TvRRQ55XStK6TdeVOGNs+aS4ipYr6peQbNSCHNkj6fQnCY5skvoPUafE0TgKs;Y1YTGTwQqEISDwQhCABCEIAEIQgAQhCABCEIAq4k/wKX0fiZc07PmulxH9Cl+r+Jlg6eSkhKkVfiMLPJPoiFmdWIYTk8zdbuonF04JSDlnl5k5y0IIYazcd12LkQMD88uXYrgu2SyhmLPr5qwM8mWWf3KOVst4VRVJDpy6T9igUjsSVhTlJJEM8KUnbGJwupGj8idw59iXOgWDJbfoa0jo1un8OfYl4Y+1k24kmXE7kTm6AJ9TedTcKfkSNXk1Ny7/AJUmYd8tstwq2PUqUTPmrg9SaSpUOQhCBQQhCABCEIAEIQgAQhCABCEIArX/ANEk9H4mWMLLWxU3joTG3yfxMuaa4SBGaLiOSjKJvMqT2X7UjWpfGQhryvdWW93pQxKtxUhd06a8jpdQSXI0RtB4SsBLHI3Rdli5upAfypGhybNoXZTCskLLeMrUdlk0cqLyVRBKyk1sksWh6cmNK3YniTJbCh4iykTWTkqEFQhCUQEIQgAQhCABCEIAEIQgAQhCAKOMDqw2f6v4hXLDEy6rFf5vm+r+JlzPLtTZOhVG9QaIUbkUuryoYvKkzDsqHBAyl3DJAJTiSbmFyFYoVCbEtNskFHEfdCyVTB4ZiFISAmLNaklGAu5zF/X96iejH2unrEiMeHOxsN2Qe+r8V7Xyy9qocG/anhCWaa3FipSW5rhJyUwHzZUInfJW4+tkyx9FwSUmahFSsnpjGiRCEJ40EIQgAQhCABCEIAEIQgAQhCAMzaCXcYRZly7nR5PDFlwzYq/ifa/Jd1j8JWMIswjl0mDr6uRiuFbCZvGD1v8A+kVHmrDj+l0h3ui/i+38krXy7FSIGAyDPmLuPq5JeikqPQWsTqaI4hIpwvydqyh09qsxnH2pry9B8VN8zWjtSl3/AGMrASSdqzAtQeN96mHEq/a7+hRu/tfolSXOa9mkzunLN904ux/uSe6XyfakqXQOH7r/AGarMnclk8fN2N7Uo25y7/sRll2C4muxMnhJ0m86zYt8eXSf1q7DG+baiTW63YtdmaIStmytASpRsObdauhkpYSIpqiVCqIUpEW0KohAFtCqIQBbQqiEAW0KohAFtCqIQAuJDrpSj5G/Ey42dnAnXYoTiOZ5DZmfip/pC+90oTEvXUJzQyB5OMpdqmGQl6khMZMjzISdSM69JQmMkSR50DqzHku8Qo5MsYcexx8bMrIzDkunQq71epPSWyOa4wfFTxxH5Pt/JdEhOUUIzGgxMtY+9t1t3/yWzBNr7yEKTDRXxa6H/9k=$/9j/2wCE?gGBgYGBggGBggMCAcIDA4KCAgKDhANDQ4NDRARDA4NDQ4MEQ8SExQTEg8YGBoaGBgjIiIiIycnJycnJycnJycB.gI.oJCw@Cw4LDQsOEQ4ODg4REw0NDg0NExgRDw8PDxEYFhcUFBQXFhoaGBgaGiEhICEhJycnJycnJycnJ:BABEIAJQAyAMAIgABEQECEQH/xABj?E?QUBAQ)))?BgEDBAUHAggQ?AEBAIFBwcICAYD)?ABAgMEBRESEyEGFCIxURUWMkFSYZEHI0JTcYGhJDM0VGKCwdIlcnOSorGy8DVDRMLR4Rdjk:a?wD?AB?I?D8A6ny