["$ byte..E$ ","A+DeAABfAXB./C|F94}cBCE(BkBP74}*B.CEdBXCEXCEXBXCCm~EX","Byte arrays"," store binary data. This data may be part of a data file, image file, compressed file, downloaded server response, or many other files. ","Byte ","byte","With byte arrays,"," we have an ideal representation of this data. The byte array type allows you to store low-level representations. It is useful when optimizing certain methods.","This program shows"," how to allocate a byte array on the managed heap. The program also measures the memory usage of the managed heap before and after this allocation occurs. ","The program demonstrates that a byte array is a precise representation of bytes, not a higher-level construct."," .NET 4.6\n\n","C# program that allocates byte array","\n\nusing System;\n\nclass Program\n{\n static void Main()\n {\n byte[] array1 = null;","\n //\n // Allocate three million bytes and measure memory usage.\n //\n ","long bytes1 = GC.GetTotalMemory(false);\n array1 = ","new byte","[1000 * 1000 * 3];\n array1[0] = ","0",";\n long bytes2 = GC.GetTotalMemory(false);\n Console.WriteLine(bytes2 - bytes1);\n }\n}\n\n","\n\n3000032","Memory usage."," The GC.GetTotalMemory method first gathers the memory usage figures from the system before and after the allocation of the byte array. ","GC.Collect ","gc-collect","Then: ","The byte array variable is assigned a reference to three million bytes in an array allocated on the managed heap.","Arrays ","array","Allocating"," a three million element array of bytes causes three million bytes to be added to the memory usage of the program. Byte has minimal overhead. ","ValueType ","valuetype","Read bytes."," We read in a byte array from a file with the System.IO namespace. An easy way to read a file into a binary array is the File.ReadAllBytes method in the File class. ","File.ReadAllBytes ","file","C# program that uses File.ReadAllBytes","\n\nusing System;\nusing System.IO;\n\nclass Program\n{\n static void Main()\n {\n byte[] array = ","File.ReadAllBytes","(","\"C:\\\\profiles\\\\file.bin\"",");\n Console.WriteLine(array[0]);\n Console.WriteLine(array[1]);\n Console.WriteLine(array[2]);\n }\n}\n\n","\n\n56\n66\n80","Seek, read."," We use Seek() on some Stream classes to read a part of a file into a byte array. It is faster to read in an entire byte array at once. This uses the file system's buffering. ","Seek ","seek","ASP.NET"," uses byte arrays in its internal code. You can use the BinaryWrite method and provide a byte array parameter to achieve a fast write to the HTTP response. ","Some websites use this approach to optimize server-side performance. Byte arrays are used frequently in this approach.","Response.BinaryWrite ","response-binarywrite","Modify."," It is also possible to modify a byte array. We show how to rewrite a binary file encoded in GZIP to remove parts of the binary format, resulting in superior data compression. ","GZIP Files ","gzip","Test elements."," We can test bytes. With a GZIP file in an array, we can test the first two elements and the length. This tells us if the file contains the correct magic GZIP header bytes. ","This process is also called \"data sniffing\" and is used constantly on the Internet and in web browsers.","GZIP Files ","gzip","Download."," You can download data over the Internet or other network with a network connection with WebClient. We directly access the bytes of any server's response. ","The data it returns is stored in a byte array. This is useful for scraping web sites or automating tedious Internet tasks.","WebClient ","webclient","GZipStream"," allows you to use a byte array buffer for expanding or compressing GZIP-encoded data. This is an easy way to implement compression or decompression for web applications. ","GZipStream ","gzipstream","File system caching."," With byte arrays, you are usually just storing the exact data from the file system in the memory of your program. ","However: ","In some cases, this actually duplicates the Windows file system cache mechanism that is optimized for this exact purpose.","Byte array caches on the file system can improve or degrade performance in various situations.","BinaryReader."," This class allows us to imperatively read in a binary file with more helper methods than testing the bytes yourself. ","Class: ","The BinaryReader class allows you to easily transform individual bytes into integers or strings.","BinaryReader ","binaryreader","A summary."," We looked at the byte array type, seeing its memory allocation statistics. Next we provided pointers to other articles that focus on the byte array type."]

