["$ binarysearch.vb~.C$ ","H%CXBL(,|F849474}3B+]CEh","BinarySearch List."," BinarySearch is an optimized search Function. It requires that the List instance is already sorted. It hones in on the value by dividing the number of elements being searched several times. It provides better performance on sorted Lists. ","List ","list-vbnet","510px","360px","Example."," This example program adds 3 Strings to the List instance. The List is then sorted with the Sort Function. It is important to Sort here. If you use an unsorted List, BinarySearch will give negative indexes that are incorrect.","BinarySearch finds"," the correct indexes. The sorted List contains \"cat\" at position 0. It contains \"mouse\" at position 1. And it contains \"zebra\" in the final position 2. If you run BinarySearch with an unsorted List, results are invalid. "," .NET 4.7 (2017)\n\n","VB.NET program that uses BinarySearch on List","\n\nModule Module1\n Sub Main()\n Dim animals As List(Of String) = New List(Of String)\n animals.Add(","\"zebra\"",")\n animals.Add(","\"mouse\"",")\n animals.Add(","\"cat\"",")","\n\n ' This is required!\n ","animals.Sort()\n\n Dim zebraPosition As Integer = animals.","BinarySearch","(","\"zebra\"",")\n Dim catPosition As Integer = animals.","BinarySearch","(","\"cat\"",")\n\n Console.WriteLine(zebraPosition)\n Console.WriteLine(catPosition)\n End Sub\n\nEnd Module\n\n","\n\n2\n0","Performance."," As I have progressed with programming, I have realized that methods like BinarySearch are not that useful. Instead, hashtables such as Dictionary are the best for fast lookups. In my programs, I usually just use Dictionary for all lookups. ","Dictionary ","dictionary-vbnet","BinarySearch is faster"," than IndexOf on large sorted Lists. This is true except when the element you are searching for comes near the start. IndexOf is then faster because it is simpler.","The C# version"," of this article found that BinarySearch becomes much faster than linear loops after around 100 elements are searched. Again, this performance is pathetic when compared to Dictionary. ","The IndexOf method is always faster when your searched-for element is at the start.","BinarySearch ","binarysearch","Summary."," This article looked at the BinarySearch method on the List type. There is a narrow use case for BinarySearch. If performance is critical, a hashed lookup is superior. If elements are not sorted, IndexOf is required."]

%iVBORw0KG;)NSUhEUg?AMo?ABPCAM?ACdxqrx)YFBMVEX::m5uaTk5OoqKj09PRlZWUvLy/ExMS3t7e7u7vQ0NDs7u7d3d0?ADLy8ukzMxepqX4+PiQwcG52NhQnp3V1dVtrq1GmJfv9vZKm5pWoaDT5uaAuLdClpV8oqGgtrVqRzPm?AFRklEQVR4Xu3b63qyOBQFYHLm7Lnnb+b+73KSnYVuE6p1qgzOw/rltkHyNgECtUVRPi7FpPn/UxbKQlkoC2WhLJSFUj8uC2XIQul/nllTAHEXMqo51IfDnCgE+XMtr6+v7+/v+/3Hx8c6xkuQWVHcVQkg5HihkASZCSVI3PUxIQk5kAPPfCjVDwYlDAlBvmI8oA2BZQ4UL7lOgQSQbQhBTpiZUKry6qDs9yQZHKvVCg42MM9CgYQYPkQRPszyDBQaFJIQZEcRyDiGyskp7gcUDMr2r47FGHmABRiWGVOCBBQeyWbZk1DW6yBZgcJi+4YsqSaUc6QMg7L66nKLaAQwPPOkYH6FY/5vAhiKhUU2ZBFPQ6FBAaXxedO6ldEiQp1rhHgOytub9okWpRtgksyZsuOUzWbTUCm1BuZZKNsjJUjeNiEmlGajQ4BRkhhN08twOFkjWw5oZdjGyHoMUMpYOGlw4VLKJS1raTsry1gIX3RG6Rso6xdO8RBQFNXeRETn+28604QcghIxukDClERw4v?Kj2t9duS1jt4yIJWxw8wgn2abe9FKQaKDjVRagsGdgUJ+Vg4hbYNEtt9S3EnpdEaBSy3UFZjFN6dSmIfWiR9NpECyRjFSbTTkIxSuFLywtyZYruBorA3pTAHFE3z2Cq8a1OKHcinTZUx.Wbyy4v6l9ScNhHCmKVp1hMZx9hSBkoGDR6N1hsXdfJtkVh+YzMKTJsrvhB2Eb6byk2pZhq4yU9FXE5iV21w/xyOFkFQMk72RmH1vjBGEVGouWFJNUvKadfCCB98GF+yU3BdqUGL97Up74AEnusMIbjFMk/0upYOHL9kmKodANFbWI0vV8OlPLMy3tpThTF3TKhcFUOFhj2f0NBj0WU2NOOzij9QKnR63xUTN5JA9dlSk1VAr6Vkq+M1ZHSDxSACwTg/FiROcWizQSULMb3/Zyixygdn+HDdbBMKLyYnmIa6j4oBPmWIk7XlQ6qGVGk0JpRdA;WicUGhYeVcyFYowSOgYUfYGSr1xkMT0lX042zWdzDDrPKDan2F;y6/s01Py+5XPz09BGTBYGetYmghLT8anZa+RCtDRM1j5UAq/If702YkYaCKlQYhS6fQSiRnmCpaL1xUxAWW327UhwKQUhYVfsnBBF8QlioQbrkdQ+MOjnc+qZRaRUBxf3QqLPQ2q4hJFUaXx+jEU9nTSQ1YrPIGEBpRhwtnTcl4bcrHp016iYIUKyX0p/OnkNlJWPtu6HjBHSiWQRqY3WZj9Em/71G1.SzOb8p296bgbEyWI2W7/ep7slBSiuD353w9rpJn5yOUkjXAyvuuFAzLV6RsveTLcUtKEX32mGL07r5klLyJiRcodW9KsIDiTS8vzvX1yRI7BlfI2cMjUSA1CVlETtHmKCnMAyhkCRjKi0/lerIAwwLN8FxOYv+YX7KWzCOLkZShhSwf8keJV/6nboKs1xWGBZYxTNbFIEMhXIQWF/IgClkIQ5D1R1nhaPkGk1ME5gEvu+kosJx9K2QdJKBECzCpK6Gk18f/hgILYQiy34MCS5JRisF1HHGhNJNTyOIxiH/5D;sWUYpfGVWWiqnpcBCGMQXoFzAJBRcH61RPtLGQkxNgQUaevEKyjnm3JVQ2i5LOfG3KWAJGiQUoIwHl.ygVhXTE6BhudPQsmSU/jtMA6bB1DC7L0hvn@yqUUeZw0xDGyBOS+FLL8XENtvYRRZvQtvbJUtwWDMj+Kq6rytlSVmyGFLK66LQ6S2VEIc1t6n+f79nfOoDz/d/KR5T8lnpWyUBbKPxAW/dQ8mzhh)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?Afk?AFnCAM?ACSBMDl?ABuVBMVEXx:86OgC2/9uQ29sAOjpmOgDbtmZmADoAOmaVlZU?AD/?Dp9/eGhoYICAji7++Wn59MUFDy7+8gICBqcHDT398ZGRkqKirL19f:/8PEBCHj4/x9/c1ODh5eXlbYGAtMDDa5+c8QED/tmbbkDr+GBj/CAg6kNvy5+dESEj:7b7QEBTWFi1v7/1t7f/ODi2Zg?Zrb/25Bmtv/Ez8/3j4/6YGD7SEitt7f6WFilr6/5cHBm?BiaGj/MzOPl5f2n5/z19f5aGj9KCilpaX7UFD+EBD:9vz39+0VFT4eHjb:/4h4dxeHj0x8f1v7+8x8f/ICD2p6f0z8+ep6cAOpCReXn1r6+Q2/+2:86OjptbW06?D3l5eQOgBmOpDONzc6ZrbhIiJmZmboGRnDQ0P3CAi2/7ZmAGa2ZjpmZraOfn5m@Db/7Y6AGY?DqQOmbdJiadbW1cXFxHR0esXFxmkNvb/9uQZgB1dXU6ZmaQOjrM?AQ?A6ADrZKio6OpBI?CkZGT/eHiKiooAZpD/YGDumpq2tmY?GZHFxdUVFTEvLz3?AP.nKW1s9LCyK;KQZpALyaO8?ARBElEQVR4Xuzd5XvjuhIGcH0eQ5g5ZWbmZWY8zHwuMzPzX3wlNzu7Pa6bPCe5vY7mfT90s62:R7ZlqLRqNIpmd4lmiiVFolWTvy0KMjp8m/f1?jS6Xlbzx/9ScAZMiPrpSu/vTZqz8BYL38rrm3Lwba/JPlL3ne77w+glyKoTxn+Vc3zxjznuojSCnm8iNLX/1puzzkR4m++ax09a2v/rRcHvLRgTzkEcgjkEcgj0AegTwCeQsCeQTyCOQRyCOQRyBvQSCPQB6BvIBAHoE8AnkE8gjkEcgjkI9rID9CK+FaavvlIT/99o9WTqmltl4e8p8+W3whL6miEvKjEyUtz7XUoSpqO4MqalM+qbPCtdSSxjxmdYsGXmYVNeTDtdSi5TGfhzzkEcgjkEcgj0AegTySnRUpj7g+rUqUR1aJkhLlkQOirER5ZI+oJlEeaRL5MuXxgpehVXnyyCo1ZykpTx45oEaFsvLkkT2qzFFNnjzSpHsJ8iXK4wXPVQVaFSiPFzylZikpUB4veEpVKCtQHi94Ss1RTaA8XvCUSpAvTB5ZJd/V/u28MHkkRdmhqKIO96LuVx5DvjUcVdThXtR9ymPID0kV9cD70mLID0kVdXQv6q8RpECvDUsV9aDHPIb8sNTSDq4XNdI6KFBWDYn8wHpRI26DiMotcZUWgJ8iah+0lDx5wJdXBVZXIbMML0oeSTK8KHmk6NO2kiePuDybEySP1Emn5kqTR1ZJJ59TQuXx5ZxEeazUQx5DHvIY8pbLA75GWSVPHu4ponJLnDySJfKzLSVNHkl23CGPpXpb5RGvkQgt1QuQRxJEzRf0bopqrhB5ZJsMPe/AySkh8sgeNTKk064UeeuVBHkkQ3O5DAVheAHySI7KyiSRTDG8BHnkgFKWdDZYfkPXVfTcixpJ0YEd8iajSz33okbKlLNIfqLXXtTIHGWULfKL9PhmqBd1hDxSpz1r5INexCd6UUfWzyOv5+m7lnQhZ/neqqjxTXw+YcuYHzFdqHvsRY36aD/bEtevDvBT7C5QHvXRwuSR1kGT4WXJY68dw0NeUIp8Aoo0eQz5rNRe1GgtDHmJqdCUgrzEFGgb8hKzTRklUx6HoFQgLy5J0ikkII/aKcjLOeYM8rLCtVOQl5digWunIC8pSZ9qOQV5KclmXd6Aoz9