4ntF4ivLie0XiOD863O2HOtztjYamoe9nvHeOXE9ovEOXE9ovEcH51udsOdbnbDU1Bs947xy4ntF4hy4ntF4jg/Otzthzrc7YamoNnvHeOXE9ovEOXE9ovEcH51udsOdbnbDU1Bs947xy4ntF4ihz1HbT4jhHOtzthzrc7YamoNnvHduX2vWJ8Q5fa9YnxHCedbnbGbKZvHTqYsSyCO5+IVanPd9pXcRZihwhkRmZ0Iu4MuHxHaeX2vWJ8Q5fa9YnxHJ3+VKRTkvdTMWYM20vuMEvZW6dtli0pVWu8YDsfPGFWPQb6FZ7KkK9FJuK6uzn7B5KHSfpkGXD4js/L7XrE+IcvtesT4jkUIekcY0p9qEdwsBcXiLI0pW232OJ9wxij56pwmkwj6nFGSUoShWZ2Y39G17A1dNTK9OW8MuHxHZuX2vWJ8Q5fa9YnxHGIuYzuAZ1mMhXmGLzbxVpO24j6Nd28GphO34Qo9mFeXCKUSEvpSdtyjsT4qyFdWy6SeAf3vHZ+X2vWJ8R5PSJqvTLxHIjXpJrTcG5AxCHnSNSEWH0UnapXuMYs4nMRJ5nEyx54luQqzbUtNSr7ATDJM6EojOlchShdQ7Pzja7RBzja7RDhfOtzthzrc7Y96mFB3TnG12iDnG12iHC+dbnbDnW52w1MKDunONrtEA4Xzrc7YBqYUHPdYXxDWF8RYAbWhD0L+sL4hrC+IsAFCAX9YXxDWF8RYAKEAv6wviGsL4iwAUIBf1hfENYXxFgAoQC/rC+IzZRMmoKYsRcSb+G0q66EcJp5OWypC6KzI8xqxu9EJVCzvSWXSqNv1aKcNDuGZJV0VKHly0kKNW4iOtN9AEtjPKTAxVyFwkS5Y3CpbinHUaw65CPY10Raiyirrcs+8WIfyhwny7WoN5zGio2KhbHU/65k4dSXb0q6HdQeILyctROoRDkyTgxj@iQ6G1YrbMa4tltV3QuuR/fXbi/Jw63Crj4aPSqHU8pMMlaDuWzj6tfdXp1qdtNxVGFSD6NTLxFMh6c06l0Q89FvwkTrEbAcnxmG8jDTahttDkOmzL5rOvEZyvKZL8dqKalz2Ncbj9zqbVK1M4HY2ci9Ia7/xztRLLE3aciGXoiFaRhLSl16Gax3UXqPZ7uJi7DeTJcSX+LtJW21Cuv3Mrtb1xGI1cutKUrcrq/lWkH2j/AIgyGLNdPFzTRxmTYK2Xm22GHLDbwnEQ5qsV83i3ffp4jKk/lAgJVIUSrk1WsUSTr6Fp85bEJiLlXJvrRNtLqdwuF5OIWKiJbBwcwcx34NuJjHME3GkOOu4PSTban2i6nQSXtyxOC4UTM3oKIWvFuQ2l9qMTBpUzb/u9oGqFtJOdDVWhVyMMh5V5TGXnn9YgXNViii0PWPWu2xL+sow8qEaToR9wiekE85bnMZNUNmwmKXiYRqvtyL0qZ5iRueTZLbj/AOl0arCpitafwF7D0EttDrdl20R4uyovh1ROeStckm0XKluk8qFcNvFSR0Vlv4lkLrBQ91WjzofHdXvAqdQxtYXxDWF8RYAZNCFRf1hfENYXxFgAoQC/rC+ICwAUI?AFQ))))AZUumMZKY5mYwDmFFQ6r2nKEfV9oqbhijc6JwMsmWkMBAzhzDgXnDS7tWV2TsRf6NyqJqPKzIkKNRVIiOpb8gHprSXSO1GrxLnyVLNqkISdiYZeMz6ORIVn/MVe0sn0S2bbjyFWum+lWAzsKUsnNhVmym/MyLIzE2msNKtH9GJ4zL2UsRUW3L9Zh8ZS8FT2sXspWldyk7lWqr3jWwOsOaFwDOjzyGvOxPOPaaxLf8ALxL9o02dCneMTEbNNxNJpdaVaF1VOu8UGmTpzOW5U7AsumiKiYl+Ki42iL16whLa0p2NjvtpUYbWlukDS3l638+02w8hxttaFIZK1rYWi2qPRPeOgRmi+hsM+t7V2rGERjkIxrSla0wxDpdYfXavetxVvUCNG9EouZQ7EHL2th6LRg6ytSXLYHXG71X7JYiqDwT8ORH5o861qRBkIJC6b6TwbbbLEaVjTaWW7mWV2oQvGR02/RX0a7uoWl6X6RLh1QuvHgqJzZsb3OuY7ibrLqG5tUrvE8Y0U0SiJngYbLeA/L3JkxrRWsNvMOay2lanNpKXbO8ZkNK9GJlDy5+OhYZeFLmEMssntOKxVa1s47W22ilKnlcZ0OlBU4hgv8n25EFSHN4jS7SOLUvWI9S8RtbC9lG0h00qc6Kd6rE1VvPiNZHR0XM4t2Pj3TfinzuddVTay69wkul0NIoCAljEmYb8/jOvxOJe9sPOtNtr21pTsW+0RIZTNikktCCTWpFkRHT3)uio)))))))DKlsui5vHMS2BQTkVEqsZRUk7VO0o6DFG50UmkNJdI5dNYu7V4V0nHLCqrcY8LNRIUaSqZEZkXf1APE00bnEncabjIf55s3mnGFpfbUippuxGTWnfvzGv1SKuSjAcvWVyU2K3eG4TFjygxWrRbT5Ja+jtwcJCtpZZwUxGPENqt3Ym5W+olcBplKJpMnUMvOO7MY8hyKcRCO/KnG1tQcO5f/lWZbacq7hjKefQW02R03mVaCmY5JqMbn8md3l6Ct/DcMmBVOZdEKegEPsv2KaXYhV1jqTQpP3kjocy0zgGJvqkZHvRbCJquMjH4E1NoW3q6W0JRau7zbn2qZZGLqvKZKWpgiJYOJ+cgMd1KCRitwiXkO3ecV0700FDfeUXzNSMq9dAHL0wEctSkIhnVLQRKWnDVs/rZZDHHTYXygynD/SK4lxC4OHh4zY88+4ybvRiMZC0dPfmVOoczUZXHaVuftoXAX2nHFGq9FtKe8BQ?XhU)))BlQEKUZEEypVuR1GKNnIzPXd/oGfgMaOcW1CvONnRSEGZHwMZctZQ9HQzLpVQ46lKi3VIzzGZzfY9cvwIOb7Hrl+BDcAIfyzMPX/wAKB0Pm5KPqpfvufmGn5vseuX4EHN9j1y/AhuADlmYev/hQHNyUfVS/fc/MNPzfY9cvwIOb7Hrl+BCRNS2PfhzimWFLar0k+30U9I/cQpydMPqj3/zX/wAD1ytM/Wq/cT+UW+Q5FUywW6pOhliryPge0I/yBD+tX8A5Ah/Wr+AkRSuYXst4CkriLsJCjJJ7HS6R5e8XykE3oStVPr6SkFWhmkzLa3V6xQpnMz3OrP7pCipRIE0ubZKu6rplxLtdxiLcgQ/rV/AOQIf1q/gN85BRjKDcdh3W0dtSFUL25CwPJzaYFvfUXu/6F1Mgk6iqmGQou5az/wBw1HIEP61fwDkCH9av4DbgHK8f6/4CvN6U/VU/vL/MNRyBD+tX8B6TIoZNdpS/7+yNqApytH+vV4f