%iVBORw0KG;)NSUhEUg?AMY?ABJCAM?ABRo6li)GFBMVEX:/+D0eTF6PW/5sH+/75Bv+n+/6D:90bdvar?ACjklEQVR4Xu3Z4W6sMBCDUTwJ9P3f+F62tFYVok9DqMSq8d9CmQN4iWDZjqzf0fJ+mYzHZDImo25H5GNOxmRMxmRMxi2ZjMn4j6qlSDtJEY9gfNRPfZG0HoMRo+wCR43k4wtfrI/ukOru10anhkPuuTxYl8H/3PitYfgv4wzbjWggzHDUY8hUAuYZVvTlkWGswpqqO+hyneEjqQ9nhiMsR9+XZ/C1cAIY7dZcju0mBiucyDBE5Ygeb4Dho8BkZlCCytGrRo7B9Zb0kxU9hlRKaTaGgc4ZyjHoYqi0Mp0xFHFaLGE5oOH8FOd+e+K6Ot01lbd1sBxQDWTwj63OcdFheNtMOaAaaQb8GjLD22bKAdW4m+H91WP4glI5qhkB1SAGV8OjMaNXL+44VOMqA0ZLM6gcvkLjDHvFo3UZ9jm4rIKGjzNiTzmiqwwqR+f8DTMgY4wWWhpGDDA8AUVXGFyO9dkMKoegGg9hYDmgGr/FiAsMLocZ8RRGtUI8TzHrAQx4/EE5mmqMPzfuZ3A5zNDNDC2dZJaGsXA5ClQjxSCuk1+oczm68PEVbiQYzZkwg8sB1RhkKMFomuGhkLFCNYyHs4x3BDPaN9geisshD0cMALtErYPFkorf72SXRw4zHMUrCn5Npe+lemjPTjMDgxPxHrxT5B+AOUakGYI6bsDgB2CeIZ6I4XwrxpX1iIjhBEwEDCgHvlG/iRHpifiRazwvPzXAGD+xhEcGO5hhLZ9YoKODv/2NMRTZj9xm8H5VwKBPsYr48r5Sa3lFez4B8HEfOsIf7HdLrSHpGCjg634tP2aj6TjM0PIG4XsrHgzgpr8zg6vx/MxqzGrMavA99dbV2P5ANWY1ZjVmNeqsxmD+AZoTf+fUKaq1)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AKo?ABXCAM?ACjpC53)YFBMVEX::d:zs:368v/68P/p+v3D:f0+v73:778:z9P738f/j/f389v8CAgLg:z7/P+Vk5c9PD7y:7Pztf+/P/n:3w6/fj:39+f/i3ebu9/7h9/zb1uHo5en8:8ORpD4?AGkUlEQVR4Xs3ZCW/cNhBAYUva8z5852j:78sd0jqcWYAEtKmjl9QwC0WwdfJkFLspy/tNfT0mqp87P7Jp/yJl9vpdLt+MVTX/n8SwPUkXf+Gk5qfDeaXU+rlz0oq0BlUmewtU2:x7haUqpLpdPYg8Z/rrLzPyoKo/sMv6gufZwK4HpKXbEQUPpM1an08AK8IsVaC6axtqQcq+sju/nPqegHgArTY5tbPfeysr8JXRFUpMfP4/FYmatalGyd8wjwa0Q3My4vPYpTwgrWSTl+M5X0eVJpBd7wtTjJYz1UWR+SisdRUWRwDOo2/Eo1twXsfGcW6AVQIzNFZnDGalagUB+baOAc9bGKhszI3Hgm4jxDQ/rHLwFST53LZPP0ZbXNldPNN01yDqHFwKestdiXqVTjBCpty0fAcM9ir+XMhzt1sVgELtaUcUoPUC00BGXIKSxPRaGKNGGxElBpHtWc41iA/UivK4vcEALL1INuL0XrwgzWOxlr361WXT8RipQh2Ritpu5T48fK6XsnYz2vpPMEaVQC1dL9SCn3gAXIUrSjlbh7ofarVN/eUuZpmPh8ycou701hB9hr2koltcvUrk5loh66r7eTkvUq/6KxYh2wBSaxq6uxipQl9dAR9GsV+oUCaSweux0BjhsbvKqkb1O99ChQmEMJEmjETmifuMOQTiHc/PVxm6T1BQDKlmYo64m0bf3502k5YMEr4vT1sBBzHqo+Vm0pG6q3cVWERhl1DrswCZcFCIzqZaXfMrdH+UbMy2LYA42QrqR2yDTR17JmqVArjwA70u3LSXrxR2alqtiWIW0F66UDUqlxRyHN1/gNaIsK0QUWqxvqFCrQ0CmVoeyho8Ijr10mbFwsYx2QQm0fKJEOUFFKhgqmmVjTYv3Gqh63TSnQLB3GBQCa0scKSZl8pjukSmyxWDXpa1PK0ykfKyVdyiKW1MCgQy5IsUojVS0W1ilSRpru/LhT5UTVyM.kWJFq6gjdLIU6oKzBHTMUHzF0J1V3SxOCrU900EecgLdAy2kxdy686FFPUulVd3XQKdImahArRMmnVXFf9ZUCWxerDuVt5RiT9vSrZFKFuqZPkXt7oHNh2sXEqhI3Ux9VrpFWoOeW7HL4WsJK9TdNlLddwYq0kQtXkvtabLK+6Q6zfsgxiruNFlvvSsj9KigPr+n8UAhBYqUOXkndcVMGSzU9W693vE31JZUUtJyT1lSC5W00zfuguSp94AirQ6VSyqk9lRBYSLV1LeYwYoSq1CXayk629AnfaRE6mfqBuq0MIs8dqS+LZd9oEoK2nhHQZqoSJdykSPFqKQ4TcYK9W3Z91F6uQTnpf2jNztUSz3w6OQYk4ZKfcxjZaSJKp97fhZpzEh9taHKiVqlWFIVUphkrOIsqWuoGtqmJilU3vQ81Et7n7bKSBNVFmvJUA3UZ48/VJFCbUiBPucM9kwfIpX6tZW2qSIdkFpq15LiJG+V7uuSf9vNZqQ+1eNQqTPFPXVA6kpSsQBVlVakUFdZ+tRMb+p7/HbYe6Ly/tzVhmqkm5ixyr4ihfpvbBJ1GH7nV/PfSLlNG1KcEloz1w9F7eZR3/ku87umdkRWCpQYrFB5pPXJ+rxBOoFa/nAnUQ9C7apULw1DUlZ2gHtNrF2/mUe9Qb3t2kO9p4YameStb+YQbrS0Tc2n6lTEUJHWhorUWlkBUtKvoSopUCqtQJEy1PkL0KSaP36ktbl66Tyq+plpk2rOlB+RnSshZagTqeVlpaitTXVSyc/VS+dSy0cA1Oq7XzohXoqVawBoyErnPlirDyuglVvHWiVxinTqTHmzOurXlZ2lnmtURoTUWwnpDCpjHTxVrJXb/5mhVqgbC0U6iYpV2u2wvmXrGWfHS2p1qFjBbpACnUMN2DtXUQP246xDylDrVJo+Uqgh8z317Z26TtTQIcAcVT0fK1TJSedTxYo2QKXlkleixFVvR7WhYpWUE+hkKtb0Q/NAlfjrhk6gSFtUCed0qf9G0HqV+hml5aNbOb0UKmGl2VRWQFqNrZMVrK5HOpmKc771APUAVXJQTpSW+v6glHVdFa0vicqjG6ZUf+zQ41CPVdRLKFClnnACNWfKW9EinU+VLFUkaA100mUuPph/mopVghmbckkKEOjj1vJYXbAK1jTnNgf6OPZihlo8ZYzTS78m5rrJ0k1wBylW+rtOtJdD/NMXeJZUpFC/Xpuz16FXfgsqx6ASzm/Rd5b6vjHT922g/wEtAEwSAuxe1)ABJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?ALw?AByC)ADMwOSz?ACe0lEQVR4Xu3csY7kMAgG4Lz/86Wkp6ZAokDy6RTfodVsTDSaxPy7/uux9a0LZpkEb20YNzNVEWYmItr/hYiYWcS8Tcw2cKv8DTPtoxCzqFfC+wGXgCchYlGvgDfp9MBd/xNsIj7otL8XHwC8x14Sq04/Yine4tRvwEvP6ypqPXp+dgneY+nbaZPwHscOh7eww+HDjoL/uJ1m4D3scPjYFw8fawDxUWjw8LErFP7TB7/z0/jYFA8fB4+Il1iQh47UwF:fvrfLPV/t0WEj+52Ev5yjWc96y/MNNrdR/EX6yRZuxb3Z/Ge10lu1/MsPm9auZXFS09iL4n3DE+tLD5vQrQsPi+U1ArjJcELAv7Og/eeAT4+cor3r2lbVPk7Sk30ODeEt3R/QcZ7YXxWbKgB47kyPis2;y3ynhP8K00frw9lcbbD8bz3fiFJ0S8jvEyCb/wioy30nhZ+Kz/Mz3CPa8S0h7hI9+AtMeOeIb3cBRswGO7UviFfwO48Au/8Au/8OhfUgu/8EkzUhqvNfELr8h4+cV477EuGvSw0sPnPaz06BHbDOJHp/UrMf6TkYVfD9RagndkvCI/vpfSeAN+9yDbn0rjPdnfEPCC+JpWS/BUGJ8PGWldfH46XBifzy1oXXw+qkOF8dE1wr2Cful4uC7epQdu7OLimBRpRfzlmkDiw1kjNRFmmjehto9DLJZNeT2P1zfG66jKbKAjDzbGCkS8Iw/zxhJAfGyLiI9aj4iPRYg3ToQeEB87EyLepQcLnyzEwIceER8VEwT/6fu0JuKDzwSA/yifWGbhIxb+y2wWm9DDJnc+UtE7HwOfXOTB/KX1o37bppq3efkDT4lpi2pYKzI)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?APg?AC4CAM?AD5V9FV?ABfVBMVEXv7+/59PT::e6fHd3MSZmZm3ztbS2dnr3t+ystamp8m9vb2QvZuzuK+Ji5acmcHRvafRtsPx8dy1t51jb4l6anBirnCC;KHi8i4mJSazcP5gIyJntXCmra0YVypfG1maLRmZmaXuGp8knDteoZneppbjHiGUZqPf7ZVfFpXcoiAjESDbEtois1HcEufY4WmY5SPXqWiSVPBc0DIKURsQbw/Z7yi9v9YnlVddJysS45Jk7f/tmJDstGRcTBkkHCJnPCnLWSRPIKjTUl1XKH7Z0lgwqycPIoKdQhmZjNBVHYjlXP9AxGcOmUAkyp2AIcdcH2sX0MZlVIugjKtgiX/GEgQomU4BuHMGJT/AHFdp0NKa8QAk72vuFy/WTtGmIMuPeBlqT5ZiUwzxZgAc5fyfg5mmQDJeABtN9zU/0/8H5mvZGXBFXDYQwnirA4vsq7ZxD41rTslAP+M7EXrNyHAL5GVYFxC/66LP+kSANiCH66WVv:/wDSb+D:zOSynf+?ANSUlEQVR4Xu3cBXPjSLeA4T6nUUxmCDMMMzMuM/PHfJl/+23ZSZSdjGXJljTedZ6SyynVcUVvyZGq2p4hYyG3gPx6?DG5io8aZ/DcClVnD5/4ZYVp89hOHccS85jeNPljlQE5i683nQdS85h+HK9yTOH45yGC/Z/vwhh4eF/+J9fhEzhp+Gn4Qgw2DRdSwAJ6g1+9eGqKfx4U9wVoDzwXdJ2yaIJv/JwiDiX3HIcp8klspri3Ilxitz6918GChOFizb4jhdw16IAjtI/GT4XbcrPiKt53L531cs3nse9V8afPEkGCAKJixIwfACB0eFB3XNcM6pZTcfhbFm0m3LRlU2XILcQskPPUF1EBISBUKWPmwbkYZoIx2AU4eGVCUJbAESdgx2oq9ggUFHWgRHhmkWZBcoigSOVsqQSwAQEEnIuRKAnVJd0A9JVhK09Vn4XSIo4nGSHOpwcg3ZH54Y2Bb/REMKm+kc22OHrfaxBWaNBVzqoB9Ku6sN3xSEy3HKHG2HQ9bvdLiH+WleFQZnhIKUd2XaHQtSwIa7uhHbUia7Zti0AdH8j3oeRGBGeIn84YpcNwruPu4R1SYnhRMdaHbtDyEqjwxodEodbnRX98AWE+mw3bPDtisIBfF3cVYToze+qMsMJRNd0K4WQArP1sy0GOwRl8Q5BKEBkM5uSSsKZrwAPgpCUGk5Yh8LB5RyRECaGO7TDP19EJmCi8LgBIHM4AmR+hQ5H0CYfH1Qn4ORCYjKcN9xrEejv02EJwLhww4CtHoC3T4Yg/RRutWg8bu7TTONmi3o9AubR8ZS3EMENU4a6B80lGSwJr0VTw0XQk6ZJlWkK0LPBktzqpZWAaRqH4/vDX5A2LluGadL4eMA7OJ7ywg0RmoEBZktstbwWkjSUKkMOSgIBZk8stbwepowTqceNjOMaeKZhSHVwPOeT40k16Vs9MM0lCsaS6Ov2HkkFXnyOA9Pbp2DqE+KlvgLU5dZg3DwYb40Zb8XjKcdTZDih+lkCKAlEUiJJOiWJovpJAcj4FfGOFHI4TvSoyjJOQf3seJQsLRzjsYMHaGQMSJ7gYEsB5Y2nh58uL5+Gn4afhs8sP8Qj8xSOrpzLcFC1OQ0Xn9B5DAdkz9kchgOzvv7tXIY3nj37kM5fOJCPtHm8ncm6puYpfOv8wKMYnZ9woO8dI+co3N89hs1PODr1RJPMTzix3WPovIQDwOLFhYSak3BlWRf/chybOlwRIkEpIHojgydFQc1YOLCPXhFOGQ6sbkZ1J6qLdo2ivyzbNbm4ruou/NrDI6sNzAu55fkGcIt7Fjd9brWpbM5S+P53r6DTh3PJKfS54zjhMNxx4nBneYbCcfXMK6a+uLG6sVhzeFO21xm34rc6XXRV05upt7pSt37zisLW3ODoabiRWQq/+NEJ83A7A/XFSWwewq1nJ81SO?pBfLl+quW1QyFBwrLQd47YZvOTDgEm/0yojX26ASXzEw4Bg8CLFxwNvank2borX77ioGFczdGILMTvvqDhUVTfxnhYjg74QuX/OLDz4zCZiMcEanrCixa571RxAyEA5AgCJyNjeLD7X+MQmcgvLu2tjAQYKEA4NZfRwnfeDj6d+7ceT92x8dC0M5Az01D33y4/c4/ht6xsRD2twNPUr35cOKuHxJYiH/JQr3xcFj94VCERZB7WbzxcLDeOWJjEexnWbA3GY6gH8HDIz4Wof0wCzJ1OAIcbIQAxhvG29hwAMqi5nF1C4vw8oMspj7jIZe+KyOX+pwAi58g8qBtwJhwCHlzb2D10J6PUyKaWMpk6uVl3+U6W7a9dk1C23U4H240LRwQyQcfnmDjVIwvY1e+zGKfTBseiTb6AvuS1yjwgJsBN3x38I9qg1HhIG7f/uo17uE02Pb2albLHKY+4834XNdd5rqO4zStdtPirtV0KRn5SQrAwoXX8nEaYmcjh+mXniLpO5bjyMAMA+UQ5oBvgCNG/42j2Fiuv86yhVMI2/U8VCFXdQ0ACSRXdSCjwkHtPR8hmrzav/WbfCpfiADcfV54ONm7k5eqOByEfWZ7hDMTh/d3annRqsN39OrHixHMSZfNX+QnKw4P/5CC4UTsD/OregVGLe6lsHAixvUJVBuO0bM0KziR4P5CfqrScOAvllM4OJEfP3mZX9VnfG93tD0fJ7Lwfn5trDScrJ5J4+BEVibwNVQZjmbtURoD84GgffbcuXOPJkEqDfd2rqfJGR6c3zw7qXOVhpPzqZ4GmEv/wuQWocpw9ed0fcwlurM7uWpvZ79PZ2Au22emUG34vXSywvCwwnBQ76brYx7hb6dR7br65XQGZqak7P9pGqrSdfXzm6kCzIYtLC48fLjwZsNDV/rN4+vqbrKuXtIZdz8sACtqXZ1zLnDMujr9Lt29rBe17amdUUWsq/cF9i3TN/BwXZ2/dl0dyJdXUhmYybnzBVBFratL7lpRdHxd3T1xVZeb6bKFs2tFUMWsq1uOZGPX1dF7UUuTcc2NffF9AcIK19Wx9106A8eiUjrbd6e3XeUKDPY3p7mdUaN38+aVgtysdAVmNdW4r3SefXC2QBWecZBfj8EwxdUnRbKhunC0tjdSbVuY4naxKgynrZ3rqXYMTLG6XaQKv8R7669j+Tga/VuxaFXhwd/HYzia+KRQL0k14SgfZNDH0dRCsaq6qvO9DPzR2co7X6hzUEk4qPNZGPga7Ifd3fi7BHuFei6rCZfrGbz2qk4ul4NWE86+zyLCk578VI6KwtVGBtsdPGnli3JUdB8P/zkLhidAc7lehmWFGmvHygxndhYCT2AffFKOEDU+WMRSUF64fysLhieo90sCiOruduxumeHZvn53C4+jV6/2traeluOGZdt7z4cUTLGuDgRT1tXx8VtZdPFQtKptb5Sorm/m9aHJwkNX+E0ZWvCzdXVuwjThwb+Vrb6eoJOE614uI4/VyGJNQpu/fl0dVvLdx5+897JkO5cSCiZfVwePcB0+al09/HsmDIfIj6Vb:yzI2qKdXVWs5Lvq59cV1c3MgkOw98p3Qe/T9DJLm6ODBzBHMms0evq6neZ+Dgkfixd41Jiqqv6mHX1/81E4VB0p3S76wla4n38j5kEiKC0tW9Kt7CUKC8c/MVs9JfW3tZulG/zZqK8cHTurmbx4M9vhCovvP12JrWblVm/kCgxfO1SJmf3q3O5ir9xfPxWJpeeVqaav3GyeyeLjx58Wp0qbmfo7FzPYmfpvytz72+J0sLZw4w2/6M6CwlVUjg62xk9eLc6i4mywuHGf2X06T9V53KClhMO4cdZvfuflfn03URZZ5zvZvT9/c8r89mniXLOuLrx4GlWZxcrs1l2OCxeyO79i5X5puy3OrSuXM/qyuZn1fk8UUI4AG5dzu7pv1bncUKRosNRBf1LOXz8VmU+dptHSOHhcO7+/bfzuF+Zt3cSxV/cSCOf9UeV2fzm4RFVfPjtfGoXKnPprUQJ4V/lc7O2XpnNRAnhjW/zaGzUqnL9wceJ6dbVCSIQAj/7tJTcnVUbZ/+YmPB2xqXPKeMk4gJCCb4HvgnR8JOUb/OpP6zMhfsJBZN9dsZFm0eu0+QS/RrhrsW55boUuR/8lMtX27+rzoWHRyb/tNS3vIDH4eAp7/B/93KW22s5dBcW1hYsJzOXO3nwn49bfLF/hA.weMkGPNpKW27jiuZE9bl0RlXTYF59ETYxWMAU5kG5mG8Mt7p4BHCKADrwAESGz4xAel/4wbjpM0ti3HBOPgmtJNPSzNCz1BdCBTRm+p2ld8FkkKHA8kOTRPJMWh3wKKhRYHZtt5oqDeLEkkYI8AaNN630tF706/qOLyqH13f422CcN/vdv2uAra2plSp4WBZkd2JbAp+w6ZgU6Yj9Y5rtt2QoHvj3ayDkYDc9/H84UjiE60Quo+7hJUZroW2irth5doTYgtgHWYza8W2Or6Iw/VuqCwcwH/cVWsBqECBv6agzHCIrnVYQxcLwhqDt3q8w+4IJkHvZ4JC1FA2rSacdRUASZQZ7uso0B3xBgSYGO4Y7osRQNYBMkk4IiGAmcMRYPAKyBaOSHKMm8Px5HgGhQmIpdzOcoUbBkDQiuMh3mBMuBQQn3ajB8krUkrMHjH1eNAjmcfNlPECFyIcz6PgeULHS9WiQYumh5s9pV+hHxKMFpUtavZSxk3pmXo89DyRYdw0RctIxqUeN1plhXMjkKEZGOC15NaSl/57QFJlSMOgygwEbLXkI/2K1HFiaDT+BfH41thxz0g5noLPeMswzJaAYMnwPGPLSC+H/r7c6hmG16JgLAn945ZIGVePegfjMtO4/v3D44nHjXjcKCvck@JqXP1Q5lUmiSdMIkh41cAGAbEr0g7NGUYNBDD8cAg48aJKSBlvNhwhNjwSprhYgJIkvsJGX85RDg2TsaOA4GU4yk0HMhsm/vw0/DT8NPw0/DTcCDS4s368tw4Hu64zfrcaLrOQbiSDnebc8PljlQ6Gwen3OFzwxmccIzDlZTWHJFSDcOB6PQ5ogiBw2V0Mlc?JFgDOYKxv4fVlLxHfN88gc)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AHw?AB8C)ACOdYti?ACfUlEQVR4Xu3bsW7rMAyG0fv+e9+AG0eOHDVr4qpNgAeO2gQI0G1LJEaLIPFg+wcafy9wYERmGMP59wEMjVuFZN/4MiEtF76pC7/wC7/w7tVyUhFm+oxZNFttR+PdS1amx3Gu4yi8lST0IrZ+DG60JS6H4IW2lfoBuNPGtO+PN1oTTdlKqcvivtRiSX7o++PjW01WvT+6D6quuu2OTyttzCe1O88dMOHspmcAftd5APCpFDkCd4oyAp8SuELwHDhD8ErRQOCNoobAO0X+dvjAXnnUoAcOeqsBh4xMAD4YONsLRQsAv104TwCeKTIAXijicT5eKaI6H+CA9fEcfF2cdZyMt0y30pjn4aO7KUUxXg7EGz1JwkDgbGOicPY5IXikZWDwiK1j8IjLgfjwXxX79XgsjZMnXDNZdT3/4YDrXU+gr9SonI9PZ4q4Ax8OkAHwdZkZAHwKRY7AK0WGwAcHrgh8psAZgheKBgJ3ihoCb0i8U+QIfLwt3t/2wC3I+9yQEy4BZ/ugKCPwQlEF4EMo6gDcKFLkAlmQq/P4Oz8aGierPp7Qi95tHTvi69QUzVa9jV/wcBO6x23uixf6EYumnLN9lZPQjwLaETfaXJ1742krzT53x3Wjnft8hL/uGd6rJX5Jpzbnnvj215O09OAe4cmfZYFvaDQvlpMK397M0pTLOgMe4vbqzbF5SBd+4dWSiogmPx9vRCyqQkTpfNxbj6nFVHAHrpDi8EaMxAWHOykOV9yBc6U8Abh8xsRlInD9ikgcgEe9EPmbDplO1GH4FGrAK+f+Tp+5e7+f9no2rusyUc5fJkpWZRHN7dpeD8MvXPKz0sfHgX8NhQXG/wOMvRhmEaG4n)ABJRU5Er@ggg==$/9j/4?QSkZJRgABAQ?AQAB?D/2wBD?UHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwf/wQARCACuAQQDABE?RE?hEA/8QAnQAB?IDAQEB)))?ECAwQFBgcIE?CAQICBQUIDQgLAQ)?AQIDEQQSEyExUVIFIkGi0hQWM@UkrLTBhUjQ1NhcnSCpLPC4yQzRIGDkaP@TRiY2Rxc4STscPiEQE?QEEBQkHAwUB))AwIEEhMVFFJjo+MBBRYjM2RzpNMiMjRCU7PDQ2LwBiREg4ST/9oADAM?AEBAgEAPwD9lg))?ABq4mq6NGrUVm4U5z17LwjKRmiovyUM0dN+qil4727r8FLzZ+tO1oEe0dXRI0+3VbhpebP1o0GPaGiUnt3X4aXmz9aNAj2hokb0XJ2Lni6U6k1BONSUFlzJWUYy8aUuI5lphpgku0ufaIqYqrtLsGk1)))))))?AuByeUnbBYv5tiPspG3Ze3g8SNt2btqPEfGe6PjPcYb1mGd0fGMMwzuj4xhmG+kexubnhKr/wATP7KgeY50p66jw3B5w9mSjw3tDhuM)))))))g?A161KFanOlUWanUhKE45pLNCccso5o87wTJRXVRVRVT71DJRXVRVepedfsd5M8m/jYn1p1Mztf8jdHMJ9f7ave7yZ5M/+bE+tGZ2v+RxmYT6/2zvd5M8m/jYn1ozO16+74ZmE+v8AbdzB4HD4GEqeGho4SnKco55z57jGObNOUpeDE0Z7RJPV1tbSmnknqvSuiarX))))?Bjc0t5e6vyU1MEsTCPRPq9ovhVMvJDU058pUYeJV/VGHaM+iybNs02Kar5404blGjiqsqNOFSMowlNuUYpWUox8WUuIS2aSKm9UrPY5II8WquN1jSaA30geIfsqwPwOM8yh687uUT68G89N6fIbXrwbz01e+rA/A4zzKHrxlE+vBvPTMhtevBvPTO+rA/A4zzKHrxlE+vBvPTMhtevBvPTdrk7lahynpdDCrDQ5M+ljDnaTNly5Ks+A0bTY5LLcxcNzLZYJrDcxa468b6ezdu5oOWwV60cPRq1ppuNGnOrJR2yVOOaWXNl4TJHRVXJRFT87NFHVLJRFT71cmG8j304H4HGeZQ9ednKJ9eDePQ5Da9eDeemd9WB+BxXmUPXjKJ9eDeemZDa9eDeemd9WB+BxnmUPXjKJ9eDeemZDa9eDeem9FydyjR5RozrUYVIRhUlS91jHbljPxJT4zm2mzSWWS649sscljkoilw+zxOrdc1Gg))))?DnVJJOS+ORtU8jdop9lzaslZm1TyNyilwq8tpvxurFyMvIzvjZ/N5/a0ilt7CjxGPnLk/tqPH/HI92efeVUl4LJ5E8j86M+lvsiAkA+h+xR68d/tv/c81zx+h/s/G8b/UP+L/ANP430Y8w8W5XKT/AKPxvzXEfZSNuy/EwePH9xvWL4uy+PH9x8MufQX1cuAuB9V9ir/Ia3zyf2FA8hzv29HgfkkeB5++Lo8D8kj3Bwnm?BNwFw)))?OfPDSlKTz9MnbLv+kbGLd+Rt0zXafca8sBKXv3U/wDozaR+xm0umn5GhPkiU/0i37L8Uz02z9jap5xu/obzhs2B5LeDryrOvpM1OUMuiybZRlmzaWXAUntePHduXGK1W7SYcK5c6z6j0JzXJQ1qA+bv2JPy/wCrfzJ6fONhvHtOkHdfM8NXvSfl/wBW/mRnGw3nDOkPdfM8NHepLy76t+OM42G84Z0h7r5nhvQ8k8k+1mn9302m0XvWjy6PS/3s82bOcy2WzSrnsONzjzjp+B1GDg4n6mJ2mHs3ornLcRq4ml3Rh69DNk01KrSz5b5dJCUM2Xm5vCM0VeFJRLqSM8EmFNBL9GSOT/zeE71X5d9W/HPQ5xsN5w3rekPdfM8M71X5d9W/HGcbDecM6Q918zw096j8u+rfjjONhvOGdIe6+Z4b1nJXJz5MoTourps9WVXPk0eW8KUMuXNPgOPbLTpUmLcudW8/b7bp01EtzBuR4f1HduaDllwJuAuBY?uAuAuBNw))GJ1YXev0gI0sOL0gI00OLqgWjVhN2T9IDK?1dPS4urLsgQ69Li6suyBV16XF1ZdkCYzjO+VgWAq2km3sWtgYtLDi6sgJ00OLqyAnTU+LqyAyxnGSundbAL3AOSSbb1LWwMWnp8XVl2QGnp8XVl2QJ09Li6suyBljOM1eLutgF7gVlJRTbepbWBh7opcXVl2QJ09Li6suyA7opcXVl2QM8ZKaTTunsYFwKSnGNru19gFVUjv9ICykmBe6A5M3zp/Ll6QGK4EXA2cO+e/kfeiB0wIewDzw?Bu4fx/o/eA3GgMc1zJ/Il6IHK?AN+h4D+X92IGzcCs3zJ/Il6IHJ?AOjhvAfy/uxA3Lga9d+5S+j6UQOU?AdjD/AJqP0vSkBtIDTr7YfS+6BjiBsoC/QBpSoTcpNNWbk14XT9EDH3PPfDzpdkB3NU3w63ZA2KNGVOTbata2oDdAMDk9zVN8POl2QHc1TfDzpdkCO5p74dbsgbFGlKnmu1ry2t8QGyBjlFuMktrUl+8DR0E98Ot2QI0E98Ot2QGgnvh1uyBs04uEWna976gMoESTcZJbWpIDS0E98Ot2QGgnvh1uyBOgnvh1uyBs0ouEWnZtu+oDNcClROcGlteXb8oDT0E98Ot2QHc898Ot2QJ7nnvh1uyB0KUXCCi9qzbPlAZgMNWDm4tW8a9wMapSXSgMyiwLWYFw)?AI?VaAhoCr1L4gMTlHeBDkt4EgRddIEZlvAlNN2TAkCMy3gRmW8CU09gEgRmW8BmW8C6YF7rpAZ47wLKUX0gZAIurgTdALo))?WAgCtgKyWp/5Aari9zAiz3MDItiApJN2sBSz3MC0U7rUBlAwtO71ARZ7mBlimlrQEvYwMNnuYEpPcwM62IBJNpW3gUSe5gWindantA20BiadwJSe4CdYFw))?BAFWgK2AgDG0B?ABNgJsAsAsAsBW63gTdbwLoCW0tbAKUd4FlKL1JgZEBDkrgMyAXW8.))?AYEAYs8XJwT1o.OHiuVcHhK9PDVZ8+b57WtUU/BlV4cwHX1NXWtPYwAEpAXsBKQE2AWAhrUwMOV7gIyvcBnS2AVknYDFle5gTFO61PaBtgYJJ3dkBWz3MC1nbYBn)))DC5xctGrtva14oFIwjTTa1tvXJ7bAZWm09sbro2xA+cS5CxfdcqeacqNac3Xx2l90nQnl9ynSl77mj+0A9AuUaVHFUOTcNTnXhQhkxFXP8A1eFOPHLmy0fv3rAPQwlCpGNSnNThNXjOMrqSfCBlAmwE2As)?CilFycVJOUdbQFwJ))))AMbmsyj07wIUYxcmlt2vsgZLbgAFQPDS5ExWlq0aOIhDA4mrpq0v0n/AEpc3nR4OeBuUuVMFhqsMFRh+SUvcpYlfm41s3F40Zc/PMD1qs1/0BYCb)?sBgrSlCDyr9fCBo0aTT0s20lrjvkB1U+k))))Ao5WaSV30gFFJuy27WBey?LAQBiq0o1qc6U75K@RlaUl1ogeblhcByRSnVy1J54QpRozlnVWpCXh5cuXN/b9797Avybi8XXlerBTpVnOUZwy2w7h71MD010BI)AYZzsrLb6IF4vNG7X7wDSkk+hdAFYuV29i2WAyg)))?Q2At07AJ)?BSUIzSU4qaTjJKUYvK1zoy5wHJx054alGGHgqcak5Z6sY2VJzlzvB8aXGAwMKtGnmqTy0beDKV8s83hQlHxZAdk)Lq4GJwV7vZuAyWTW4CivfVqSAy))))))?BEoxlFxlaSktceIDkYmNTPBOK0MXFQhGVs3mgb+HjOFO09/NXCBsgAKSbS1AVjF3uwMmpgEne+4.)))))))DXx?AFJStqW0Cyeq9gJ6))))))))?ANQFMqvfo3AWAk))))))))AIbaWoCqT2sC4))))))))?DuAVw)))?AH/2Q==%iVBORw0KG;)NSUhEUg?AJY?ABdCAM?ABw8G+n)GFBMVEX:/+DvOv76rDR5flpsu/a3MKayPD88s5VVf4y?ABmElEQVR4Xu3aC2rDQAwGYUv7uv+NGyiw0CwZGjeMgP4n+DCDiXCuj6/13i5hqAKXpup9llOBS1X1Hq2gCgITVOVc/edmqbL2ooYrtqhU+NtVK7BZ1DVKhp85Coafj41y4ef3igWWWdGVe5XCXy9dobcF4ZsPjAPzXRzYvLlGrvfC7zc3bwYmsJ5dGYfAFBaH77A4MIfFLofF4UssDt9hcfgOiwMTWL92jbsDypvh582tP/1J4bDY5bA4MIXFgU2FxW/WaA6LA1NYHFgzWPy8wmI99kplbjcv3NsQ2IhDWLbrmLu/56xGSVXm+vBVzXuOPR/LT54YvNbPqswlsc6qsd+FDusce+45rHPse1Jb7Rz7TkthnbPaKoPFKoPFsTuseBX7uhxW6xC7cFVjVtJVPUFlsDh2hdUgdoPFsRssjt1gcewOKyB2gcVZGSxWCYOsqqrq/CfJV/lZ/cd+n8VZ+a5IUAkuyEpwgcpxQezWAmJ3lhlK7PxRICArRbX3r2IWZeW7ripb@XmApXmApXrusptQVaa6w3VFyLLQb5f38Lo)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?ALk?ABWCAM?ACkYcc5)YFBMVEXsZn::/63eH2tsH+9/jwjJ3xmKfa2tr51Nr0rbnx8fHtcon97vHLy8vvgJT75unm5ub61t34y9L2wcrtbobV1dXp6enOzs74+PjsZ4Dh4eHyo7DxkqT8/Pzxj6H19fVPImPV?ACVklEQVR4Xu3ZyYrsMAyFYf+yMw81Dz3e93/L25iQbUtg02Xw2WRzCF8KFQ6Rg9Pn1f2S6+eJLbn65rrDvzlF3jxbcvWtdXeKTUX3REy+vrHuvp0y38Tk6xvr7qqtXonJ1zfWnT7E5Osb62XJq7zKq7wHOBskQ38AuSj7jUiAuR/SywPArJZPB2JE2W/ZIqnlK8zApJV7IIiY5LMEwCeWDyAztFr5DH387dXyyBOQxPILeAGvlbM/pUk+QEgsP8DgQQzyD7s8XhLLgeYDgmFaDs0ryOMdG2BVSs4A4bwa5R7mtHIPh4gclJI1EO2rSd4E6NPK+3hHAe3J4hoBoNfLt7Rp5QF8HIGD/jRfhwBY5ReXVN6wRS3ZOY1eLiK+cWnlA3tag9zp++3OSys/Q5CfAN4gn3LKm7ZtVedQv19Vkml7YKZcctEM0QT4jTLrJIIIgLg/lbds8+qBSSmPCc3fyndwC3yoJBcJIBfTGVq/WlR5lSdPlVd5ud/Py91ZqPdE7kRMvr6xXu5uruR9aJmp8syp8rF7LL/k0Y3Wvrlulx8XVY7WvrFul4+LMqO1b6yb5Z1W0ln7xrpZ/tBKHta+sW6WL+pY+8b6C8qrvMqrvMr30wPQydkyKuUje9LL78XKn0b5v/En91eQc7PJO+ucA12GOR/hvUz5Ee5lyjt4lilfgJv9H3p7AXkcdIs8pnsB+RHGMuU3+CpzzpcvuJUpH+FYpvwIY5HyOOhlypcnZHnjyi+/Q5a33Pzy9wLk9atFlatS5VVe7vfzcncW5e6Jit3NFbwP/Q94HRdborfwLg)BJRU5Er@ggg==$/9j/4?QSkZJRgABAQ?AQAB?D/2wBD?cHBwcHBwcHBw@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.@.n/wQARCAC/AO0DABE?RE?hEA/8QAngAB?MBAQEB)))?ECAwQFBggQ?EDAgMFBAUJAwcN)?E?gMEEQUSIRMiMUFRBhQyYSNScZGxFSRyc4GhssLSJUKSBxY0YpPB0TNDRFNkg6Oz0+Lj8PERAQE?wEBAQE)))BAhESIjJCExIBAQACAgICAgMB))?IDEgEiEzIzUhFCBGJyI:a?wD?ABAQICAD8A/SKAgICAgICAgICAgICAgICCpdYjmp0pV61qhzuSlW7+o0k6ckpj5pdVaiAgICAgICAgICAgICAgICAgICAgICAgICAb6ojn1YrRyiC7Sq2NsdfquqtRBUuF/JTpTm+yyhcQEBAQEBAQEBAQEBAQEBAQEBAQEBAQVcSBopkUutZZK7nSgs0gafeq2NYqZaKrZVx5KWdUqSLKVAOA/wAEq01qsHA+SrppxU0siRAQEBAQEBAQEBAQEBAQEBAQEBAQDwQYEgXPALRyKbaPr5HQ/pT0rvj9d4WbLFe5P3H9KizJpjvDVe8NJJWsAF9Twtr8FWTprkyTEsRK23O/sKvrJhxkx/dIIIuDcDqmjbYDmnn9xQ45lcObwB+5VrSeZaZmgC5VW35mUF7eR+KnSvNz90Ag6hSrxyuCqtEokQEBAQEBAQEBAQEBAQEBAQEHNI4E2HAcT1WmMcebJ9XFzd9J3xct8fl5eb5LDwPsTL5MXyR/ts+12kdD+VZ4/TszbePt9xWc7WPn7f7mrN24/jhUcFLP9rXHEe0KMvlpi+Rd3EfaqtsnWVFZg1ZwPtVP06Y+NZFlx5qrQRIgICAgICAgICAgIIJABJ4BBltTrorcsfNLVpuAqtlJHWFgePH2KZ6Z5L0lkHECwNx0KvcWE5a9aUtqruamBjfc+HUk8TzN/VVumV4d623Ts32Ph95/So6Jw9vdo5pJFraX4+aq2rvOqAx3l7z+lSjwf3aMBAN+t9FR0TM66pDHWHD3p0jw9vcDTccOKJmNKWcDcW+9QtXZGU+SlTxrNuLjRQ1nnrqu0qF45loqtRAQEBAQEBAQEBAQEGct932qWeX42PwWjlx+zYvDRYakf+6rOenXVzHsxJJJJ4laScuS73rYUqIIRVyEm7tXeI8z1WnOPLlyZcnkCSATd3DqUuOJGbJVQ2@BbqeB4G3qqjoyVUz1QCep95VvLLzZGsZNjrz5+xqzdUesUoCbDU+8qecVec2TZYE3Gp4jmeqWLRkqqXcSCNeqrIvdayi56n3lW0z8lJF8rj0vrfyVK3jtOyhJ6n3lX5xc3lyLsc4vaCSQb6E+Srljjji6MGXJeTWrdSzdYgICAgICAgICAgIOeQ7/uV3PnVVnPtRpZBo2MnibdLcVTp1Ri69mbrNNr39itKyyY5n1tS6u5f2cpIzO1Hid8Vpjy5csZPJ6IJFjqOCeeUY4yeSOluiUi7NeR/KqYurLt4+rMOHkreWGmT6W3iIs72/3NWf6deP44Zgiw15KzKp7X0WBFxrzHxUL49tl3kAtv5/lVWuTtPVS46hW3ix1yfRo07r/O/wVHXi9YZkhX3i49Mn0tLDvt+34KMq1wTU12h13Nlm7Nq1XVWogICAg4sSxClwqgrMTrXllPSQSVEzgC4iONjnmzBvOdputQfM03bWmdQYtieI4biuFU+G0lNWSProIvTx1TJXxim7vPOyWVrY27SPaZ4XzMY/I9BhF27on0PaCpmw7EaaowOmhrK2gqG03ee61EHeIp4Hx1MlM9uyEm7ts7Hsex7M6Diof5TMIxHE8EwmmpK81GKtkdZzYGtonwz1kEkVZ6fdlZ8n1DssefOxm4g9Kl7cUNRj83Z6SiroJmVtTQMnf3N9PLPTU3fPBBVyVLI5aT00cklPk38j3sn3EFcF7b0eO4jNhUVFXU00Zrd+bub4XfJ1S2kqf6NVzyxO2r/R7aGFkzPA96lVTA+18eO11RRw4dWxNglq4ZamSSgkjjmo5dhJHJHT1c9TFnfm2DpoWMmyPyZ1dyX/ALZdnO21F2mn2VDRV7Ivnbu8ytp9m3uksUGSdkU8s1LPO6RzoIKuOGZ7GPfkUo0R2e7b0faWbZ0FBXtjy1btvK2nyDuksUWznEdTJLSzz7RzoIKuOF72Me/wInxkPbmmmwfD8SZQYhnxGumw6;Gd0dV1NRTySxS7/ee7RRRd3mzSTVDNyHP6iq13Y1fb3CqXAKXtG+mrTSS1Zop4xFGKiima+WOfvERlGZsD4nNd3d039RW6YeL/p7vfwbGYsajqpoYJYooKgwMlfJTvZVNyRysqIO7yy+ilZJG70mR+/4FLO3qbU3O6OJ5+dvVVuWNZscfdO2Njuj3/wDanJObHt+7KsrWUTGSSNc4Odl3bX4eao6ccbuc4qBHtTTT5PWIZ7/Eq9tvBTtpqhtVE2ZgIBJtm46G3JWZVPZxOxeBj3sLJLtcW/uW429ZV6a8YaaQYnDPKyJrH3cedraC/JydFYq1dNTVMpWskeC4F2WzbdL81ORj7U5DjEHHJIP4P1KrXxvRppm1ETZWAgEnxcdDZFeXQpQAKFplpyVWv4ESICAgIOLEsPpcVoKzDK5hfTVcMlPOy5aTHIzI+zxvNd6rkHhQ9kaP5Ir8Erq3E8TpayBtM/v9Sx74oGMyRsg2EEDGZPFtNm+Z7/G96Dih7CYbHQ49STVuJ1M2NwRUlbXzy03fO608Xd4IIslIymY1kP8As+d+d7376Djpf5OcEw3Fo8apanEWVDMSqcUybWk2MtTVRbKVkg7ntdhk22WOORmTbP30RVfs93C8BpsKrcYro5Z55sUrDWTOqO7+idkjj2VOYoIntgbFHG3LI6bwM38+d79OXLeXq8fCuw+G4RiTMVpqzEXVDJq+Z20lpss/yjLHPLTz7CkgdLAyoZtoG5s7HvezO9m4q5NMVNMI7HU2C1c9XTYnisjZnVsj6aWWjbTbbEJdvPK9lPQ08ssjH/0bbSTd2zvyeN6sx3/oywfsLhmD4k7Fo6rEamr7j3AS1k0D37Hd2kj5IqaCWeWV7NptKiSbJ/mMjMjFJvtKcG7DYZguJ/K8VViFTV9y7i2Wsmge/Z3a+SR8kdNFLUSyvZtHOq3TZP3MjMjERuqzsNh8WE0GFR12Jtdh1dLiNDX7Wm75TVM0kssv+id2fE9883o5qd+5N/AN27OxmGR4Vh2Dwz1rIKKt7/n2lPJNWVBfLJKazb00rHtnfLI6RsccP9TIh5Ho9n+zuH9maF+HYYZu7uqZ6lrJnB5j25beOM7NnomeGPNnf673qVMnd6J4u+k74uW2Lzc/zWg8D7CiMXyR/t52Pn5tD9b+Rc+b2f4/s4YGSR0dRtd0Ph3JNqHt4f5MM/d9VZut7WDgmgiIP70lv43K8rmyT2fMTu+cT/WyfjcqOj9XVhria2nA6n8DlMVvjaXsYy4bCL6z8jlbJjh47PnMyo6X12En5jH9KT8asxv2enZSq0HBUbiJEBAQEBAQEBBhKDmCswz+qi0coVC067NWtYb/?PK6zds612lkRqQtHHknStRSoqSpUQpUSSoWc5bHc7/ADJIuzj/?qelPFPtUIyxf6z72fpTrJPhx7baIqqanqWsZU+EHMN7LytyVWsX9XH8lYbawHsG1f+pVuOLacubZ6lNDFTxNih8AJ55rddVC/LidhmHPc57hdziXE7U6km54OUaW3ppDh9DDKySIb7Tu+kPwzIc03qaaCpa1k/hBzDey68OSnSNnH8l4b0/wCK/wDUo0nd6EEUMEWzh8DSed7X46qVWmdnrN94QaMe023m/YQSqto217NFC4gICAgICAgIMntNy7y4dFbGssuOrZK7k/qIf1Rc+fRQ03mMal9Vo5e2y11CdlVKqESlEOU8XfSd8XLRxZ/mtB8J9hU5fKuL5I/28vtCfm0P135HLme3/G9nI3D2RUc+0jLp2x589jpo45I/WyW3lm63t4Gf2bD9KT/mK7nyez46qPzqp+ul/GqN+PV14Sf2jTfSd+BylF+r3e0J+awfXfkcpyZ4vZ8lmVWz7XCD+zGf738blb8sL9nxOZVbvb7PE9/NtfQyfGNEc8vuUSICAgIBIQULwp5Z85ZS11wUsTFbLXChblUlr7hSjiprq53CziAbgK8vTmyTMV1FZioVLKkKUCAgICDnyPLnbpOp5jgT9JW7ZX/GyZa2m4QY5NRkPvH6k/pjyR/EyeSO8OfF6Catgiihy5myZ3ZzYeBw9UrB6kczDzIMMxWCGSEd1c2S+YvdIXWItbkqtPJL3MMppaSkZBNlzNLtWnTee4qzK/Z87PgVdJNNI0xWfI543jeznuIvuqrXyS3oMGrKargnkMRawknK4k6scObR1UorJNS9XF6KauhijhygtkznObC2Rw5N81KmOnz/AMgV/WH+0/8AGq6aeSX0uH0stLQinky5xtPCbg5i4jXRWZV7Pmv5v1/WH+0P/TVdNfJL1cIwmroqrbTGMsMbmbjiTclp5tHRQvxzs+nRIgICAgq4XBUxS+NpZK7lSCdbIt2lBJRCzTqFC2P2Ue3KdDe/LmmNWy459t1VdzBCI9mZFlZlzwICAgIFlCdqXa43F+el1VtN7NFDT8iAgICCRxCJn2S4BQtfE7dVVKgiV2KF8e2zRUdAgIBIHEojnmZVDgTYe9TpTjJNVqsoaMSNStHJXshECA;61iTx5dUPyoDprqrufZJdpomjmlVKggICAgILsH7xVHRE9WihYQESILtAN/JQ0xzK4AVG/4lmQb6q7mqamlVKBEAJB0Q9Wtzluqfp07V49llC4gzeNVZhl9lRxVma5eq8tvKoSTxUsvZClUQEGTjc+SsyyV+qqsxEBAQEBAQQUSs11jYk25KtjaK29myquICAgs06qGmPrS5cAbXVdNublVzuQ+1TIpkv9VFZgILNAJF1FXjidmqo6lHOIKtpld1NLBw6qNL7yh1iEVvtLNXYChIgKQRCEFCzofs5KYpUTTM3BsRZWlY1FSKVBBIBN7cB96ra1nHtKDobHQ9FO1OYqRSqICCL6jS4HJRV45me1NgQQCOao3WQEBAQEFyAWgnQqsb1xNTtSiswLG1+SJ/FLNBv0ULxtVNVR0siTc+Su5q5qvZClVOtvJQsICAgEICIQpQhBm83NuQ1KmRnkrWVFdzliSAOJUWrRO1Ng?AOAVHQycbn2cFZlkr9UKzJLWg3JFwOA6lVtb451lGlhbjzukqlyW5KzNtE1xGp04DqsrXbGOqnaliLEhTEVxrWqEVESILNOqhfH7JeCdRqOiiVfJNV2Q1typUiNl3NJsFXbW5qvVYAKF+ONREoIBBHVEc8bK5PNWZ+NFjcorqWU;BBNkW1WDQo2vpKjhYqWV9aVVmapaDxH2ojlmWkeY+9WZVj+qzW2FzxPwUWrzOsrEXFuqhLItI8/ZxVts6x/VA1On/xSpMduzY?WHAKjdm8EG9730spimTjqkEW09ymkcbNYgQCSbA8P8VnXXj6z2S4gm6mM8mtV1VUqCIESsGuvf;rScdNVR0CAgICAgICCCNFMVrhUAptXiQixUo54SOKhMrEqF+VSM1lKnuqQOA16qzOtZUUqCIEQICCLC9+fVBKCjm3NwbEKZUVOw1oA11J4qKmeNVyb25W5JItVbCKpAPRFtaQiFm6uGqir4/ZqqOkQEBAQEBAQEBBBUq/kBHNDjlW5vdFfygm6mK1zsXKlVVFRShCIEQICAgICAgs1pPkFFrSMezQNA5Ku23ETKriQBY2SIyc1M9Weiu52rQLXtYqldGPidVlDQQEBAQEBAQEBBBClXVVSoIIRUUoVRVClAiCyAiBAQWa1Q0iNkFpHsRFRUpa25RMRs1VHSHggxcQTcBXkct1tQBcqUTPZsOCzdYgICAgICAgICAggkhTFa51VJuVKnPKEQKVUIhOUkX5qNraVU7K2N/NWZrFhtpx5qvTTnF1X?ChrMzMqObzHDopZXj/aVFZilrSSoXiNmwCo6fxqEBEgGiHAgIIsLKVdZ1?OSGspULCAgICAgICAgICA;QL6HRSz54LDr7E2az90AC+p0Uq8cdlyG6XsoX54lKhdGl0R12/slEiAgzIaToQOqtKxqZr91xa2iq1nXXqlEiAgICAgICAgICAgICD/9k=%iVBORw0KG;)NSUhEUg?ANY)3CAM?ABHJUQ7)MFBMVEX::7/f7y/f+38v:6en/1dX/tbX/xcXl+v/U9:G9f:qKiq8P+U7P+e7v:lJQSDb6d?AEaklEQVR4Xt2Z27KiMBBF050bN/X:3aQiBvZoeMZHoYz+8myKYtFeuWCDomfcY30n3EXTXh8xtnp7p+5KlbcYYXGYE1rCpZeFCvtsBpdOPiSFe6qXfjYJTWwlgBt+AVqteXSfgnQ/MXVSl/Jpd2Svu/6oUQvrVZ24zdy6RrXlUHrr4mFMcosV2Pc+jnXxArAioZcRj/qldUaPwjtSEzPi0RnMFWpFrcJIea0qpvyZ1GEfn77laieU8tZcm2IQ17ZRVXFKurzi1VZZAzLWEu56G13XN0VPO3ktNvZ628lvUP6W4mHWkBhuRgrJDA4ETGLQusHCERFSgvDafwknvaMNXRbrAEIhDqwWo7lYiw8+tAsLsyMheF8Um3Jq90hM5ZXh3QvhLtDbq90rJYpV+3G7KKNlYo2i5nCToO0YA0OkZVBifRWUYvkOoFFHVoFL/bBbzgNtQrWpIZctlok11ksfWGllOKcMCfDrtdw7SBKALpiddX5gUFZLVMuaqK43LlRLB22T6xgQS5Wa8XqDbkMtYjSwsrhxaNyUFzXNEcZ0fUL+o6C1HK6YEGuDYU21aKeJCwwoaAq9aKUHQgNF83m1HN0UcHy1so12GoBMx1hZdnte7mI/WLXMRY8qn9JU9dCBayaXJOhli1XvTu103pxhlqwXBurIpeQWndgcdMJmpLVYs42lhxhPY8sNSzMhcn4eVILWDRF0BRCallyHeCWNuPi8AywQsRed4dFcrFaHlgkV0stksvAkjaW908sLVv68cFJhnGkFrBYLlstastjLEFBD7A8sIzdU02uulo7LIVchlqP9M5IpIyl2j3dKfaohSVExVgsV9gYr1Usd3/LBbUmqHWcaGAtFs/xQ3+ANc1Y5XXA2MJiufLGeJ2pgFWRC2oNEOY4+RjrSdXCWmtxA7LsC2HRoVxQq2BNwCK5DLU4LBe1+3T/Civtl2rCIrnkozOKWpjlSK6KWlZCC+tuN2FRawQFY9XlglqMxXKxWtnEiuexeAlhLJZrq5bTwQOrJtdeLdg8pm1ILsIqE6EvC66FxSXG4pVlhKkL1gQslmt6q9XZG6XMcrE+iJzDYrneH2TFmqlWLJbr/UH2agk9NiI4jZVbWLDw47F2dSzMf/5IrfHgsUULCzFmQlmVQS0kPiOw6VCr9wXr7hBsBBFWKxvn13NYur3ZGGJODyRL+0/RdXJ63raQXIipFst1HiuaSwjLhQh2TrhxlqupFst1AgsLl43FcsE9wiK5EG+oRXKdwPpiuIIhF3ZOwLLk6ltqASH/Pdb9NVzmoh8suXAoYSyWC8X0CtuSUwmwrKudVIoz07C+ognb7hpzCKmOJTgY4bzfa+dvVSzxc96d6P5BQiyPKYZCEmLkR8TLmqis/8L7OeoQ3slfO5m8NjNArSuHNbVzx6HkwuG38XYUr9IuHajF+cVqpZ+p5f9PtW7/pVrdL1EL5/2vgvP+tTP+TK3pd6gVfqaWXlwtfk1jhl/TXDsxlcQvsXxJ75A/ZMHNEnLfXgI)ASUVORK5CYII=!A%iVBORw0KG;)NSUhEUg?AMc?ABGCAM?ABPN3CJ)GFBMVEX::R0dGb+pyzs7PU/dXo6Og/9kOVlZVen+xq?A.UlEQVR4Xu3Z626sMAwEYI8v4f3f+OgURWpYh9ltSllXnd8bwidrTQxyawIAQooH2x6L6oweVGf01K1IbJ9jZR22DUFVx/Y7HfbnKPD/qNN26zde0ndrPkBC6iaMMMoEHxKD1E+QUvzF3csTVNse/bDoMZ4MdDwifJk8/SPs7cEMkSu0DXHxdowmzZNHhC6zzJFcKDCsQq4Yo+3dHBgU2UjsjeQmBw9GRgEHh3ir4O.Vs2Rn5W1uKMvbsUdG/JyqLuWcmxpOTTX+fkQEVMYvjpHRSQURCDdwo8O2fOqgzCYg2CHbZCVUyf3q686OGPdESIpJHFIz4sOzlh32Ilv2pL0NQdnrDsgkhcEK44xnLHumO5l4lOHUwdnXOUQ6nDiWGAsO+wSB2dc6LADZMFBGbc6lDgWGBc6bKFfEca1jo05GnE8zUAP4if67vz80YiDVMOS2qw6YvocfHQoP19xxkUOJI4O9JZCvBEHYXyrg04H6TjonZE7OOM6h+Vd1yS9ZVVtEwdnbNhz5ggAowNAUEd/8Ya8OzYS4qDBc8uIo8dsNjl7DQffQGs7THq0jIMs1MIOiJxCtIYD5MuBewFHph9eIuqDTO53GOilO2WPi7ylQ2KQ4Eh3/r1Q5Y4kDTYA+x8k7rQbtTd0nMez+9TRIQUc/XPBCUMLOLz1qHtvXYd4AYc2knvKEWYPc4YZTsrB43c4tiy2Vo4CjmcYFRzOGQUcfPxwqeIQJ8Uo4phL1KWSI3/2qYpILUen6I7pZ/c6jn+IiIP+NFgRZQ)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AM)BVCAM)oqRvF)MFBMVEX:/+at8G00NBtlqnG5Np5nq+CprTg/urD09nx:WNrrrp/vD3/vrV4eTb6ujr8PJq773s?ADa0lEQVR4Xu3Z27LaMAwF0Ejy/ZL8/9+2pLWHg6IBE/sQz7Df4G1ZYQvD8sHQ/7jlRL6AL+AL+AK+AJwf8AV8AV9ARiCiAG6bEbChphpM0wE0/UiYRkA1kwpIipsdQGlugDyCjKCJSAO6dC0AICLoCoAjQHL6HonbZQCwersHCkAvPJthc7oKAG2JKQJ+uo548HIALICVnb++YF1xgCqA/AgIdBS9XQxgpaN1dBycBWDKkeN6GxTWEaSLAKL/GxmQC0w9fljyMEB2EIjIADi3PgGUY/QSoJw42JIwuErdQ2kbfOlCIwFCHUBJJQ0BbLwz4CWAFwC1XVlfhRGApOlNQDoGrAVgGYBG?I1AgQTByCiuwURBgIc9QY44hkIML8JCP0BmWo04C0AoHEQAITePhGkgw1r42?7+3zT5CyvwBAsbfPX1PsrwDk3m4Mr7x+gFwAlqf0dn+AGgBQDBDF3j69BfZz97fEGK0/A/DVdQgwowBeMLYDSjEYBvBib58HpKUb?osrAwg9fZpQFz6ARTVBCwBAGM86+1uAP8UUE9ReKsmWUNCnvQ2z5YdQtjBAG6TAZR6AlACNPV2RmBlxQh12lsPQHUFAdDY2zw6S9/l1q4AqwVAa29zwSYsMtcR4K1dgwBo6m15Y/ClEzoC0g2FbGEBuqbeFqa4/QSEOoKTAG5VCDtCAyCqvTWbehte+TfCY5V1/BPCWyFNvf3vRp2z2hOOn6GkqEaDu4Vv9vZEAdDU28nHe7zhD7u8dGA5GQnQ3tv8x3y2dEYAUhQArLfPAOSlAyM+B9F71tvnAdEq3RfAn+EYvU/pvd6uUV?7KCU6Q/gae/tna8QAQLd52jpPAxBY39Ae29774qWAaSlY/adY23sD2jv7S3QYZ4vnRGA9t7eNL0EWOJowJu9DfQiII0GvNfb670vADioAC4YD2jv7TqokHdQQg6Ql47vDWjvbSiNGP+GLTJx6ew7Z+mf9t6uNL6JPxi5t0UAXgcg9/YEgPberl:rwFo7224H0G0CouI8hUFUa5R0gB0H+0+AGjvbUVyPgBo721rhgLGx6rZAey2biYDPFwVQdVbpZkAUC+UoEkDuDXt+29FAENwbQAvqhhZZU2QZOUsU2R6QJodsPiZAXwGMS0pTgHgF8UYfaqvo7Xxg4A/SSVOouNrVk8)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AQ8?AD1CAM?AB5j4DH)YFBMVEX::X4/XLzdTl7Pnu8frm5+jv7+/v77L3+P2zzOSdudZ6qdh6gIVeXV1qmsG4vcNQbadHQkWtrrCO@AuR39ODi/ArYoLCg2jZUyqjoDtv1fu1qlTqk7Ll0/M2ej4+PhfhMXl?ATqElEQVR4XuyR6YrcMBCE52/1rcvH7PX+b5lpYS9LCIRhw0LAJVxSS+2y+Hy73Vw+demBo4FOXbrdBF/ri4d+LS8eH0LP6uJx8bh4vLzQstA/EX6v/y8eIJAv9/t924xyXUR47iKNppU5SZ/lNOF2roWdz/4qau2zb1mJfJ2d5zim1qsQ1Y4ajb4cF0ILYT32fLAdJ8pQBREKY24451TTG89+eBw5Nc7QtHP8tX7wmNuvS+LYzBogBoKLUK3CWTVhL2hBpBtDmlFtQpPHPMUIZxKh7AR2gwemQCUgnY1IzJu5GKpwhmtIMdA;UYZR5WqmBdAGHW1Sp7hg9IZQIBCEnhhaZYxPG/IVUw75Za1YvPmjYUAEE6b89/r5JFSfnngeMNrA2ZS4T2k731nePe1lSXqYyAwQrnEHsLKgwHkgkKslqXXlUZPJMdtllCocOExcwYr9yOcqQDYWKHWgUHC8DE3R6csKT+6pvtKcMNujb1g8DCNvS8hfXoi9AGar8/wgBDheZ08mBPHfXmlzE4eBBH24qK7oVTdVVjXstKgZspIHjYINZSVl1CCemAQLekAxACPZjY7c+2DqjXlMxxAlYByK5wAVCYPYIssPT89qOQFCIthlLLW7J+nxWN6VJkLzNePm6MxvsEDtG9vfl8cgBcR1lBOHlXUVToV78Id2GwVJQ01YWUVW1RZw2PvEknCRLl2HPL8tUenB4ooNbFthqMYkFZY1FT05NFEeVjt0l1lpfLwDIyMLVRk5D+ZJNrJowUdPPgIF3yDxzMaBCjj56V4Qq4/xgOAEn5e/sxHK32Xx6WTxzv+i+c9DfiT/7Nx+9DM/MXOFWg5qvLgJoAVFFG0ttYp8/5v+YdoRdtuZ3b/bXfvOfsBGBIg5DtR5tw7s1L8xkL1q/bXIvKhA/NB9Wn7aULED5/c/Y28MR8EpuN3lRTvloS1+dvt/XzEV3CTAffyrxPC7X4s/v73hYtvvdIIm+CwbQP1wcFKq7RQxqWJyeBbmDMdpwVznZ/Ykp2gXKZjnxibLYL09/kR9zXyHmJs4/EY7HGFsfXJlOBE5kVm3Dw3wwf5MWdBdgDqe7P5bt.4hiMVIcU/9hJVzxKnH01dpBo4NYbHnDXm7GeDPuKmk1hW73vrvr7BNpbeYoGedJbA515kXvz0MS+FpyNOuqRFcl0lx8cTIxYeTqy7VLoxIcam9IM7bFOadD?EMYbX0Bp0ez4kMdwqlG2wTS2064pmo6vRAU+dibzKqSZtrSSkZcSYGe9NhU+9IWqpVx81Kv+KCaW7s/dNLam6DpeHK0DfSmb8yNyVaZrU/HIu1UOGN6PeiTraOZ7I2eorjmRxBzlAdLx+wNbaCXDOm7OhzgZE56lR/yok/iZA5teTZDfSkW/d6WtWpiZNM+zsb8SG9F31nDnNnoaOxSKlgtecN9F60iuhvMig+RWektHYP6pI9ZS3H3xewxbKnK4gmLbJME1QDVIGl/4sTqM61SlqMwq/uFiuA3gvkAGqX8yFQHPfMhF60qa2kjQ6otm1qs8oNsVlqQ0z5jHXdIN0x0vq8y5mMAmhnBJgrUIrkga4O0g+544QxlaauxcsRH7DdBjwdwxeRRnopbE/nvNnyUrSzLPB6+NyXQMXR2Uu1AUdzct/z9IDtlXaOXm6XvGnNqLPGxjls25FtfGiusOVeJqOmrIOMOPe8zNFXfabl8P7qmUNYyH66zVsgrI6fOGkkb7hvyc6KV0WnKj0NTwtg0Zuj2jd3yEVfB5PHU3JvGps6aFU2XWp6oMh99V1ZIuxL95/pz4YPpWF+zi8TqZNvcqaxna9KuZg2JpfW1yzXRsOm5S6MTsJx0vx+fScyv90uYkyFFthkvCvmdsnS2i8LaMrVN/EnJWNlF1hxr8ed+PpWPIk7CvfE5J1y3NCRj0m/MW5L+5M+n67Af0cHq75ZUr4Enbep+CLEV3p8fQYdt/FR/qTzKj1l5x8nC133bmN+M9P3ICf8w5Yee6fiHOT+kzF/DiHzB5FdiuV8kulxm+3E/5nJbRlKycFecRxY+NWoTcbUgyUURRT8r5CfOtoAa5WYXp2bJX3Wg1Cwlzeedf+UZZVIpZLhpFB6c+VNQ/6Rc80PEI8rsPI5jCHID4uOMGhF9vugyGiqJ0lc81Ga32+VVraYZwRRBV3UUvWQ4kE5O0Lud90LOcP0wjvbi5TJZSIHoUMmESSMkyA0QtTFCN0kDISCK0ErGEodX6eTtar2QGWz2Q7HcL9I5Cv1MsfcfxXqWOO/350isKpPSj/u9JxLrmocm8iGZgWmYy6Jb84Eer3w4CJ7i0DzI+30/nu3JJj4;PPOB7kCOFJhwBs+3C4nvxs+5Kf8zG/5MImE/GORs8FI5a4yyNyDXOUHZILz42yqD7O+cmN+VDheRJmuVL8n5fnc85gJ2IlQ1zwKJkCoCTxxmhBKi9eloI3Y7YqCd+v358vpcmkmU1SBQwfC4fr+DqRBdG57tyOqiAYWJQSplBTtvCp2WQjShRaum318kMzL1eCD0sp71KMvTTyZyJb7RdA6ofZ931bVxwevPR5tfLr4/ZBChJJYssdjNJGuZww80xRoTDExIMDAJ9R118WBZ1XkSs/H9qA1aFHVUS8pOy7a+zqwiaf6GLcPUcayZA7Akey8Y2dtGeMlFE6pvCoaGrTHYzRCECp3iMATkTqFiMKJDxQzYx/WOvYs1KC8Mmgc+YeBlnjvVcyPEDTt7lAQKvtR1fYDRITlHneV7Hv3ocuk82N/jrh4HhIZVUUU8DG1IYno6Hgi2wMZayMYPqAGml7xqKc9dsbZEnjyFcGpScDp6VAklJNQRJ/o82blJ0BARwBeSy3bE4umlctia3GW1ADoDAYhRk8yuQehlveF/CpQoiJCOlsCD5QAKrjTea+CMSUP2TTzcbHIk4rCNo5YgDhAU1uSO8cTeZeKKDI1CTQIzrlgqqKKk+Fyvlw+nfGtFTR5cgAKEIG9K/IVJXQhjrnORyhMQSxbaxtepGJB751DRMc74aRWwmJcxiVYzxuSGoageoOt9wWawSvhW49zfsSUdEDQ5CHm9;6FwBBa1Mmne8jG5dTC4yitiWWXTfNL2zrunqa7bmn5Cm6tJzTo2ZpOJ1OQTvvLU+egS7AFohwA13HjAxwC0fseo4FFxUkeHiK5X2BsAsRuqwrhLCC7maUiwqG0tqmOR6nEb8OdWc7HiLJlqLngY9mcJ0LG0ASlWkiLE+eAFRuAVOD9bnSxC385A3Dd7D1dc2PpPzhTvhcgw+NnoTnR8Nk9c/c3+v1ky1/gg98wIcQ+P8gcLvT/fp2fwzp+6ERNRWM7SflWdQ39u/vc6vDO/tjHXdp/GvyRrzmhxTwH4bixh1XKqlu9cmcHqvBkh/5FTtqj+QcX4X8GRDf5FexbsmP/Es49Ro858Mr9R6/KCOu+SFzxC84wez3Qs1wz/nIshf6lRR4rLd8CCkx5PIpXsUHymcgPl7od7rMAsT4pZDeLfnBwLKEt/PhpOzLslVabpD5l/LBfgU69A6dJxmFAO2v+SGki7qg/B/JDyJDuffywX7BOyLDo5ISAcLChxRS5EKiVl7FKR7Qk+Q1cnVA9lfw4ZxTjnxTR94KauQXnNeq9X7UZCE+XuU3Bo3EhnckSASpr+9LIIUjO5YtKCNLgdqDHNuyQiOoCrK/hA9fKoW0Pf+6kRqUl0NZBlcahMxHr5wfr/MrwHn2IwQCgIn5AZwfImSk04LPBah9EMoLHiqDIF7Dh0KlHHsRyqkheOG1QDMa1OjHQBbi43V+CehBMBBg/f0AJAUGAKUBvQPF74yZ3hcEwsvuF2CnVL1iv8EbHbxzfJoX3i8QEXxQLKAmmJgfEPMDHLKZClUWuaX6svtl8cPu04DFF94vwEB+BnA6gvmAMP2ntud4WX6EZyA+3uPXGU1l4kNLCPhVQfUauKduvVLv8esM4cqHEBq/QvkqvMvrc7+Oddf8EMLhv+Lw+v2QVMQ3G9evnt8vf9Wvsy/5kQoU1YNimAr504Fyfdb+LkZSfkxFhAJ2jHy3eUrDVv81cEUJVy4/fHKXQn36fHN+EELY5Q+xq4RERPk1DIqUFUmi/tHz21S8731RoFN67LLLse9OlcxjaQqZT3JeSZQCvlFCm5Ij0XFftuKz9v78mL+VAUh1MKM+VZP7pviUGKKUVwigmqYI8AVCm8K8/5XTpFgbvsMI92/9foRAXvtjd6b86BtbEx+2qU5V0zWVrEIIaIPV4QvolB+pJtXtk8q3XpX33y8QOIKDiXw0x2MX82OMcnXpdpEPZ9GaQ2eOxwKb48EdjsOxc82xs8ciBDwcDVWd8mMdfhokQr5JxRuR/v+LCCAYMx+10EPR1JduqClHOlnpoPHY1PpgTgZtX7mDazSRQb0t+loHa0Lf6ZQf2+DvuNnWdfCPx+K9fy8WggAJAkSpXTUUylozFKW1mvqir0TFf9mvNfK/JcB88D8eQD3z4Y0taMahMO36Rt3SMbet5SZksQy347dg+ftbCLBAULkF8WG0sdQdjKP3RdP7Yqyxx4b5cHVZkLo9Hg3zsY14O+LBY6oe85IGb/v95ABfQFTmBv5oHqPdsPE49K12QRLvb1rxzr9v0PAVqmKDqumKH6DV/w2EB23ODwNf4vqje871/mf6/KYmS8L9qjR3bXo8TNOfPr+N/EGbvx8BGP/A+RH5qDThH+b7lvj4X/tWkBs5DgMJATLmIEGweNDN+v8vNxKIrZERR7Y7k/VOVx2MmM2QjQLFIt1wLxZfRRYvIh6XZW8Hul0WM8C/Y/RHHLhKvyDvqTjI62/mXbyvh3lr3MBHTFFE0yoppSAhpSRr0r0d6PY1mgH+DaM/4jSYPRXpQPx5HPiHdDNvTCkf5rX+YXxIFMlSJH/1N9DssMCnYfRHnAazB+MD8WdxRv+7eUXdUV57P/s/4WOJL/FRir/JRz3Oi/7x83zEtaSX6qPc5MM85/URNLRLFKeaRVWdRA17O9DtumpXbvh3jP6I02B2X7zIkHceZ+4/zxuP44z1QWD+EOLf+XQzPrx6kawiorhks0s2E9DsqmaDfwPidCAOXLPaLfJO40z8p3nFT/Ji/pjpS4lypHv5or4g/vf101+n8hZ01Ff1Rb6PD/OW1X8bH3IybxbkPdSXl/hYY/TX+YitjONL81gc+MjhJB9f5kX/+NH6qOb9Ch9Sf/f3p+tjOn9Ab3VVkbg68eu6iVtXL26NZl/L2u0C6KrNbOUH/wbEaUCchm4Htcg7jwP/YA5X8qa1hC/zjvsLMc6nxKgvaU0iYRWRFZewswNmt0Zm/na390ccuK52i/gdyLuPA4f1jD/yItEa+n8f5L0yf7hT+1wsc@fXLOH+/NHj3FnnzP/8JW+nNXb+jkfMYMPfD7TvSU2w019WX2Fvlziw/vuH:g/KF+vcGHygt8OHfzOYN3LoCP1+ojyNE8Vi7z4Zv1/nnJqPmLfFiuMJ8/MN6XFgaXaPZSSjcB3V5Ku3Z0B/NAnA7EsX9st8VukbcBecc4AL7P1B95x694mBf68ir4/KP8vc8/cF5+xeKllrLIUkoVX+LO/jfzcWX+8GZ/g/o4p7ca3oCP87+/yLvUx8nzkqS8W3244OxBU8Al7+xvVB/U21FfCD4fY31M9eVP1Ad/v6W+8Pk664P9g/MHzwvnD86n1BfqC/sH9xfOH6wP9g/qC/sH9xf2D+4v3F+oL6wP1gdBfaG+sD64394C9xfqC+cP1gf7B59/cP7gfEp9ob6wf3B/4fzB+mD/oL6wf3B/Idg/uL9wf6G+sD5YH9QX6gvrg/st9xfqC+cP1gf7B59/cP7gfEp9ob5QX9g/uL9w/mB9sH9QX9g/uL+wf3B/4f5CfWF9sD6oL9QX1gfB/Zb7C/WF8wfrg/2Dzz9qyjlVzh+GquED+mbzqQe8DHChw7+XvuQAhOwO+HgffclhQK6onJ+qjyfzETIcUjO499lfwIf/gEuhYxt7yxvNH+BDOnwXlPTG+y34gKLkneoM1bKILK5hqwL4zZlx5ytbt1czNVsH7p/ZP37voHmnOoNnqsnMupl5ywrnZIw0gxOn5uvEupEisXYf6Mv/kg9VfLDBDGgFHwlmZ8GhVt68n9o/ICjHfIzQT83Z+BihixVEGsQrYX95GB8YwBb0j8/5SEt1ViBmzs6LyKaogIBT5dRYdqgfMXa8PLZ/LFsKe3n5lA/UjzNRrsPC4wR8JHRpfNyxdXKwvzx1HnMy4cMNnWaEAx+gQ6odLklGDAh9+v4S1E/4ML7qp3z4kY+0C+NxHqv9+ej9ZX5ecHeCD637MLo/Q0+tD/eBpCDkGh/VpQxa3SFd1lGRFfvtg+f1sFzjwwTkDB9VTZYW6PWT59MFCnCeD7Ax4wNDh0MhPlJfhu+bT/OBoUXT1lbkCR/WUasNH4+vD9mu8jFOnX7Ch3k7HJdn77fiLvPh0QkmfCCBJij3o/cXudw/xsFsel6so/ZLFXmyvqAX+Lv14cKUD0mYc1Afj9znvMtYUK/xERzUesKHH58WPH8+1WqFMuLrfho06xm9hTzro5+fArnKNT42+Jziw8EL88djf4/yIlf4GH11y3M+KobgR84fDkAj9W4PMU8x4EYWlxuSE7Eo8D06MJnv3+41jO/f4rhkvh81yNnC91+wQHdx4fuVKWfFTxJ8fy4PIw7rw/hQ1w3sH0mD5uwq33/h+7ff8/4t338h/gGHgbYZ70Kv1Q)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AMk?ABhCAM?ABLV3W0)YFBMVEX+:/q:3j:zc:zy:7ojyrh7P3UiTj5:4d9+/3lB3ZNKX1nzP3Hbf1NL5Fvrnk8P7s7u3uwn3uftVy+vXx9PTr9f7d6v7m9ebp6em4f0hoaWm0/fnpyOvp5caVWYCLfXim?ACzUlEQVR4Xu3c2Y7iMBCG0S4vWdj3pbd5/7ccyK+O0zFIccUam0x9l0gldHDTEKnCW/ZJ1fCynEdVeNnM+w4zPFgymXd1GKGYHOZdPw4KCRaUct6DgKGGBgwoied/S4wBQw8NGFASz3uQy24xC2mxuxDhhM0dUuxXy5BW++LXvD7UYR10nwLINxxBlm8ig4i+4AiyfHXmP+vwPkHpHgnRBZBASnMqOBF?ilFO69rTpoIh9I5kt2M0w4SItovOe3b+QNLcsChdCVqwZIsVEMhUiuWZNXO17xUT0KkZrwUIbXkhfkxEoIEkDESUBRX0s6PkIACCSndAqwty9LagRINidIOMG8aKGnnmRKtnknK959Ky5HM/7TxJeuPpnESKJBlS9CcIQEExTgTVPIliCGBI6IEDZIoTxJyKO2854gqsf9e8hFNgn9aliUBBZ7EZ4L4EhdHguJJLP994pqPkqzXsSWWIwEELRmS9bquo0tmLImDzBkSaBL/dfmQfCSWI3GQlJIep2RIHCSxpERciYPcSyp5j/kZH10iknI2AQkgLy1x73Y7e1UJLyfh5SSMJioRiUhEIhKRiEQkIhGJSEQiEhopobwlIhHJdHYkprG3MqFdolj7XTRyv4si7HdNZ+ducnuQ6XdTTYTd1PT7wgbjwfPaPX8eO9yAgALL0NzzJ96rh8Owx918+nsdvFcCBb8OSe8/8R38VzKHe4LMcXt1bY/mR7M5d9u0AKW7qUaS9j4tZK69tgbAc6/CAK77GUASBvHVa9tIzl5FI9F+kKSmHB9IjjfIyYcUpxuEtB9BkpiyfSC5H0rxQLK5SZT2U1lIHkAaiQ+BRD8qA0kVSVK9lmQjEpGIR.ieZnPE/mMl+9dk/gujJ5enxSe5On1CSD5UQCpTPHkmlH1HMq8ZVLVu45vFwROXUtxah+nrkVRle2vu3AezxDDePy/TZKkv3nHL1n0R/wt)AElFTkSuQmCC!