CXlCJdOVFley2UpCXNH/3W7wBB/JyMks+zaoEw0NeyOPdLdM9n7w8w0NeyON9jgrKI6KpFstBXsLjXWXptnKb5WQXTYuqqKX3ok5RmWaPz8NQ3WNTFbXwXtSuT/d8jV6kspIlPyG8F/UmNZVH+UqWGkLkuYo61ItalnyD6sptks4jQfKh+mmBVdRlet3z6n8tULnudY9dVdSie1Hf62Oj3bBXUcvuRX2b9iTKYz6vCjQnUR7yOSq7EuUh79GsEigPebcZMZeDvP1nYSQEyF/9z81RWoJ86BAU6+WnP5t++4ffeg750CEotsuXFmlFn3QK+V4OQcFz3tYk+RAUGWOe6M+424eK5qyX5zs95LloTob8Vf12B3kumhMkXxrF3b7XhmO422Maj7u9NUkwvJwxv0uEu/1mvhd4zOdt7E9QKyo58pBnd99TSpQ85FsHbe5LYb885G83eJ2e3QXIY/U2QZ1V2k1epxchj/n8tgbvLNdWGESAPObze0TBKeUeNV1J8pjPZ6hGe0q1TM2kXPlwrr5leS/qHJVz5LcS7ZNbbCG:IPSiK29qLlhfIoaeSq35MpPf/Jx+G5vwC3tRc0N4zdPOQEF83nDbGsvam4YXwufgAJ5412ytxf1+1T2/p+5FOM3PANvay/q6IbxGPMjwYPf2l7UbpO2Ia8C6CUh++29VDE4qTyfgHywevvlZ1dF1NjkiHzvxEnlkLd+zFcarnm+54n4pHLIm4MPaaVktXyOqBIcariZ55PKJcijusojyrtzlFHKTShB8pCvEVGlQXUGkCGPuroc+XXK+5QTJo9KC4+m3DxRWw23fCA18vgVruD7VP5V+CvXU/+w/K6cSosaJVWFKGmBPJt/8vz4N/pD9NnFIysR8kLq6nL@5SbKbgWyGs3Mxn7/VtEKy/kza9+sksTx8fTL7/2xtLiivYdCVAX9a9e/kH/l74w18q423s0xQA2yI9O8JjfJVrSyGb3RPAb/Tf90eyqMPhvPL45MtEB5j90rhVxt69Rckjkf+tE5g8sH5xvw3f70uKEkX/XOAaPfXOB3nUR/H10Kbih8x/MdovOtRLq6pJUTgyJ/EK0/H2WD8S/ZPnRl/LadUQDG/L3l0qfPtNDXI95Hf7DyBLL2z2f57bhdtztOyN3VP9jxv3xbx7fZHmzGnssv/wL83A3A3rRPA/4D/p9n76QIF9vV4qhtuEC5vO8m6KXfXg2ytfJpObKkx+dEL16u01UT1EmdxoA1vB4TmeffLFMHgPIkYd8okApFR3I7xJZ+ZxPTFHBFSWPMc/n3uSUNHnIuw0uoIG8pHd7d4rOoYAG8ha1JkAVdbde1Pa2JkAVdZde1Na1JoA8V1EPZy/q/o88QhX18PWiHtCRR6iiHspe1N+jvNdH4l1FzVsqwzvr+F/ejdlHFfXw9aLmI48sHfO8pTJafiBV1EPYi5qPPLJTPmpL5Uqw:JYnndjBtfxZfbO53nFtjXU8nWKTEMDRGyp5P2XgXznf53rOpcNVB4rtoOXr1FkMhogYktlZy8Wywf/C677uHOZlfLebEKZFAu8Ymvp3T5iS2WEvL6OL7NSPkfUNPR8IIK98pFbKldOkw+u48sslPdI0xcP2l0ORMB83jr5GtUzpHM+ByJAPlYlc7nMeS/YQh4lc5BHyRzkz78+OraBPG72kB/8OaZJgfKQd6diUB8NeWy0hDzgIQ94yFsFD3nsqYf8+VfNMbwcecgXC7ynXpA85HkPhix5yLuN+O7BuHGh2sMlkP/ac7ltFc8cOs5a90t2bJPHXO5o3HHGJ7tdMu48jbP89O5EKU69qOvtSi7u8NWLzs5lZ6vbJYfOlWvxlZ/+5E+aPD69qBOk0y7GG/6ys1CdHHfuRsM/nNGXqHVnIbbyxpvl41BFnaRCisj34gy/oceyUrecsbVrRvnOrY2ZtWuTb244QfTnh5ed4JLq/ljM5WPUi3qWKirRIIo3/ENlWJ0g484pGd+ZVEHiLR+nXtQ+/Vj/bJT9173zzYfv/Ns7K0+uf/u9D3+j:nA+eg7nsnn138ZKH/wzvfNp/euP+HfvvOEq6hjLx+TKuo5KqhzD8/BTNIXLh+pE+ncxzlXHlqxkjO9G6te1Fm63Tei0VuvqnC6z8GUmh9znPFbjP1KZt6cv7Fg/pnEGt7/IJlBnIZg9NZU7+E52J03ZxxnYz1kHsKG/KBTpHLf7lUtt9BlnSV8Kw/mYDpXDs2474IN+YHHo0b/cy6j11lnCTPP3LhrtDvTMM6YmYMthMAhfz6552Xo0WDmXK+us7D0jBNOn9iQ7z/unk9EmT7KaDqD2MB31lnMIsvpb2mHl7uaQ/7c9tpRM7vdDb7Kc65gAqaH8vGH0Jyrus/cfUhDPi6bLKsbZs7VWS/VEzCd/eBD+MadNtj7O0/TfbBB/jw3Wd7Qpmc9xLecl9kwusGHcx7NkB/8wcVHweBNn/EQnx8zQ1mbmwmYSnc+DKE85JOvbrLccTbMXTodMueHeAwD+f47ilbHnYfq2n1n/4i9Q7MvO+Qh757oKLrmbCil6S0wh3wX+NSJjqIXnacqoI+9N+T7n83lFOepc1/ZFchHw6+eWIpZEyAP+fQf/0I:xmvyZhcTFsuD3mzDvf3X2t4XoqxL5Cvmnv5VvrE/HzccTT8P/7GSzH2BfJVI21WZ058s7L/z3/Fvzoa8v3vUjarMw/GeH6uVlNkMTzkGV4Zen6cBzvq/WzLSmvI82TNwAf0/DjfzFvtDvn5MYaPaEJjYSAfbHvbmIxqG25fIM/sPFmLW1k85Ll+fsBdyNPrnVd4wKuY188Ptgv5/FiHHfCxr6UdYBfyu7f48R5/eMhHdCHvvYqaC40dnY+uexGpF4iro4Xkkv1jvlPCcvHCg3R0L9l4jXiM+f66kDN79NO9nioqlbBnGm9J/XyfXcij2TmPiHxvM2/VNB7z+egpHKeVpzaRZQMe8jyFi84sTanNvFUDHvLp9e6VTY+obNtgh/z8WPfKplae7BrtkL/DazZdimSnLIKEfPrCOH8l0wXepns95OfHQrXp1q/WQp6/ee+ehEXwkK+uh27zElZrIV/diJy/W7vpCvK8kzYc2zddQX6L4UW920F+3hmXBQ95bs6yJhEe