9CpaPSkv9Kn95f5hrORIT+6/mDkSE/uv5hswFOVY/6wv4CvIEq+qo8Vf8jWciQn91/MNFGMpYiXGuyf4CYCJzP6e/+t+BDcyKNiH33EPOKWRIqVerMhHdJ5ZBwkMy5DMpaNTlqqGeZWmfWMQ?SMR))ABspH9O+4r8BrRspH9N+4r8BhzL6DEfs1DPk/wDiUH+2R/UJK?ICOrg?ADLhZpHQTZtQruGi67opPMyLPaIxf5wTf6x/A3+Ua0B7JxZF01CwqEhlqNS2W1Ge8zQkzP30GcucTFx5p9b3nWbsLZR6ZWq9EXOcE3+sfwN/lGtG2hNGZrGSCK0lh7XIKEeU081UsRKUJuU7+r3bxcbJ9y6xSq9IY0Wcuhia1ltpJLWTSDNCaEaqnwyKosPTqZxDSmXYg8NZbWylOXDZTUYApUqCosqUpR7R+IzG2mmyo0hKCPOiSJJH35?AKC4))Aicz+nv/rfgQlZnlvETmRlrz3t/Ahv9Gy+UOq/9dP4hE9MlFqsOmpVxTOnXS08xigACViCg))NlI/p33FfgNaNlI/pv3FfgMOZfQYj9moZ8n/wASg/2yP6hJQABAR1c))CSq5KG0qWtZklCEEalKUo9lKe8db0P0ImzUrel2spaacdQqawEWaohF+G25hYKbUJ2t+2dSyPiOWy+PiJVHw0yhSTjQrhOWL6Kh13RnSnSfSJqPmkllkOxknWcd7pxDSSuWy22m49miTupmNtKyTa5ntCE6ZLfuh02UZSRmS+Lp9XuIhzHSTR9jR2OiITW0o1YzvZfrtXbSMFSSUW1kRJNW/rGnGbpNJJ9EREHPtICW3rTsQpEGtCk4akmm25S1K7WwVC3ZDCFmZpaS8RIIiVTbGz0Vci3IJS4hd6LrWanVVE5K91dw?DXiRg)?ACU+T6UzaaT5XJbEG5qzKtYdmDRvMtpdO3ZbTbt7OXdUefLNo3yTCy2LdahlxubcRFQTOrN4fRbSpiqk17yP3ENn5OYxdkzlzJRTsS4SH2WGnyhYdW5HnH6XXb6JrQy7xJtOJfCNyGGgtISiVwcfRljbJ6MhoinRbec6aV9hR14CRyxRttsqT7fHeOX6ROKXNYg1FS0ySXsSkiIx80ALsS1gRDrFFJw1qRa4Vq9k/TTXI+JC0JMR1zGp?AVAU6gD/kAFCFRspH9O+4r8Bj6ovgNlJIVeu7vQV+AwpkfyKI/Zq/kNhKDpMoT9sj+obsBkasvgGrL4CBjqt6eIxwGRqy+AasvgAXp4jHGVLky5ca1yq4tqDqeIpv8AVO1N1FWkpVCupl3Dzqy+AkOhuj3K02TiJTgsKbTavtvKNCfbalK1+0iF6GbNTyMhr5vFIZl8Q4azQdhkk0nRVysk2nxFyYSSEmjcNEylpqAQ2p5p/ZV55ls/NxaGEnu3pWozJNdxn@RKWG9E2YeGQ/8pQxiORK2VoSp7Wb/ALN6bHqVLqqJg/IEQE6h+TG0wyHUFattPpI2XcXPauTaZ3dVesQqJ0Vmrzs8iGYj9FwzurQrFr1jz1TU7EKw8S1KL7DJuhKpmJAhtq69OzcOZOx0S8y3DuuKW23U0pMxHNN5SxAw8qmfKKphHzTEeiX3Nn9axPZu/ARRtp19xthhBuPOqS2032lr6KRb01iphfAy+MQl6NgFvL3Loi4k9G7OhlRVd9SzGXo7EIbipfHRClJ1dxpx9bJncj7ae+3Oh7xgTCGq6h2uz0FCT6NzXDg4mDSVXW0reaqfTO3okXdSo6XKfJ3oiw7qs8nCn5i2Vr8O0aWWkr7KNlS1WfrdY1OnHk8Y0fZcmcojdYhG6axBumnGa2ukmzpJTlWpZFnUdEjZbMo+CbjGXISYpdNtbcRCsJaeeRXaXjXLsqlJZo4ENJpJyVCaOzTXJCUvW8wpmCiXzQt92IWm3jfXaqZ92YvLhYc0GRISWW8qVKnXUaeFnczKKbWcQ66ZrKrZnVKq7yt/6HGBQzLiMgmCu6/tWltF92uYlGjWjjnOyTw0SycVBRRnEsutlsrYtXY/tFs2roZkoqkZeOnaYW4oiodKkRnwqOgxszYhWlqUojWSFKSmtLjRvSR7q9wh4Vy3if6P+TnldqKRj4WMpxqWPqRdY1DvWriFdHp22U9uYaS+SaWyKVOziczx95mHL6Gy020lxV2zcpa/3hlIlrhmklKJNd/HeNM/pdBoJZNtrcWVCRTJB1It5nwPLcNLIZNpA0jlZECvkx1hb2I6o2cRLVFoU16d99LF+0Tnyj6O6W6SyaRtNWwuHFNY0PDma3m7vN/OLwzVbnUyIsiqJDJZe/MNHoDlBMJNYJDSm2uS1m22lq3ZR0rXTRYVDyzzyGfLICYzZnW4yaRDa2XXUQ2CltFqbthS7kru2N/tG0ZQllBISdSQe88xCphHORsQqJdSlKlUKiSoVC3D5Y0p0YmWjc0jIOK+Utwz2EuObuw1rpf0lelxIaEfVmkWiUo0rj0aM5sMS9jWH4hJ+dUp9S0+NyTUpXuHzvpTonFaLzuKk7tXMBXm3u2imyr39Y3ULF4mwrJRFX2kMQRsBl6ovgGqOcBl1FRhgMvVF5ZABmQDp3NBfY+AzJbootuJ6HomOychNdkh7bkjSFdEhpH4jEaW32kmLkK9hPtO9hZK8By/m2rsBzbV2B1bklvshyS32RptVEj5wL4jlPNtXYDm2rsDq3JLfZDklvshqoc4F8Rynm2rsCZ6HSWIgWSwGE4mIt+9w9i9ScJHRz2UVP7wkfJLfZGewwqFaNtqltE+2tOoX4dnDVcNdM5quKaS11XXH7hH4yAmTMQy9M41t1p19ptTVFZMVVf1+ldRR03DQaTOx0ul8NIpY1+jL14r7VU4qFGfmvbtZ8aCeKlzTh4r/nHMunmRGRi4cG260qFdIlN1Oy4qlbwp3DKGnHBYnRV6LeQw62qLcWRIhIxJedWjo2uZ7R0yzzLrqQmsRohLo2DYYlrDUB.SbGF4Zree3/Oqqk9pdTIs+Im7UjbhnMRoyTkr3Xb7TF1cKdEtors199St+BZCijJRWq6x7adW0tLrajSpJ1Iy6hAJbozOJQlTmtE1DUNOrNvOJ87ZfspR18aDWR2j8c5EI5ReXF5Eu+9StlR7SUYm7u6tw6mUGtRHcZJTnsbyNVLbjqXcLCpUhSjUoirWosutkpskFuI+IzoSYONxKohRlcpJkdEkR1PrLgYgEu0Q8+cJEET8rja/KEJuw3KHhvJyubcrkZfzE30b0f5P;ZuYtoVFwKXYaHfT1w6zutGzhYFMM7iQ2yhXzjdRkxKHdlxpZpUg+jXJRD2hJJIqDHiYpx5Rmo61Op5Uqe6plxPrEansgi8OXt6PGph5klMrcuNKCYzXa71nt0MQScaLxC3flMwOYPVPE6Vqd9NqtDPPqHZFpJ1o057Ze8atUnhqkhDNia9KpmdC/kC7jSEK+lpZKUmtM9xfiIZKJc1gtQHKDsBjmlLymVIShfm+xShHVNpZENvBuOyCKdhoJhvVXTK654+mmu2nLDQat5l/ZyJErhbkeaTsHwKnEx5XKYZSDThltmd1CKh7+oXLhjiDQZaW87jnK4O+GqqHiW4ck/N59I69JN1f5D35RNGkz2AYmq4fCjWjtUmm3Z35qLITVmGfYSvDWd2V3flb8CF143X2VsuJJV5W7uI9JWaV3DyPnjmgvsfAV5oK7HwHc2pDD4ib0bIuPyGEyw2y6uPAZWuHUVHB+aC69D4AO48gtdkgDXAqJHaQWkADAFBUMhQAFRXIBQ?MhXIUABQVyDIU?FchS0g?DIVyF?VFSKgHwF?UFQF?B6AeQABXILSF?BW0gMiF?AtI?AH:2Q==%iVBORw0KG;)NSUhEUg?ANw?ACNCAM?ADrVuTh)YFBMVEX::4x9v2s9D85e761OP97fP++fvEwIH0msH+8/fe2HbRy3zq4XH71I6VlZWhoZq9vKWxsbHNzc3PzKXi4uKxr5Lx8fH28bD4+Pjd2anp5a3/+rP06HCa9NH/9Gj/9429Bui2?AD/0lEQVR4AdzYa4viMBTG8bwr1OE5J9dexul+/2+5GGZhbepYY8Rn+n9hQAj05wnWal5REkmXNYgzh8sBWWWB0RytUWxGOag5Xi7@Vjz3j5fkfq8+Ly8r5fidDowTubj4gZ8/grcMHnVGKOqn3aMI2bcJL8AN6ngqujnPTiv7Lghy4rED3dx0XPjBsWtxN/DYaLGTYIfkpsXn+EzZmLcoLiT/oTzGHhxg+Bucfv6ccGpfNLisq1Sl0cqkQlXYQO2BAM0v9DiIna2QZgvb3penMfupsIWIaqyH4f/+3qiP9eZ7RL2J+P1Vot/2dHsqhluPbntLB7Irv5iQKGjwgU8VLi50xLiLFA3ulEKNxsuAZWjc4WbDueAutGNWCd0OIvK0TkUseESUDk6yz85h8dL26cSyoazeDx34w6S2HCoKB8/3TCT4RJyFV8pglXWsOEcarLFp7L/t+VXERkOyYTSRoezqMoZVz4tHAUn643BHAeH4oGAESeoa7XP8ePq0yPjLCXOEkyOHecoce7IuIAmJUpcQovEUOKMoEGOFKdoUCLFhSZ3ORpc+3MZaHGuweBocO1Hl+hwQa3knrY5Q4ZLFq1S86bWuOW7s6BVcXmu9rjY0EaHQ6u6hQ/XoU39Qohb+oink+68EOJy54++P526rosxijwKi6ePJUeJKztfuP3pG5zJcgUSiTF23akvJsaB4+tvu3WX4zYMAwGYpH4wfmhP0Pufs6VKrdiFoZdULjadeXAUmA73A1aUiSOOOOKI+zK47zl4IcdwL+Rv4YgjjjjiiCOOOOKIIw45xBFHHHHE/Y84HuLEEUccccQRRxxxxBH3ZIg7hWsKmJX3xBk874kreGNcBdBi/ZY4+ZK4CkANsCqe6/e6iwiA2tRgGHFfUYzKdNcXpuOZq/qzxeuqGeJ3vMG4oX010Jp7ncRFdG0vWBNBZOFmrfV1NxYpVcQQsfFQeqwhkns9gEORPpqZX25wF2Z0h4OIYqZJvWfnXkdxpY8P9av1OUGCph97Tr1Uun/0ddcfbNIwfqdrGqtteEaDS4pXyxX/Fb3kXj9O4uIsM7/o3FB+sdJFconG31zibtSG3PfR+Br5wMksKGvwpl7fzuJCMIbAr0xcTdNyMha9LsHnoqqGkZobIA3e1esxXORVnCKyx0Wex5UXcA1j2tcXcAf3nGTL7Z7b4nzdY71wt3vu/CEerTXmoQNKxt1Pyz3uusWtaZl7PXPOlfXlBpfPuS2uzCPMkRmXzrnc66E3FN3h0hvKHrcIQPkT19JJ/xwu3i2LGmBW6x1Oms7KPa6r+Y8UtU+49W6Zex3FSWvyL3MW91iII46450PcPsQRRxxxxBFHHHHEEUccccT9BMmBXcwVjbcY)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AL4?ABQCAM?A.5D9d)YFBMVEX0msFwTFuCzMtMbm7lkbbMgqKrbog4ODuU6ukmJiZuqqma9POTYXaO4N9ejo1SPEVmnZz4u9XWuNGi9fS7+PftocX96/M8UlL1osas4unl/Pz72Of:/+90eDzm8L0nMJFVwVy?ADH0lEQVR4Xu3Z2W6DMBQEUO82a/a12:/ZQkTrP.+lrCwpU8T35gyol6sYxgn+9zPx6aUA7He/rCeyL7Q9/Qck9fiOUDQ+WkL8Tzj2TNMX0hnn8gaw7pC/H8hp70hf/GL/zCL/zC7+pZBEnTbeWlkn3dhfjzOwixOF9Us9QEvut9YRvkz+9ga7c2v5MvBenofBQW5kv7YFyklJbEd3LG2Yb5KMhnr16Mj8hpaCSJXwPTPRdVF562sSGeP7xfl2+BQREcIh9jJBPxkRAfk3x5+T9E8vtV+d7sn0kyH8+8SMG/yCGCzK9f+I7GRy6iScBHovieJah8PPE58PuX4elofL9vpuDLekiXdvb7R9O69Xce7PbbyJ0HVbEqv7lM0+MspiGSX9eVWI7vhBw5QlD4mB5MG36HdaGCe7IF+FJWIsWRjcjHCPsI8pFNuqnj1uS7F7+tGzq/2U6LFfk4QyJ918Twm6196MXqL4tO4M2MWvARQpR33Zz5hV/4hX/eXVkop/2t8bntTxkUrrvzg:xwyj5/powX9+ZFH4+PtkZGALnBswto8KZ7Rg1e2j2GRV27ErWnKA55VMAnhpoMinEB3vVCoV8+YVf+IVf+MrMQ9FoX1BEjTKcGzUWVajgRf4++j1fV7Nwisb4gqHxWxSMHSo6UPAi7u9jUvFbCl/xymdxPrcPx4ZzviHzN5PFUvhtFcfn0LfMPFfgvwmfpsBQ+agAE+YbsFuzCfMRf51fLcpXYwOoMB9qgyFKx0eos28Zho7RRpljmYaP2eea0TeSFiMd1mB2DKZ6CJVv9BAiH6HywYarJfDnBBofScDHDOAJwPSsz+dmiArwAxthAn6KR9fO+IbEb1FVAKTZODnnb0Y5cMwI7zx2hCv8/VX3/RbmqVkp0r7PB4Qelu2yfKVHRKu1bil8pTfj5YqhgPVfGl0h1g9b6A64TvuVWu7IZipEz3Ys+pnHJjhxpuV7P2bo3/GZbp8iQKL5q78sKm2MVuVd95/yC7/wC/9KvxKarAoR37Z20GRViPiyeIYmqwK+69I+oiJZFfBVnfYJG8mq8Auf8D0EMfeTQ)ABJRU5Er@ggg==#!