8mvOflUgPOQnx507SuA0HvJbzrrEaTzkdfu1SYHTeMgfmXYfXVMs2DONhzw3/OipeXSzaBUd5NdNw4/ocFn8nmuVHOQf6KaLvbzaPbILDvKTY86hxFc7yG85G9Z9QwP5yCbkLG/u9ZM2LttBPtyEnOPxvd7WZTvIhwoqWZ7v9VYt20E+qgk5V1F/7jhPvLPyGlGh7g1RUEXNMeWzkWP+0JlRZyU5nO92GPNRTchZfstZ69qOZCgD+egm5Ea+esW51q0diY3BfP6uc/HsVnM110o0yO84N85at+N2JLYF8vedu1HwU9xqzr5A/si5InLdDvK3ovZgrbathof8jPMgDCCgNQHkF8bSYQDX/tYEkI94wotxhzxe7SCfEAEPeVRSQB6VFLLksd0O8rLe7SCPdzvIy3q3g7zUdzvIS323g7zUdzvIS/1KFvKCv5KFfFbmV7KQT4p0h7yMSgrIh6uohVRSQD5URb0no5IC8qGKynY+J4EI8qEq6n6CXPpve2fQIjUQRGFWXV3rH+ScQENOyfR17gI5B3Zg0KPryZsuLIjH2X9tpR/VrJYVBBac7LwH9HT6q3Q/eRM6aA9u+Jm3D98+5xDAy1tkY/v8z+nykmfy+BX1pSXP5L3e24dvn3MI4KUtcrbJb18Uk6eYPMXkKSbP5CkmTzF5islTTJ5i8vh7/Eit5LhiIZIi3u+TzW4Vnje7o8yTcW9rkM?eGQQOPKHZc1XzEN3WNe521jyu29NO0aw/3SfrSL8d7+/8/7ulGx2q/C8f6eZeG5DOEBk2PHQIHDkD+rMV8hDd1jXudvePh8b/3I75LhiSaVNIQc.+s4YMRHO0wA7HloEHjdX2ck5LE7rGvutpo83EP+Dz/ktYpW5gk8TB4MreediIzGva0ByQN7HhoEXvM3VBLz0B3Wde62ljzCDbZxVY4r8FiBR8mDofW8TYjFcQx1OcD;UHgdX+6D4DEPHBn6zp3W3vDi30jsriiS8tWWHiQPJi2AddtuL87GHe2sFEDex4bBF73VyeOeeQO6zp3G0u+FZHHw1ryqAj/NzTjnukomFV4jtdj484W3psNex4aBA78gdeJYx66w7rOHU9mUP8neYrJU0yeYvIUk6eYPMXkKSZPMXmKyVNMnmLyFJOnmDzF5Ckm35bzy+nP0ehMwyCj0uV0RIcSd9dWxOS/XuV/T77f5wbJ/zYS3+XqzkZM/vE0f/+YNLTdMbc31zLfyzzp9wG/ZZDc6OA8lRNQIwaQfLlD9AZJTQOgQ6VTp6lXuoTWab3OdC5i8q8eXlvyGmkrWTtou3nSce1rXVcK8ORa8t1ozzIqdah0TjaNXe1+3C51Wn9GYvKHdhwseW1LSNrp92nASUicqCyvA0+SLyUyYqRWls7JpsFV/c5o/Tllz+Q/PFwlPO01+frIoiJ45hf2uYzUytKp0+DK7jy3d0Am33SSdEd+8/SZv7nGNq0t0lr6o73hiUjSYWz9kpRaZem8tWnq1XHppqW+uSD9AsWeASK6oXFs)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AG4?ACCAgM?ADasxWR)DFBMVEXZ7::/+VlZX29vYl5th1)SElEQVR4AWPACZj/f0DmjkqOSjKtQgcLyJccZiEE9SOmP8mXHEaBMBoIo4EwGggryJccvvVKKAogTnJUclRyVHLklgmjkqOS?LWyrsxEHLD)AElFTkSuQmCC%iVBORw0KG;)NSUhEUg?AJY?ACrC)AChjjpN?ADfElEQVR4Xu3cIXLrMBAGYOOcIVwXeCcw7gWMcoBl4WKFPoJOIFbmAxgEFIkKBTQzIp7xjJCJnqW1K02K2mmUnff2J2pK/HWzScdey00glPFNvZ5PL3+OB1KsJudJNeliTUixymPXZ13eVB8bRRxIscpD1Gf5yd2uV2vMOynW+x5mxTDrcPzzcjr36m0kxcqpzcKatB28Kj2SYuXUZ2GjdOfXtVFIsXKewjLWXq+3afYVWBXCLGYxi1nM4rPqelm8n+dpcu5GivXxmf+bxaxBa7D0WLDSDbO2QIs0AqzyrDrm5yyvdS/9b7FyvsUaFYDUbgWoVavXVTe4fic356Zpnr1ffsYatFS6XVlYDts2KWIIwcQfXPBifenD76cxblfY4BQA6L00otmDqs/XwoUg17VPxRoedYpht6pJREgs1f2nNdYKtIo4FYKLvihtH3fhFVfM9vf7eHgBAGJjjamLcIWtqyLRVGB1XVz6rVitTy2PrD4101bXzY3CR7PGVAQ8lMSqIWtfjRm1jpj8LtsHs3DBntk6yZWspkgXAT6xdB1WuGPes/I7pxNL+OezAKTW2hibyorpn8vCr9WcfiWlgtmaLLEfsGx5FQHeDAaL1eIHpB4LFXL/j/PZSi20cdFYrAG/JYaKLBXXDsTORsEWjcXasK2vx3IZsXnN7hLSBGgBxvRbU7Xlg9oMYmcFpyVIPdy3eDVWlxSjBJBDMKF+MgtA6gTwgUIa9FBLQ4fibZ66k2DhXRFNGTrXtZg12XzrCgkWdK04NmVIsJBSkTXZfEWYBOvrG0OChRRm+Zu9DFr1a8t0JFiql3B6KUOChZRnsZjFLGYdRdsBBRZej083L9@oSRYZZiF/UKClW92sw4BJFhlKrKwGiRYB7EN1i7WI4?6y7MOoHsFQlWdzqvFD1czIfnC0nM+pUwi1nMYhazmMWsyRLbKYyjBZ75zHbEGSGhmc9KITrzYdZczJRJsHBcyTOfxafd5BZ3kxNgIaUIDVbmMItZzGJWOVp4AQIsfLgAjhaMQygJVpmKrFQNIMHKe3bsj?SrDLMwhkhCdbXmTIJVpmaLGOsvZJgIeXmprzVjMcFzGIWs5jFLGYxi1nM4gkZb9ZaFu89PnqIBAspH0VIsJDyj7GYxSxmMYtZzGIW7vEgwfq6x4MEq0xFFj42jQQLKd77ZQnfz1/v0W3UeqR3rw)BJRU5Er@ggg==%iVBORw0KG;)NSUhEUg?AM8?ABwCAM?ACOw9TN?ABgFBMVEX:/8?AC0tLT/vhr/3IXU1NS5ubkTExP/vx5FRUXe3t41NTUmJiZsbGy1tbX/3orZ2dnFxcX/wyz/wCO9vb3MzMzt7e22trb/4JSoqKj/349WVlb5+fnW1tb/1Wn/4pt4eHj/y0j09PTp6eni4uLR0dFiYmL/5KKDg4P/zlT/9vz/6reMjIzl5eX/xzn/yuubm5v/2HTBwcGSkpL/0V3/2n3+/P/x8fH/6K:7cOwsLD/5qj:fn8/Pz/4/T:v:bhv/+fv/qBz/5Nb:vv/1sr/lHz/x6D/pKf/z/T/jDD/fkL/zZf:Pb/r8L+/v7:v7/oNb/TbD/VrX/hMv/j8:HJf/G5n/2O3/yOf/csL/wOT/icz/LaD/Qan/xOX/6vf/y+j/uuH/ab7/N6X/s97/rNv/z+v/5PT/fcb/0+z/5/X/JJz/lNH/7fj/4fL/pdf/7/f/p9f/9fr/H5r/8vn/9uL/3PD/yen/+Pz/89f/+/7/8Mv/zOr/mtT/x+o1H6di?AL9klEQVR4XtTYZZLkMAyGYV/RGGRopsFFuPrK7a+2s+P8noreGzylREpFrLpULLTbiaU6n1h3iRFxslpi6sRnVu5ZAslkAZQmobV7CBR7FkAdF08MkglADD0ARR6A2HkAijwAsfMAFHkAYueJQP?xM4TgeABiKUHoNgDEDzuHhcPQPDEoM65V9+6PQOlP4KyfNCqAugKwEEprbVaucdQw8cJZYZShHGUPQbAtfQNnDyq/8/j7k+YCSB48hMfz2lv+pkH70tZEoilR5Gin3le4Slty9KjDUAFLQmjAufkFecWHptXfDyDAUgmzkFzIo8HHcW2CvHx7I1vb4R0DprgsdaW11TT1MZx5OMxJuiMBCd47L3z9kyx9CTVg1NVQYPquubncW7GqSw0v30cPU6fwal8Fpg/xJFKKXb7QL/JGWfEaNKjpLTW3Pa1fBEPD+0z0lAHkeoQs3sqv/l7mue5DpzRa+QXIa5kLUsz8PEocMTXkgqeuiaN54h2s9lMk8w5fY8GjsjgGb1HBo5oJ9/znoMHqcCBJ3AUOOIy9dTGMPLoF/HPY8njOQoccen7oigmy8ej34Ds8nzQdeBocMQTaZqmP7P4HwIOumFXe08j0M76QyQlDw848OD0BA46EuZ2e94w8IAz92A8hXh4JGFoY/PwECfygIPaZ8LQjuPgAWfuGckDDjwbwvRFw8FDnNhTYxToMnlNljHwgPPwVN4z4+D+NFn3a7tuDzixB5xHT32RddvDYd0ecGIPODNP0RAnTdftASfyTCLyNNn2sH4PcWIPceK6+3h2nwX4vgR4f19U/PQJnyVOVEGcuJfdsW0vPz7L85cYO2hRHAnDOF5oSqQAY2InBomRqEFCUI;tnQPwy6zx/0404CdD7/vU1WZF53anlv5vwleflR4YjkMHJ5d7GLWQ6S/P5AOj3q5ODyXNL1c1rk3jwu0GzpAt6FJe1wgNXKAvqXkIZA3D4EcHgeou/M4QGo0Oq4fPfnGgDx6GMQegL72MIg9ALk8qVcPg9jDILcHSYfnJVo/eghE+fQwiD0McnuQdHgeQfkeIM8eBrGHQW4Pkg6PBbFnv6E8exjEHga5PQxiD0DHO1C+3WuRZw+D2MMgtwdJh+cOlKstRHvvHoDYwyC3xwVSc3hwQAmD1kqpLeXZwyD2MMjtYRB77AExaD1VOl+ewnQP6gJdcQe60ddm1pMkSfQbaJNE0Qt5AJI5P2+UP09gGjKIPee7E/og4cl6pJTJoE9ZT7pcLiN7QGprQfmG2k+n/j0oYA+KGQQPdfjdE8m99UjjAUj1oBzztl0uPXvGtuDOU/IoWE87e/TMKwkQezRIAWQ8lJLSu4dB7Kl5FOBB9aPnKKm98Uh4NEivAED5llJV5d9ja7Sn5EFA8Qc8uvjBE8ketEkS9hiQ3QOVJL48oWnWFwcNPOOeaUHtR+8pHjyJ1E2FUJP5fD5C8EA0XYtLFEVJ8jxPGYaN6IpZG6DD2IqK8AMe9OCpJKoGEh6AdFOTXK+rqoqoZ3lqwjXwhCF56rEFFUHYuT3QQDeRasKgqU2lSimfnsB44r4WuqyGi0TFWAcP+sozmIwmDCIKd6R8edqFLu4L6EMYlvEpROeZBf3ZQyBkQcvllHuhfHnOiwz1nBK4t2sZl6HuMDMi8jR/8ERTA0LksaKNb0+mO9hOZHt778qypmOiyhlA8HTYg8P/70GUqwmDlrZ0TZ6RR0+QrVDvabPs9V10WbZAYXiaUfB0Ah48d+69rnKhBgbEnmov0pHJm2elK23hijjwWFE7M6BOGE98DpzvU/VNv0+TyIqkhCcV4hIhf55wp+s9q4Y44rbKkBkKgF6F9QzrR8+x54iUXPAgiYgj1nBV/jwL46lNBTjwUEZUAtSIX55Z6/g9Co71DNgDjvEk87kvT/amO5lWPwS67X6BTuRpBHuGJXtMETjsMSDDgQcyj57Vq67Qhe8G2dR1WRhRG8eNYI/rPleBwx4tAucpnl2ja1H2r0VeT3VdmyMKwPnSE+WC79sja9Qc9kwmvjxnbvUuek9xIhHNAy04OLpu7Po/hDm019xW2NKJye/9B+3A6T09iDjsGbPHwWEPc8gz8OtZ9L0xR3RtQSKArsLpcXHgYQ57TN72wIahZs+5bTUIHKeHOZxizvM89O6hud6Bw3WBATHH7WEOe8B5oudVd/1xh7yFGtSJB8+YPcxhD3Oe52lQZzjsWQDEHLeHOewB56meK3WzHPZkBLqJrz3MYQ84z/R8foLz13fx/dNkPatsccf5Sf1Dnr+pn/Awh1PMcXj+o91eVtuIwSgAa1VCV3mArlJKYTbeTXdx3ZBLL/RCKEyhgLKJhhFINkLViGHaV+9/ItmS5cmQ0OYAwgaZXx+6btyHCMcjoN+lyb+PjazLDjYAat6IcRRO1RGgddtKyZX1y+Ax5uzsbGMG5o0xlhI9l5fnrdbOsZiRcvXu6OgtpScAONwJVNd2W/z39fU3jG7Og3RzHqSrJz1G3IyIEI2PnlNwuFIbkzzWGA8PEj2/Ls9le0qeIfOMH+48H+Ehju5jZPKAU3jYs7DXMk/P5zyInvLUYrH1dE299QSOtUFYVRvjKayiABQ95zx4bO65+vT64uLiMzzPX9j+wHO77ic8b54jJ8HTjEk86WkEWjHl4X3wCPJ0KngwPXZDHBtG7mMGj1Rbj+dcSqm1U9Ej4LkRoQRDdOEpR1cm/tT3SPIcdKjv7eAW5NGEgKdNHrYkjyk9AVQFj1FcKksevedZ8ORpdhRfFp/zsMKDyId5Rnhqxmp43JwnJXoseawhj/uy5xFFsboYLiJnPQbtWHrK9dbtg6MXHijgaZLHWnh88qxKz1KRx3h4zJ5nUXjY4zzl/ik9SfgYj1LwDMkzhDZ5Bnj8Eh71/zwpPANSeOnp2JRHlOst91TswJP2j4dnYPC0mcfBM7Pe0ujmPToDznQoPa7PzoPT5OHw+ENPOt+swvnWwuMyjwfn8DwoRzedB74PWIc+k2AODwKPSvcPswQywVNR/PJuZr6m+2ejeLx/XOPT/cN0/8/nNTLnCTV86Zm5TyV5CLRkiEGy1oIzgLP1qMzjM499Io9Ey0vP4Xsnvd9YpQi0yjyYGc927zeviCPJBI/MPExnJfTTeCxaV3rueY86TBBbcQLFnYKwFa26VfxMaTpx8+P9y5Phz+3ten18fLzz+LwE:6T/qXVOPsKyTx/a63j1jphKArg10IdeeaOCc+OEAdBqwikIPO/B/v+X2s5XhujSNhaeoAre8W98yO3ofTvKSTKlckHEk7/rdl0QvgWorWuKnUTU3u7m9k8Nf0fkpSS+tf7J/O8+Mm5hmarVFVpTRLe/u9DmWF7kqR0Ct/uh3O7nAexOQ9iO/EgiedlnvyyzLMx9038iGkEtKwcNjSpg0cXkj718MHj3wHmfz1FmfMgPvEAtHraxblJRHMp9c2eZyk1gTM6ssLZPLf4zYcydeIZio94WEfxtYcVprryPI8M0OQDaXklZEbq75gPQoQz2gGc3VNi11QY88GjEo:kId6eUTPGUydPKKHYsw4Mv8mqkGqCVkQahcfQkjQgGPNdjzb6wtqGVn1tG25ezhS+nO7jCdVJAd87SmOHrYB1BK1OCV5Z0KolQfCwlHCiR6Lo1nLdwePTtvEn57aZT03TH32nPfN7h5snHiUtXaU0s45QhzymDEFOELDK0eBI54OEjNgDse2mW3JeLK/P6nnvMICeveoIJLSzEwI72kIsSHKgFMt4IhHJKL6tCd/v6FKeX2hnz2sQrBv1o6jJ2SMWcS8rtq9CtE/d4+RqxqTE4/DyO1bbJf3eMqfcDFHoIDEM1fBY4geNsRI/Zi7eBQyrFdBo+OrXMToxNNjHO+Dk+fzfx+QDUMlHoqpqxC1pdnrkw/DbR5s2hs4+mW/HnWx55a09cWn72sk6/GYfQQmnm4ESEzcJh6D+UJIhZDcbNGDO+iqLfWJZ/gij8EsL994HbUWEb9RUv+OWW+eQCEOHLd7SjgUs8XTp2V8Usp/jWfAdNdvdL8npbWa6o5Szw/MhRCN0BNu8dVTxKY3kuNQqadPS5Ws0cUNZ89fcGEBkgbGb70)ASUVORK5CYII=%iVBORw0KG;)NSUhEUg?AIw?ABpCAM?ADflzs9)VFBMVEX::2+fju9PHy9/X0+Pbx9vTo8Ozj7ejZ5uDP4tmwz8Dd6uTL3dTV49x8sJe208Wuzr/P39drpoq61chopIecw7CSvahgn4F1rJFjoYOAsppyqo9IgRfD?ACtElEQVR4Xu3XyVKEMBSF4cxh7Hn2/d9TrtE+VUhTaJrcLPIvLGXjJyegiq/0ZfPIoIBRt2sOBYzLCePzwZiA+bgwtvnBaNES5iylYUlrLbffGGnlF+YiteJKNyPMWUjNkh0wu18YprTNCCM1PwZpZfLBmJwwumAKpmAKpmCSVzAFUzAF47oQvlgCcEMrYtxfMBboVTBtTpguG4wfDCoXjCXQNMb3g6/3Iwo1Bvlq3/Wti8aIfdfVwFCghtw8BnP3Jhbj.EMLMjNYhSAdSyGFO43Zk+KvuoJs39iTLhQDT0xNSm86wM7DiPCww0MoA6fvD7A6ueOtKSPxVSkGGPa502vCTuD8T9YQ8xYDDHUGENr+Oc362cw9LNYQRHGRmJoJz/GYBwoxxgcLmepeEwYov4/pkPxmDCEeRNGxGIsTTJ/ZtJhaPbqH08T2AqAaAzt5Be+ZwxhzOjR7u3bMEG16A2MWSqBlx6qojHYff53E2YhJy68GVMBA820RVjAoXkTBqz5v2eQaseXXRU2da7831QwBbNmUjapMPK4na1pds0lFcadrgtKhTlkhPH5YIxoCXM/ve5wSIXRAbNTbjLvvFKXK3VOgJEVYRqpJ7PWmPPTsjJG2m+MsFMpZRUsqTBbIScyRmhYEmJeBEsSTAvMjCUl5jhv4cfAwo+BhR8DSzKMUMBMWh4yIeblTE2wWJEQo19gtsGihGC+M7A4wYyBZaPA4JsJG/HfGVj4McfReeF66cGygYURc8RG3BicF34Mzgs/BueFGwOLEvwYbMSPgYUbsx2dF14MLPyYY4eNuDH3xwGW5BhkFDmw0SLMppls20S0o84nWJZhEgQLP+bmxTLMx/qWUy8WYjbX+7pdb5VYlFau7uq12g8NH71YilHGGLlKhpJieUZbtWbWavGH5MqJuEqfDRAN8iKPPjs)ASUVORK5CYII=$/9j/2wCE?YEBQYFBAYGBQYHBwYIChAKCg@ChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSgBBwcHCggKEwoKEygaFhooKC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KC;KP/BABEIAOQAyAMAIgABEQECEQH/xABh?ACAwEBAQE)))?QIDBAUGBwgQ?EDAgMDBwcKAwcFAQ)ABAgMEEQUSIRMiMSNBUXGRsdEGF.yUmGBFTNCU3KSk6GywSVz0gc0NUNUY4IWF2Kis/D/2gAMAw?AQAC?A/AP1S)IZTUSpDBJI6+VjVd77IO19BEnOKnSIcKo8paX2Kj7rfE583lRTdFT91via2Ucvsle1Z0no6mpyZdekp88955WbylpZLbtT91viKnxykmnjiY2ozPcjeCcV+Jp8yfztI7Zt+J7BlUXtmQ86lQ5iO/8VNENW/oQodB0Frbu4HcSXh1k9ohxvOn9CFU2Jy29VnYpXsFXgTyqd7aITa48t8sS5vVZ2L4nUoq50rU0QH07mpdSPA7I0KYnlpmVLDG?I)?DiPkyInvXnUm1txKp2xWM0LtW9ZqIqgxWAYEb?ACjARjxRf4dVfyndymlxgxd/8Nq/5Tu4sjTeTrIu4KfPKlyZma7t9TZJhVDsNttpdlb1rpw7Dj1cnA9DE+P5FjdMzPHs27vSejkzMRqopgbZb3ObU4TSeYPqaeSV+l26pZdbdBgwyBflCl0/zW96HQmjdO1JaaF8dNb4cTThdN6ZT6f5je8e1VrF1uPLwOxJEvKac/7hKq09HPNl+bjc/rslzqPg3Xac/wC5F9K2WB8Uibj2q13x0OQ6U6MfAz/JtdyLflXD2Pm9SN1I6/C625XWxXJgldtth8r0G2y59n5m7Nlva/zvC/ON1JJ8u4HNUVMk+ylkjjzNa3K10L+hEv6rRYrDL/1bLU007oJ2UMUebKjt10kiqllTpaZkfJeyKNb8DhQ535s9szXvZupZFyuVt7fA72FouzaZYqNI25bq7VXZue6qqqvap16GHk26G2SS7ERSDjpU98pqTgZ4uBec13E.AB)AYHFfTSPc1ckmnuO0VtvpqvaTa6wlKIWOa5ujuPQayPPxUkRuM?B?lGJQApkORjjl+Sq3+S7uOvIc3FIFmoamJqpyjFYnRdTRCqI5FXpQg7gfKFlXatdq5L3sp3osdbkyeZtyezn07gd5LVd/nqb7y+BdD5M1V05Wn+8vgeikmp385hayROCGiPEEnp1hbTpG37XD8jo4XDy8X2k7yukwGo+sh+8vgdmiw6WJ7Mzo7XReK+BzZpY0RcilzWuvqdHJuqQymn6KlLkXoXsOaimtq2ObLyOKJUvpJ6nIxux2b28m/fRy2c5OKOtzlNY9azEKedlDU08l8sskj2b0aNfZtmvW+86/A6b0d7K9hS5HeyvYSRqXuNXJxKmxoboGbiFDEXoU1xeqg3uIK65awsIEihQJgQkVdm7qUyxtlkROVXX3qCNvqRc+y2sbQMVO9+3RrnO576m0HNygx+dLgVtdoWARJkMyadZMDI275X8q5u90iVxFz8tjWBhlc5jvnHO+IENoVLUJe1jcJRgWF5BxRNHuKaRWSxJFsBzPNk6CTadOg3ZQylm0FYoZGWtaTDUiq3ApqZNhA6SxzHYpL7MfYvibMXX+HS/DvQ83LKkUEkr77jVd77Ihz6mV7XojVNtNE17Fc5DpuxOb2Y/wAytcRm9lnYvifL/wDu/wCT/wDpMU/Cj/rPQeTPlpg3lJNsMPlkZU5c+xmZld77cUW3uUpWSdNbqW7OBeZD2TcRk9lnYp0qWfaxNfY82+508Pl9Hbr095opJXyPXNroZK2OOJiOYltTttcWXMCyLpqpZyntfmblMrHXTiaZF5J/2VMsVQjI0bl/OxNrnZ01Xj0mpAuiJZQexVW6KYqZfSU06ToERicuYcbMqWG?QJgYFerJ3OsnFTeBFzSD2ZrWU5jlzOXQDpgQ2fvKvN/e?BaaAENRDABDI3AQKIAUYjDjX+GTf8f1Ieeisegxtf4ZN/x/Uh5h75NhJsUTa5VyddtDm1fzqdR0qT5pes+A0dc7Cv7Wq+rioJa/Y11X6NC3ecnKJoll4Jrw4Idv8As0ghxv8AtBqcY2kNFs5JJ2UTb5rORUsmiJZM2vdqLAfJnyxo/LOPHZMLi2z6h8svLR5eUuj7JnvwdoWS+RvlJhXlRUz4RG3ZzOk2dQyRG5WPul+N0VE6Ofhcnpa1zO9VTWx9hlNdC/km/E5rMzIWMe5X5Wpve+3E3UfzTfj3kqJLSL1GDEZuTTrOrn4GqN/Jrvfmc9i8NUNMaL0odBTJBLexqjXfb1my5jibqmqGtpFxvR1yYyI0UiSGMQIAxgAC)G?ACEo?wEpEaiGIFIqNSKgRMmKxvmoJmRpvafkqKea82qf9PN9xT0WM1UlHh0k0CM2mZjd9F53InN1nO85xX6yh/Cf/UZ5qZJXZlWxY2uSnblXnMGxqPqZfuKQfHN9VJ91Tc+oxT6yi/Cd/UZpJsR9uk/Dd/ULzJvtGWbFW9CfmYnRyew7sN1I1dk3QyufX+3S/hu/qNWGyPqKVkkiNz3d6qWTRyp+xfFTtiW6KcmerWo3bcDY39icFXE5U1XVbIqppcVu4xU8cjGMds37r75cv5lqk4UO/FxTrNbTHCq7unwNiCU6kfAmNCKEiJcSASDESG?I)Y?AIQlGJRgRBQEqjIiIjUiMiczyk/wiT+ZF/8ARpSaMeZtMMk1+nH+tpVk94zBWIqqlizzRMubaJ2GCRvE6saehr1KYlgdlza9gzNPDomVOYwuaSwNn8OZ9uT9bi/Ze8lgkX8OZr9N/wCtRlVPDxLlRLpovwLmK3ocKRu+nUWOamVuglOgyMsjc3MmjuJqaYmeu3rQ2iNbUsTQZFCSESxCSDIoO4hjQYkGIY))hKMSjERUioyt7iLn2Cw7kVK3PI5yrboJWlGL/3B/2mfqQqLMQu+kflRXatXhdfWQzOn/2aj8J3gXMfmMdQxVVLGxJo8nquIPlZslY1FMfnH+xU/gu8CqWqXL8xU8fqXeBaUudJbh+RoJ4P/cGfaf8ArU5/nbvqKr8B3gacKdKyiZnRzFzO9Ztl1coXIwrlVbobpU5T4E2yLpo0sYiOa3MiXt0E0Y32W9gG5EKGeu3rQ2FaMbf1U7.iZO47kLhm0FYdy1B3KEepJHrfmEO5cMg1SZEmMB?DEox?imscrKd+q82qdZcY8Td6FJ8O9DLWyZKeR3Qi9xJiXciGF1Q/23dpBJ3677u0ybQ+c4H5SY1XNxSbztmxpHtzXjZfecqJbd14HjqeaWpu5rtE9685te1G6WPp6zO9pe0NqvtL2ni4cWxDzLzrbt2e02fqtvwv0HqKeRXwRuv8ARRV7AdNJHxUjlRTr07lyJqaDJSfNNNbeB6ygero29RhkSyqMpqU3E6y8rnYrmplTnOnzGd6XapTTqt8vMVyOW/5FiRSdC9obGS/D8xalFltYvjTcb1FiCYm63qJDNKJoBFSRFwDI50K56qOGNXSLlb1ErHMxxvojftp3KNbWMlTM6KJz05kNMeK0l/nF+6pY3E6W6cp/6qecpaeSeVI4k3u46MWFVDJW6s+C8Cs5cGIVcurWIqdS+J2o6yD217FNbHI5qOavE4bI1Y9W++x16ROQZ/8AucLnXpZ3yqqOQv?EbhkbgQc4AE5xgxZ/oEvw70NMjzn4o70KT4d6HGxh2Wkl+y7uJw/ON60OQxxy/KxY4fJqtyo1q7nNa++03tcYcWwGlx7Y+dyTs2GbLsnJ9K173RehD53hFS3bN2i6HVmYuVbGbyCe2bBpeF9uun/ABaekscjA/JqjwapfPSy1D3uYsfKOS3FF5kToO41p26hGySq6NbopnbdE1N9C3kGfHvNdiqjb6Oz495oPbUEeWFnUhz5NXKRULErBY6BURsBKwWALCGgwAYWFYkOwrhYqynNx5vobP5idynXsc3ygT0Jn8xO5RGOvb6M/q8Dm4MsjKh2zjz6b1lRLdp1oWxTTPlhc5kv0tO9Dj0M76Zztmjd5Og6VNWSuRGuRvXYicqgkY1jWOXnvw7lJoxdq7N06nSp/mmmNiLc3Q/NoB2KVtlVSY?G0qc5OlO0pkccvEqmaGphZE/de13Mi2tz6m6FVdAzeR65U3m8F95U2VVVNCxWJYpkl14p2mapTziB0bHNzac/vNMEEct8yuzarZOgpZEzzpNmq5eZVI1VOypjdE9NHIqL8TCyofma6ycTC3Cp/aj7V8DTTYVOzNvR9q+B1Y2l55+HyUoInZmo77y+B01rJXJZe45aYdL7TO1fAsbQydLO1TpAdKPBaVnMvaVbd6lMLFjja3QnYmKx1WNRjUanBClddSDlRqcdBIqW46BM1dmuVNVIbN1n6Zc3BCxLCsTa5OkSPbf1kIxsdnTSyIlusaR8qu7u2HoOxPM2/FAztsmqWUrkjc6TdTm0UFjdsmaLe911FoFi3O3L6ydAI9ll3ksnETW8nq3qQTWLsF3d61gsg7FjXNci6ppxKaiGGsj2T3c/wBFdSyKPd581uAoGObbM343TQVkE5jXtVrkuimJmGUt92STtTwNEdFAx6bzs3WhNrH582X6Sra5N6P2yuy/RtxDKhS2kgb6rUBY4mL63apc22VMpnmje565W81uPE0MRcjeF7cxHSxejUbwG?IkYpqGOVybWON/NvJcmyHI1GtRMtrIicxqsRIJG1FuNXqcdlXFG5ckzfuqv7EqWWGSduSRM2ttF8DxOP19RR1EWwfuujc5dxOKdfMeh8npdvLSyZmuzN1y8L5VueVpsdqZJY2ua2zlROfp6znNRLoemaWWESPXG5AFYkADIiJWCwxEQHYL?gHYLAIQErBYBisNEGAg?HYBg?I))YhDAjcSnmpcFpZno+RzXut6zoLrboNOHYfDSTRbJ+626NZs8vMp1I4uQ4JmsllK0iXaM4cf2U5seE0kb2vazVFumq+JQsaX0Q0NJkCVzqliEg?JgA7BYAEAWCw?BYL?AOwWABAM)B))D)OA7yoo/qan7rfEsw/yjpK6tjpYoqjaPv67URNEVen3GPBUWCqy8ns32z5vdfxK6XPN5UwyPybmZm5wWzXAdV1PBvbq6Je9/2senRi24p2CRi5k1TsLAFY5JBxFzkY1XOXmupYU1aeiTfYd3CkcrGOd0IvcpFdNSlMRpfrf/VfAugqoZ3K2J+bS9rKhiw2njdSN5Jua6rmcl7+AsLZ6XJonqr3ocaCtqnOi2iNs/oRdNPepBrnaX5zr?HbLQ))))?AY))?ABz1wmn9qTtTwJU+FwQVDZmLJu350twt0G4BFu2kXS4?AVAVVKejy+9q9xaBCX5t3URPOxHSw1OUd9k6AHl8MTlmlEfE?D1hp))))))))P:Z%iVBORw0KG;)NSUhEUg?AQI)yCAM?ACAnCV7)GFBMVEX:/++vr7q6uqMjIxnZ2fY2NioqKhQUFAPXtNU?ADzUlEQVR4XsXa23KEMAwDUN8S/v+P++QJaKBCu7T4MYU2cxxUL7M2Nyw3qIALwszMt9NK9zBSh5uHnVcef23fx8phy7zy.KscoFgOxeDfdVdgiETTDM/IJQPwzpcU93l4bQZ1zW8mqCumJZT+rqPELQgLNOtjoKWXB7MebggsiF717WOF6tIemnUyZmKvLit9p7tgQfP8Y4+hVHQkYuzO7GZe4LWvG2wjuJVzbOfjguC7MX2SEaQeyenBIlCSIA55pygazxC4O3VBM4I/OBUZDPW7aIEVs3JCdjz5wpBNGY3whjBOBBMcia9d8oJHHvLCeoXAucEyz52BE@7LAwSOuywTiBFaxygi2fIJhb7VvqnCBXo+iTEOtnn?imxK0l06ANrnHM04wDyfb0RavbWJOMAWC2Qb+PYHtIL05kADQ6qQnhoUBywlcIFiDcHxJgHjOCcyOUEm6UfYnBFEdifEkQbjdIfDBN754pkowbxGsSEiVgBUnwKrLAxmwzrJA+KfYYm32DgEfDSagE4IURqMm6/29Q8BHg9r1lBMELFICiMQXCMhoAGHICSZIcgLDSNQJEqgkAh5judPjBNGQAgFGok5QzxDE+ZMQuzVOEIUCn?jUScYYC4R8NFgrp1xAu8DrRBgJOoE8xsCPhpU5xQlcKAWCCASRYIojYAHIrgAChBgpZupBBiJnADrMYLZVBiGh?RQiLASHyHAJMGw5ARYGUIBOiZ7xDgkIy7oFmAr5BdIcBIfC8LcDRoFOMEaym7lwIBRuIQCSwVAnE0GA0iTYdowAkwEkUClwj4aIBvYodEsAxcJog2SJEgBALxSYjFzQmwmaUQYCT++4CM2y/II43AO9YUAozE:mYxEeDag2JoI9BSgQYiS98WAbjBneBABKlNAKMxLcIegvRLQmB?NRI8BIfIEAuTAMOQGGQWgEGIlvEcRCdpg7ZQItCxBw85cIOpCChuHzDwJGYsoEPgiB4jUxDPU4TJUAI3FTCXxzTiCMBgmZLhPMTwmiPiQoiYCPBt1fmSDg045MYEMm6FYPjYD:fiIwPUBGcs/IiiFgD8JLa0TRKG4TmApEjROPEPg5E2M/hWLmEBCCSx1guQEU3ixCSeZEDCBwiVOECURtI1JBLQDrhOYVwuQNwiMwIZKkE8SOIkz/CKowxd1UTvPVpMpOx.b5/GL3sOr+7CEAKRiLlvl5VhvxMML/LKHZH4H+220Z1Ovz0aBInMq/K4GpjH+c3XBkDgG6u8tdO8ORqk6QTTQRjiUCSIeo/Ahj1R+E9RrrC/rx+b5Vw/IzNKKQ)BJRU5Er@ggg==!